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Nonholonomic Navigation and Control of
Cooperating Mobile Manipulators

Herbert G. Tanner Savvas G. Loizou Kostas J. Kyriakopoulos

Abstract— This paper presents the first motion planning
methodology applicable to articulated, non-point nonholonomic
robots with guaranteed collision avoidance and convergence prop-
erties. It is based on a new class of nonsmooth Lyapunov func-
tions (DILFs) and a novel extension of the navigation function
method to account for non-point articulated robots. The Dipolar
Inverse Lyapunov Functions introduced are appropriate for non-
holonomic control and offer superior performance characteristics
compared to existing tools. The new potential field technique uses
diffeomorphic transformations and exploits the resulting point-
world topology. The combined approach is applied to the prob-
lem of handling deformable material by multiple nonholonomic
mobile manipulators in obstacle environment to yield a central-
ized coordinating control law. Simulation results verify asymptotic
convergence of the robots, obstacle avoidance, boundedness of ob-
ject deformations and singularity avoidance for the manipulators.

Index Terms—Nonholonomic motion planning, cooperative mo-
bile manipulators, potential fields, Inverse Lyapunov Functions.

I. INTRODUCTION

M
OTION planning for nonholonomic robots has always

been a challenging problem which attracted significant

attention over the years [1], [2], [3], [4]. Of particular impor-

tance nowadays, given the recent advances in communication

and computation capabilities of robotic systems, is the issue

of coordinated motion of multiple nonholonomic robotic sys-

tems [5], [6], [7]. No general solutions have been proposed

for closed loop nonholonomic navigation, especially for multi-

robot systems, partly due to the complexity of the problem and

the fact that no continuous static control law can stabilize a non-

holonomic system to a point [8].

One class of nonholonomic motion planning strategies is

based on differential geometry [9], [10], [11], [12], [13]. Flat-

ness properties [14], [15] of nonhonolomic systems have been

exploited [16], [17]. Other forms of input parameterization can

lead to multi rate [18] and time varying control laws [19], [20],

[21], [22], [23], [24], [25]. A significant improvement of the

convergence rate of time varying controllers can be achieved by

use of homogeneous transformations [26]. On the other hand,

the use of discontinuous control laws allows exponential con-

vergence. Such control strategies can be based on appropriately

combining different controllers [27], or using nonsmooth trans-

formations of the state space [28], [29].
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Motion planning strategies developed for obstacle free envi-

ronments cannot be applied in the presence of obstacles. Typ-

ically, the problem is decomposed into path planning and tra-

jectory generation-tracking. Most of the techniques developed

for path planning are classified as geometric path planners [3],

[30], [31] with several variations [32], [33], [34], [35]. Solu-

tion to the path planning problem is generally sought by graph

searching techniques. An alternative methodology is artificial

potential fields [36].

Potential fields are reported to yield very good results [3].

Significant effort has been devoted to elimination of local min-

ima [37], [38], [39], [40]. Harmonic potential functions [41]

do not exhibit local minima, but they cannot guarantee collision

avoidance [42], [43]. Among other techniques [42], particularly

interesting is the method of navigation functions [44] which is

based on a diffeomorphic transformation of the configuration

space to a topologically equivalent one, where a globally con-

verging potential function can be constructed. A fundamental

difference between geometric path planners and artificial po-

tential fields is that the latter automatically merge path finding

and trajectory generation in a closed loop fashion.

Neither of the two classes could directly account for nonholo-

nomic constraints, which could render the planned trajectory in-

feasible. Sussmann and Liu [45], [46] proved that any collision

free path can be approximated by a sequence of feasible non-

holonomic paths, that uniformly converges to the original path

(although slowly and oscillatory [47]). Another approach [48]

replaces the infeasible path with a sequence of Reeds-Shepp

[49] paths [50], [51]. If the nonholonomic controllers used

satisfy certain topological properties [51], [50] then collision

avoidance can still be guaranteed.

Merging path planning and trajectory generation in potential

field methods has motivated research towards a nonholonomic

potential field controller [52], [53]. De Luca and Oriolo pro-

jected the field vector to the direction of admissible motion [54],

however, the holonomic nature of potential field flows did not

allow the establishment of full state stabilization. To address

this problem the authors have introduced the dipolar potential

field [55]. This approach can be combined with the navigation

functions methodology to facilitate the design of globally sta-

bilizing discontinuous nonholonomic controllers [55], [56].

This paper builds on the combination of dipolar potential

fields and navigation function methodology to present a new

class of nonsmooth potential functions called Dipolar Inverse

Lyapunov Functions. These functions give rise to nonholo-

nomic controllers with guaranteed obstacle avoidance and con-

vergence properties. Besides being able to handle nonholo-

nomic constraints, such navigation schemes also offer superior
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performance compared to existing methodologies. The contri-

butions of this paper are summarized as follows:

1) A new methodology for constructing navigation func-

tions for multi-body, multiple, articulated robots.

2) A new class of navigation functions which are appropri-

ate for nonholonomic motion planning, provide superior

performance and require less effort at tuning.

3) Development of a cooperative control scheme for mul-

tiple nonholonomic robots operating under various task

specifications in an environment with obstacles.

Section II introduces the motivating problem and sets the di-

rections of subsequent analysis. Our first contribution is pre-

sented in Section III where we describe a the new methodology

for constructing navigation functions for multi-body robotic

systems. Section IV defines Dipolar Inverse Lyapunov Func-

tions (DILFs) and establishes their stability-related properties.

Section V presents the nonholonomic controller which, based

on the methodology of DILFs, solves the motivating problem.

Finally, Section VII concludes with a summary of the results.

II. PROBLEM STATEMENT

The results of this paper are motivated by the problem of co-

ordinating the motion of multiple cooperating robotic manip-

ulators in an environment with obstacles under additional task

constraints. Towards this end, consider k nonholonomic mobile

manipulators, each described kinematically as:

ẋr = vr cos θr (1a)

ẏr = vr sin θr (1b)

θ̇r = ωr (1c)

q̇ar
= uar

, r = 1, . . . , k (1d)

where (xr, yr, θr) is the position and orientation of the plat-

form of mobile manipulator r on the plane, vr and ωr are the

translational and rotational velocities of the mobile platform,

qar
∈ R

nar the vector of arm joint variables and uar
the joint

rate inputs. Mobile manipulator r configuration is defined as:

qr ,
[

xr yr θr qT
ar

]T
∈ SE(2) × Snar , Qr

and the entire system configuration vector is defined as:

q ,
[

q1 . . . qk

]

∈ Q , Q1 × . . . × Qk

The mobile manipulators are supposed to rigidly grasp a de-

formable object (Figure 1). Grasp point i is associated with an

element si of SE(3). An arbitrary grasp frame can serve as

the object’s floating frame of reference, {R} [57]. Without loss

of generality we can assume s1 ≡ sR. With respect to sR, all

other grasps can be described by the grasp vector:

s(q) ,
[

s2(q2), . . . , sk(qk)
]

∈ SE(3) × . . . × SE(3) (2)

Each si ∈ SE(3) is a rigid transformation gi [2].

A finite element decomposition of the deformable object [57]

will describe the object shape by means of a set of parameters

r, φ, qf . The first two, (r, φ), correspond to the position and

orientation of the object floating frame of reference, while the
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Fig. 1. Mobile manipulators handling a deformable object in an obstacle
environment.

third, qf , is the vector of (independent) nodal deformations.

The object dynamic equations are then obtained in the form:
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where mij are elements of the inertia tensor, Ci are Corio-

lis and centrifugal vectors, and Qi are external forces vectors.

The dependence of mij , Ci and Qi on the object configuration

(r, φ, qf ) and its derivative is dropped for brevity. In (3) the

vector of nodal deformations qf depends on the grasp point

coordinates. Since si = (pi, Ri) ∈ SE(3), the rigid trans-

formation from the undeformed configuration of grasp i to its

deformed can be written as g0
i1g1g

−1
i , where g0

i1 denotes the

(constant) rigid body transformation from the object floating

frame of reference to the undeformed grasp. We can express

this rigid transformation in terms of the corresponding twist as:

g0
i1g1g

−1
i = eξ̂iθi . Extracting the exponential coordinates ξiθi

we have the contribution of grasp i to the vector of nodal co-

ordinates qf . Without loss of generality, we can assume that

we can partition this vector to the grasp-related component

qs
f = (ξ2θ2, . . . , ξkθi) and the object-related component qo

f .

With only gravity forces exerted, the equilibrium configuration

q̄f for the nodal deformations of the object would be:

Kff q̄f = Qf (4)

and a first order approximation would provide a simplified de-

scription of the object kinematics around q̄f :

q̇o
f = −(Ko

ff)−1
K

s
ff(ξ2 · · · ξk)T

with K
o
ff guaranteed nonsingular by the reference conditions

on the finite element model [57]. Due to material strength lim-

itations the object deformation should remain bounded:

‖qf‖∞ ≤ qF (5)
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The problem can now be stated as follows:

Given a group of k planary moving nonholonomic mobile ma-

nipulators grasping a deformable object, find a feedback kine-

matic control law that steers the system in a cooperative man-

ner between two configurations in a known static environment

with obstacles such that the object deformation remains within

certain bounds.

Towards this goal, we present a novel approach to navigation

of nonholonomic systems that builds on a new kind of poten-

tial field functions called Dipolar Inverse Lyapunov Functions

(DILFs). To handle the volume and the articulated nature of the

robots we develop a new methodology for constructing navi-

gation functions and subsequently derive a discontinuous kine-

matic feedback control law that guarantees global asymptotic

stability for the closed loop system.

III. A POTENTIAL FIELD FOR NON-POINT ROBOTS

Creating an artificial potential field requires a mathemati-

cal representation of the system and its environment. Exist-

ing potential field methods are based on the assumption that

the system can be represented by a point in the workspace.

For articulated mechanisms and multi robot systems, this is

rarely the case. The method presented in this section builds

on and extends the navigation function approach of Rimon and

Koditschek [44]. It is used to create navigation functions for

multi-body articulated robots through a series of diffeomorphic

transformations. The sphere-world topology of [44] is pushed

to point-world allowing the transformed robots to be treated as

points and eliminating the appearance of local minima.

Obstacle

Robot

Fig. 2. Robots and obstacles are represented as unions of ellipsoids.

In the approach followed in this paper, the shape of the

robotic system R and the obstacles O in a three dimensional

workspace W ⊂ R
3 are considered as unions of general-

ized n-ellipsoids: R =
⋃

j∈J Rj and O =
⋃

i∈I Oi, with

J = {1, . . . , NR} being the index set of the ellipsoids cov-

ering the robots volume and I = {1, . . . , NO} the index set of

the ellipsoids covering the obstacles’ volume (Figure 2). In a

reference frame aligned with an ellipsoid’s semiaxes, the ellip-

soid can be described as a zero level set of a real valued function

of the form b(x, y, z) = 0:

(

x − x0

a

)2n

+

(

y − y0

b

)2n

+

(

z − z0

c

)2n

− 1 = 0,

where a, b, c, x0, y0 and z0 are parameters and n ≥ 1
2 . The

position and orientation of Rj is specified by q. The boundary

of Rj is described as the zero level set of a real valued function

bRj
(q, x, y, z). Accordingly, ∂Oi is given as bOi

(x, y, z) =
0. Functions bRj

(q, x, y, z) and bOi
(x, y, z) are negative in the

interior of the respective ellipsoid, vanish on the surface and

increase monotonically away from it.

When many independently actuated rigid bodies move in

the same workspace, their representation becomes problematic.

The solution is given by observing that each moving body has

its own “interpretation” of the surrounding world. For each

body, any other body, moving or stationary, is an obstacle. Un-

der that perspective, the original workspace is in fact the result

of an embedding of all such individual subjective views of the

world into a single three dimensional space. Hence, in order to

be able to design the motion of each rigid body, we first need to

untangle these views and treat them separately.

For each rigid body p of the robotic system we define a spe-

cial copy of the workspace Wp (Figure 3(b)). In each Wp a

sequence of smooth transformations yields spaces where the

robot part and all obstacles are represented by points. First, the

volume of each robot part is reduced to a point (Figure 3(c)).

Then, all obstacles “seen” by the robot part are also reduced to

points (Figure 3(d)). In the resulting point worlds, navigation

functions can be defined and their construction and tuning are

easier than in sphere worlds.

A. Transformation to Point-World

For an arbitrary workspace Wp, let Op
i , i ∈ Ip be the ellip-

soids that in this particular workspace are treated as obstacles

and Rp
j , j ∈ J p the ellipsoids on the rigid body p. If we need to

control the orientation of p explicitly, then we can form groups

Rpm

j ⊆ Rp
j and define separate Wpm for each group, such that

Wpm ∩Rp
j = Rpm

j . Then, controlling the position of each Rpm

j

we impose a specific orientation. In a reference frame aligned

with the ellipsoid semiaxes, Rp
j is given by the function:

b
p
Rj

(x, y, z) =
(x − xj)

2n

a2n
+

(y − yj)
2n

b2n
+

(z − zj)
2n

c2n
− 1

In this frame, the transformation Hp
0(x, y, z):

[

(x − xj)
n

an
+ xj ,

(y − yj)
n

bn
+ yj ,

(z − zj)
n

cn
+ zj

]T

, h
p
0

maps Rp
j to a unit sphere centered at hj = (xj , yj, zj)

T . This

unit sphere is reduced to the point hp ∈
⋃

J p R
p
j through the

transformation T
p
Rj

(hp
0):

T
p
Rj

(hp
0) ,

(

b
p
Rj

b
p
Rj

+ 1

)
1

2

(hp
0 − hj) + hp,

In an appropriate coordinate system, we can assume that the

desired configuration for every hp is the origin. Define the an-

alytic switches [44]:

σ
p
Rj

,
‖hp‖

∏

i6=j b
p
Ri

‖hp‖
∏

i6=j b
p
Ri

+ λb
p
Rj

, (6)
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where λ is a parameter. The transformation Hp
1 : h

p
0 7→ h

p
1:

Hp
1(h

p
0) , h

p
1 = h

p
0(1 −

∑

j∈J p

σ
p
Rj

) +
∑

j∈J p

σ
p
Rj

T
p
Rj

(7)

reduces rigid body p to the point hp (Figure 3(c)).
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Fig. 3. (a): Original workspace; (b) Workspace copies for each rigid body; (c)
Rigid body reduced to point; (d) Deformed obstacles reduced to points.

Remark 1. Bearing in mind that we will need to differentiate

the potential function at hp we have to ensure that the inverse

transformation (Hp
1)

−1 exists and is smooth. The inverse map-

ping of each T
p
Rj

is given as:

h
p
0 =

(

‖T p
Rj

− hp‖
2 + 1

‖T p
Rj

− hp‖2

)
1

2

(T p
Rj

− hp)

and regardless of the fact that the inverse image of hp

cannot be directly calculated, there is a limit that depends

on the direction of approach to hp. To see that, express

T
p
Rj

− hp in polar coordinates and verify that: limr→0 h
p
0 =

[cos θ cosφ, sin θ cosφ, sin φ]T , where r, θ, φ are the polar co-

ordinates. The switches are not defined on the intersection of

Rp
j but the limit exists in this case too. In fact, with some ad-

ditional computational cost one can isolate each Rp
j by em-

bedding it to its own workspace and ignoring its immediately

neighboring ellipsoids. At any case, the existence of the limits

ensures that the transformation Hp
1 is diffeomorphic.

Transformation Hp
1 deforms the shape of Op

i in Wp (Fig-

ure 3(c)). The next transformation reduces the deformed Op
i to

points. Define the analytic switches,

σ
p
Oi

,
‖hp

1‖
∏

j 6=i b
p
Oj

‖hp
1‖
∏

j 6=i b
p
Oj

+ λb
p
Oi

, (8)

and the mappings,

T
p
Oi

(hp
1) =

(

b
p
Oi

b
p
Oi

+ 1

)

1

2

(hp
1 − hOi

) + hOi
,

where hOi
is common for every set of intersecting Oi. Then

the transformation Hp
2 : h

p
1 7→ h

p
2:

Hp
2(h

p
1) , h

p
2 = h

p
1(1 −

∑

i∈Ip

σ
p
Oi

) +
∑

i∈〉p

σ
p
Oi

T
p
Oi

, (9)

reduces Op
i into points and translates hp (Figure 3(d)). Suc-

cessive application of (7) and (9) yield workspaces Wp where

the robot part and its obstacles are represented by points. A

measure of proximity of robot part p to the obstacles could be:

dp(h
p
2) ,

∏

i∈Ip

‖hp
2 − hOi

‖

A possible choice for a navigation function is [44]:

ϕ =

∏

p‖h
p
2‖

2

[
∏

p‖h
p
2‖

2kv +
∏

p dp(h
p
2)]

1

kv

(10)

where kv a tuning constant parameter.

B. Bounded Object Deformation

The object is modeled like the manipulator structure, assign-

ing a group of ellipsoids Rfi

j to each of the nodes qfi
in the

deformable object. The position of each ellipsoid Rfi

j that rep-

resents part of the object’s volume is determined by the grasp

vector s through (4).

Equation (5) prescribes upper bounds for node deforma-

tions. These upper bounds can be rewritten as spatial toler-

ances for ellipsoids Rfi

j . These tolerances define admissible

regions for Rfi

j which when pushed through Hfi

1 can be under-

approximated by balls centered at the undeformed configura-

tion h̄fi
(Figure III-B). This way, condition (5) can be trans-

lated into a more conservative constraint of the form:

(hFi
)2 − ‖hfi

− h̄fi
‖2 ≥ 0 (11)

Constraint (11) can be expressed as an obstacle for Rfi

j :

bf ,
∏

i

[(hFi
)2 − ‖hfi

− h̄fi
‖2] (12)
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Fig. 4. (a): An object ellipsoid inside its tolerance envelope; (b) the trans-
formed ellipsoid in its spherical admissible region.

C. Singularity Avoidance

Singularity avoidance can be achieved by representing sin-

gularities as artificial obstacles. This has been one of the pri-

mary functions of artificial potential fields ever since their first

appearance in literature [36]. Singularity regions are sets of

measure zero within the configuration space but their shape

and location depends on the mechanical structure and cannot be

generically described for an arbitrary mechanism. In well de-

signed manipulators, internal singularity regions are generally

confined and in many cases they can be decoupled to classes

that depend on a subset of the configuration variables [58]. In

such cases it is always possible to enclose the singularity re-

gions inside ellipsoids Os
i representing artificial obstacles af-

fecting the motion of the robot end-effector.

Singularities can be characterized as solutions of the equa-

tion: det
(

J
T
J
)

= 0, where J denotes the Jacobian of the robot.

One can consider either the composite Jacobian of the platform-

arm system or solely the manipulator Jacobian. Ellipsoids Os
i

are reduced into points hsi
by Hp

2 and singularity avoidance is

ensured by introducing the artificial obstacles:

bp
s ,

∏

i

‖hp
2 − hsi

‖2 (13)

for all rigid bodies p in the robotic system.

IV. DIPOLAR INVERSE LYAPUNOV FUNCTIONS

Conventional artificial potential fields that have appeared in

literature can provide solutions for the problem of navigation of

a holonomic point-robot in an obstacle environment [3], [44].

However, none of these methods can take into account the non-

holonomic constraints that may be imposed on the robot. As a

result, desired motion directions dictated by the potential fields

may be infeasible. Application of a feedback controller based

on such conventional artificial potential fields could result in

the robot being immobilized in configurations that do not con-

stitute local minima for the potential function. In the remaining

section we will present a new kind of potential fields that are ap-

propriate for nonholonomic navigation. This kind of potential

fields give rise to a new class of nonsmooth Lyapunov functions

(ILFs) which can be combined with nonholonomic controllers

to yield global asymptotic stability to a destination configura-

tion with collision avoidance.

A. Dipolar Potential Functions

A dipolar potential function is a nonsmooth function, de-

signed so that the potential field at the origin is aligned to the

direction of the desired orientation for the vehicle (Figure IV-

A). Nonlinear scaling can produce a vector field that allows

the development of a globally stabilizing state feedback control

law.

obstacle

destinationinitial
position

Fig. 5. A dipolar potential field around an obstacle.

Control laws derived from dipolar potential functions do not

avoid the need for the vehicle to rotate in place under a cer-

tain combinations of initial conditions, including (x, y, θ) =
(0, 0, φ). They can guarantee however that under all initial con-

ditions, the vehicle will approach the destination asymptotically

and in the process it will follow a path that automatically stabi-

lizes its orientation. Rotation in place will only be necessary at

initial time if required by the initial conditions.

Dipolar potential functions can be directly constructed from

conventional navigation functions [44] by treating the hyper-

plane the normal vector of which is parallel to the desired ori-

entation, as an artificial obstacle. For the case of a single robot,

this “artificial obstacle” should separate the configuration space

to exactly two connected regions. In the multi-robot case the

configuration space has to be partitioned into 2k connected re-

gions, each containing the origin. Let hcr
denote the point

where the platform of mobile manipulator r is transformed into

and define the separating surface Γ:

Γ , {hcr

2 | 〈(1, 0, 0)T , hcr

2 〉 = 0},

where 〈·〉 denotes inner product and hcr

2 is the image of hcr

under Hcr

2 . Since the analytic switches (6) and (8) vanish at

the origin, Hcr

1 and Hcr

2 become the identity there. By continu-

ity, ∂Γ
∂x

∣

∣

∣

0

= (1, 0, 0) and hence Γ is normal to the direction of

desired platform orientation. Defining the artificial obstacle as:

γr , |〈(1, 0, 0)T , hcr

2 〉|, r = 1, . . . , k

then in view of (10), (12), (13), a dipolar potential function can

be formed as:

ϕd =

∏

p‖h
p
2‖

2

[
∏

p‖h
p
2‖

2kv + bf

∏

p dp(h
p
2)b

p
s(h

p
2)
∏k

r=1 γr]
1

kv

(14)

B. Inverse Lyapunov Functions

Navigation functions serve as Lyapunov function candidates.

The ability to construct navigation functions is important be-

cause it provides straightforward stability results. However,
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navigation functions require tuning for elimination of local

minima. Tuning generally affects convergence rate and can be

difficult, especially in multi-dimensional spaces where one can

not have visual representation of the navigation function.

Alternative classes of Lyapunov function candidates can be

constructed. One such class is Inverse Lyapunov Functions

(ILF) (Figure 6). An ILF can be derived from a dipolar nav-

igation function, so that it is positive semi-definite, vanishing

on the boundary of the admissible space and tending to infinity

at the desired configuration:

Definition 1. Let D ⊂ R
n be a domain containing the origin

and consider a real smooth valued function V (x) : D \ {0} →
R

+ having the following properties:

(i) V (x) ≥ 0, ∀x ∈ D,

(ii) limx→0 V (x) = +∞,

(iii) V̇ (x) > 0, ∀x ∈ D \ {0}

Function V is called Inverse Lyapunov Function (ILF).

obstacle destination
Inverse Lyapunov

Function

Fig. 6. A dipolar Inverse Lyapunov Function build around an obstacle.

Inverse Lyapunov functions are equivalent to typical Lya-

punov functions in the sense that the existence of a representa-

tive of the one class implies the existence of a counterpart in the

other. Their existence implies asymptotic stability for smooth

or nonsmooth systems.

Theorem 1. A (possibly non smooth) Lyapunov function V (x)
exists iff an Inverse Lyapunov Function W (x) exists.

Proof. See Appendix, Section A.

Theorem 2. Consider the continuous system ẋ = f(x) with

f(0) = 0 and D a neighborhood of the origin. If V : D \
{0} → R

+ is a regular Inverse Lyapunov Function then x(t)
approaches the origin asymptotically.

Proof. See Appendix, Section B.

Theorem 3. Consider the system ẋ = f(x) where f is

Lebesgue measurable and essentially locally bounded. Let

x ≡ 0 be an equilibrium point and D a neighborhood of 0 and

V : D \ {0} → R
+ ∪ {+∞} a locally Lipschitz and regular

function for which it holds:

(i) V (x) ≥ 0, ∀x ∈ D,

(ii) limx→0 V (x) = +∞

Then if V̇ (x(t)) ≥ 0, ∀x ∈ D \ {0}, x ≡ 0 is uniformly stable.

If in addition V̇ (x(t)) > 0, ∀x ∈ D \ {0}, then x ≡ 0 is

asymptotically stable.

Proof. The proof is similar to that of Theorem 2, with the dif-

ference that some relations hold almost everywhere.

A class of ILFs qualify for navigation functions:

Proposition 1. Consider the potential function: Vi(x) =
β(x)

1

k

γ(x) , where β(x) is the nonnegative obstacle function van-

ishing in the boundary of the free space, γ(x) is the metric in

the free space and k a positive parameter. For k large enough,

Vi(x) is a navigation function.

Proof. See Appendix, Section C.

Proposition 1 and Theorems 2-3 can be used to establish

asymptotic convergence and obstacle avoidance properties of

a given feedback controller which is based on an ILF. Before

being used, the gradient of an ILF has to be scaled in order to

satisfy ∇V (x) → 0 as x → 0. This is done by multiplication

with a KL function of ‖x‖: f (x) = ‖x‖k∇Vi for a sufficiently

large k > 0. This factor can be the denominator appearing in
∂V
∂x

. The reason why an ILF is preferable to its classical coun-

terpart is outlined in the following claims:

Claim 1. Inverse Lyapunov Functions can achieve faster con-

vergence rates than their classical counterparts.

Proof. See Appendix, Section D.

Claim 2. There is less derivational complexity in the analytical

expression of the potential field generated by Inverse Lyapunov

Functions.

Proof. It can be seen from the proof of Claim 1.

Claim 3. Inverse navigation functions are more easily tunable.

Proof. See Appendix, Section E.

V. CLOSED LOOP KINEMATIC CONTROLLER

In view of (14) a dipolar ILF can be constructed as:

V ,
[bf

∏

p dp(h
p
2)b

p
s(h

p
2)]

1

kv

∏k
r=1 γr

∑

p‖h
p
2‖

2
(15)

from which the following potential field can be generated:

f s =

(

∑

p

‖hp
2‖

2

)2

∇V (16)

that can be pulled back into the configuration space of the

robotic system by differentiating V with respect to q:

f =
[

f
T
1 · · · f

T
r f

T
k

]T
,

(

∑

p

‖hp
2‖

2

)2
∂V

∂q
(17)

where f r =
[

fxr
fyr

fθr
fT

ar

]T
, r = 1, . . . , k. We

will need the following lemma:

Lemma 1 ([27]). Let M1, M2 two open and connected subsets

of R
n, such that M1 ∪M2 = R

n \ {0}. Let f i : Mi → R
n,

i = 1, 2 two vector fields and assume there exists a separating

surface Γ with 0 ∈ Γ and Γ\{0} ⊂ M1∩M2. Let C1, C2 two
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connected subsets of R
n \ Γ such that Ci ⊂ Mi and assume

that f i on Γ is pointing towards the interior of Ci for i = 1, 2.

Finally, assume that f1, f2 are asymptotically stable on M1,

M2. Then, the vector field f : R
n → R

n defined as:

f (x) =











f
1(x) if x ∈ (Γ \ {0}) ∪ C1

f2(x) if x ∈ C2

0 if x = 0

is globally asymptotically stable.

Lemma 1 can be extended for more than two vector fields:

Lemma 2. Let Mi, i = 1, . . . , k, k open and connected subsets

of R
n such that ∪iM

i = R
n \ {0}. Let f i : Mi → R

n, i =
1, . . . , k be k vector fields and assume there exists a separating

surface Γ with 0 ∈ Γ and Γ \ {0} a proper subset of ∩iM
i.

Let Ci, k connected subsets of R
n \ Γ such that Ci ⊂ Mi. In

addition, assume that f i on Γ is pointing towards the interior of

Ci. If every f i is asymptotically stable on Mi, then the vector

field f : R
n → R

n:

f(x) =











f
j(x) if x ∈ (Γ \ {0}) ∪ Cj , j = 1, . . . , k − 1

fk(x) x ∈ Ck

0 x = 0

is globally asymptotically stable.

Proof. See Appendix section F.

The partition of the state space described in Lemma 2 is in-

duced by function γr in (15). If in each region Mj the vector

field is asymptotically stable, then by Lemma 2 the system is

globally asymptotically stable:

Proposition 2. Consider k systems of the form (1) and assume

the existence of a dipolar ILF generated potential field, (17).

Then the following control law guarantees obstacle avoidance

and global asymptotic convergence for the combined system:

vr = kvsign (fxr
cos θr + fyr

sin θr) ‖f‖ (18a)

ωr =

{

ko(θdr
− θr), wr ≥ 0,

vr(fxr
cos θr + fyr

sin θr)(fθr
)−1, wr < 0

(18b)

uar
= Kafar

(18c)

where kv , ko positive constants, Ka a positive definite constant

matrix, and

θdr
, atan2(−sign(xr)fyr

,−sign(xr)fxr
)

wr , vr(fxr
cos θr + fyr

sin θr) + kofθr
(θdr

− θr)

Proof. See Appendix, Section G.

The above controller ensures global convergence to the des-

tination by alinging the robot motion with the gradient of the

dipolar potential field. This alignment ensures that the robot ve-

locities will only vanish at the destination and rotating in place

may only happen at the beginning of the motion.

VI. SIMULATIONS

The methodology is applied to a system of two mobile ma-

nipulators, each consisted of a nonholonomic mobile platform

with three DOF and a fully actuated six DOF manipulator (Fig-

ure 1) and a deformable beam rigidly grasped by the robots.

The task for the robots is to carry a deformable beam while

keeping its deformation bounded and avoiding obstacles. The

object is modeled using two 3D rectangular beam finite ele-

ments [57], in which the nodal displacements correspond to

three infinitesimal translations and three infinitesimal rotations.

The upper bound for the deformation vector norm is set to

qF = 4, which is quite generous to allow for increased ma-

neuverability for the robots and to demonstrate how object de-

formation can be exploited in a motion planning task. If qF ,

had been set at zero, then the beam would have been treated as

rigid and convergence to destination might have been impossi-

ble. Such a system possesses a total of 18 DOF. In theory, the

methodology can be applied to multi-robot systems with dif-

ferent number of robots and DOF; however, the centralized ar-

chitecture and the complexity of the the potential function may

limit the scalability of this controller synthesis method.

Initial and desired configurations are given in Table I.

INITIAL CONFIGURATIONS

x1 y1 θ1 q1
1 q2

1 q3
1 q4

1 q5
1 q6

1

-11 3 −π
2

π
2 −π

2
2π
3 0 −π

6 0

x2 y2 θ2 q1
2 q2

2 q3
2 q4

2 q5
2 q6

2

-8 3 −π
2 −π

3 −π
2

2π
3 0 −π

4 0

DESIRED CONFIGURATIONS

x1 y1 θ1 q1
1 q2

1 q3
1 q4

1 q5
1 q6

1

0 -2 0 π
3 −π

2
2π
3 0 −π

6 0

x2 y2 θ2 q1
2 q2

2 q3
2 q4

2 q5
2 q6

2

0 2 0 −π
2 −π

2
2π
3 0 −π

6 0

TABLE I

INITIAL AND DESIRED CONFIGURATIONS.

The position error trajectories are given in Figures 18-19.

The asymptotic nature of convergence is particularly evident in

the evolution of arm joint angles, since the manipulators have

to maneuver to avoid obstacles while maintaining contact with

the object. Beam deformations are shown in Figure 17. Large

rotational deformations are exhibited during the motion in an

effort to exploit elasticity for faster convergence. However, in

all cases, deformations remain within the specified limits. The

robots’ motion is captured in successive snapshots given in Fig-

ures 7-16. The workspace is structured as an indoor environ-

ment and the task for the robots is to transfer the object through

a door opening and hold it over a rectangular shaped obstacle.

The robots are initially positioned next to each other (Figure 7)

and start moving towards the door opening (Figures 8-9) where

the robots negotiate their motion through the door via the cen-

tralized controller (Figures 10-13). Once inside they maneuver

towards the destination configuration (Figures 14-16).
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Fig. 7. Time = 0.0 sec.

Fig. 8. Time = 0.1 sec.

Fig. 9. Time = 4.0 sec.

Fig. 10. Time = 6.0 sec.

Fig. 11. Time = 7.0 sec.

Fig. 12. Time = 8.0 sec.

Fig. 13. Time = 12.0 sec.

Fig. 14. Time = 16.0 sec.

Fig. 15. Time = 24.0 sec.

Fig. 16. Time = 50.0 sec.
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Time t [sec]

qf [m]

Linear deformations

Angular deformations

qf [rad]

Time t [sec]

Fig. 17. Deformations at the center of mass of the beam.

Platform position and orientation

[m]

[m]

[rad]

[rad]

Time t [sec]

Arm joint angles

Time t [sec]

Fig. 18. Platform position (up) and joint angles (down) of robot 1.

VII. CONCLUSIONS

This paper presents the first, to the authors’ knowledge,

methodology for nonholonomic motion planning of articulated,

non-point robots in obstacle environments with guaranteed col-

lision avoidance and convergence properties. The methodology

is applied to the case of handling of deformable material by

multiple nonholonomic mobile manipulators and yields asymp-

totic convergence of the robots, obstacle avoidance and non-

holonomic navigation in cluttered environments, motion coor-

dination for the multi-robot system, boundedness of object de-

formations and singularity avoidance for the manipulator mech-

anisms. These objectives are met simultaneously using a new

class of nonsmooth artificial potential functions, namely dipo-

lar Inverse Lyapunov Functions (ILF). This new class of po-

tential functions is appropriate for nonholonomic mobile robot

motion planning, and allows easier tuning, offers computational

savings and yields faster convergence rates. The mathematical

representation of the workspace allows modeling the system’s

Platform position and orientation

Arm joint angles

Time t [sec]

Time t [sec]

[rad]

[m]

[m]

[rad]

Fig. 19. Platform position (up) and joint angles (down) of robot 2.

volume and its non stationary shape, allowing the treatment of

a large class of robots and obstacles. The system is kinemati-

cally controlled by a globally asymptotically stable centralized

discontinuous state feedback controller, based on the artificial

potential field. Stability is analyzed in the framework of nons-

mooth Lyapunov theory which, for this purpose, is enriched by

useful extensions of recently developed tools. Overall perfor-

mance is verified through numerical simulations.
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APPENDIX

A. Proof of Theorem 1

Let V (x) be a Lyapunov function for the system ẋ = f(x),
that is:

(i) V (x) > 0, ∀x ∈ D ⊂ R
n,

(ii) V (x) = 0, for x = 0,
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(iii) V̇ (x) < 0, ∀x ∈ D \ {0}.

Then we can define the function: W (x) , 1
V (x) . It is clear that

W satisfies the first two requirements of Definition 1. For the

third a direct calculation yields:

Ẇ (x) =
−1

V 2(x)
· V̇ (x) > 0, ∀x ∈ D \ {0}

Therefore, W (x) is an Inverse Lyapunov Function.

Conversely, if W (x) is an Inverse Lyapunov Function sat-

isfying the requirements (i)–(iii) of Definition 1, then we can

define the function:

V (x) ,

{

1
W (x) , x 6= 0,

0, x = 0

By definition, V (x) is continuous at the origin but it may not

be smooth. We can say that V (x) is smooth almost everywhere

since the origin is a set of measure zero. It is still a valid Lya-

punov function since stability requires only continuity at the

origin.

B. Proof of Theorem 2

The proof borrows from its classical counterpart in [59]: Let

ε > 0. Then there is an r ∈ (0, ε] such that Br , {x ∈
R

n | ‖x‖ ≤ r} ⊂ D Let α , max‖x‖=r V (x), choose a

β ∈ (α, +∞) and define: Ωβ , {x ∈ Br | V (x) ≥ β} Such a

set always exists since limx→0 V (x) = +∞, that implies that

for every β there will be a δ for which ‖x‖ < δ ⇒ V (x) > β.

The set Ωβ lies inside Br. This can easily be shown by contra-

diction. Additionally, every trajectory starting in Ωβ remains in

Ωβ for all t: V̇ (x) ≥ 0 ⇒ V (x(t)) ≥ V (x(0)) ≥ β,∀t ≥ 0
and therefore x(t) ∈ Ωβ, ∀t > 0, if x(0) ∈ Ωβ . Since V (x) →
+∞, if x → 0 then for all β > 0, there will exist a δ > 0 such

that ‖x‖ < δ ⇒ V (x) > β. Therefore, Bδ ⊂ Ωβ ⊂ Br and

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br, which

establishes the stability of x = 0.

To show that x = 0 is asymptotically stable, consider a se-

quence x(tn), with tn → ∞. Since V̇ (x) > 0, ∀x ∈ D \ {0},

then V (x(t)) is strictly increasing. V (x) not being bounded

from above, so V (x(tn)) → +∞, tn → ∞, which holds for

every sequence x(tn). Therefore, V (x(t)) → ∞ as tn → ∞.

This means that for every β > 0, there will be a T > 0 such

that V (x(t)) > β,∀t > T . Since V (x(t)) > β, there will be

x(t) ∈ Ωβ ⊂ Br. Thus, ‖x‖ ≤ r < ε. This holds for every

ε > 0.

Summarizing: for every ε > 0, there is a T > 0 for which

∀t > T, ‖x(t)‖ < ε. As a result, the origin is asymptotically

stable.

C. Proof of Proposition 1

The gradient of Vi is :

∇

(

β
1

k

γ

)

=
k−1β

1

k
−1∇β · γ − β

1

k ∇γ

γ2

At a critical point it would be:

∇Vi = 0 ⇒ k−1β
1

k
−1∇β · γ − β

1

k ∇γ = 0 (19)

Examining the Hessian:

∇2Vi =

(

γ
β2 (∇β)2 + k γ

β
(∇2β − 1

β
(∇β)2) − k2∇2γ

)

β
1

k

γ2k2

The nature of the critical points is thus determined by the matrix

F = γβ−2(∇β)2 + kγβ−1(∇2β − β−1(∇β)2) − k2∇2γ. If

F > 0, then the critical points are local minima and since the

system is attracted to the maximum of the ILF, the points would

be repulsive. In fact, F > 0, is a special case of the linear

matrix inequality (LMI):

γβ−2(∇β)2 + x1γβ−1(∇2β − β−1(∇β)2) − x2∇
2γ > 0

For any positive semidefinite G 6= 0, Tr( γ
β2 G(∇β)2) ≥ 0 and

Tr(G∇2γ) 6= 0, and so the LMI has a nonempty solution set.

Note that k → 0 implies F > 0 and therefore 0 belongs in

the solution set. Thus, a sufficiently small k can ensure that all

critical points are repulsive.

D. Proof of Claim 1

For clarity of presentation, consider the case of no obstacles:

β ≡ 1. A classical navigation function can be expressed as:

ϕ =
‖x‖2

(‖x‖2k + 1)
1

k

The potential field produced is:

∇ϕ =
2‖x‖[∇‖x‖(‖x‖2k + 1)

1

k − ‖x‖2k+1(‖x‖2k + 1)
1−k

k ]

(‖x‖2k + 1)
2

k

whereas for an Inverse Lyapunov Function, ϕi = 1
‖x‖2 :

f(x) = ‖x‖4∇ϕi = −2‖x‖∇‖x‖

recovering an exponential rate of convergence for ‖x‖. Thus,

under the same environment conditions, ‖x‖ is decreasing

faster along the flows of the ILF potential field.

E. Proof of Claim 3
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Fig. 20. Shape of a classical navigation function for parameter k taking values
1, 5, 10 (left to right).
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Fig. 21. Shape of an ILF for parameter k being 1, 5, 10 (left to right).

Consider the case of a two dimensional workspace with

two disk shaped obstacles of radius r = 0.5[m] centered at

(x, y) = (0.5[m], 0.5[m]) and (x, y) = (0[m], 1.5[m]) respec-

tively. This configuration creates a narrow corridor between

these two obstacles. Using the same representation of the ob-

stacle functions, and the same parameter values for both cases

the aim is to construct a navigation function that can steer a

system within this corridor. Figure 20 depicts the shape and the

equipotential curves of a typical navigation function with pa-

rameter k ranging from 1 to 10. Figure 21 shows the behavior

of the inverse counterpart. The ILF responds faster to tuning

and is capable of generating converging paths through the cor-

ridor for smaller values of the tuning parameter.

F. Proof of Lemma 2

For k = 2 we have lemma 1. Let k = 3. Then forf1, f2

with Γ0 \ {0} = M1 ∩M2 and

f (1,2) =











f1, x ∈ (Γ0 \ {0}) ∪ C1

f2, x ∈ C2,

0, x = 0.

we have that f (1,2) is asymptotically stable on M1∪M2∪{0}.

On Γ0, f
1

and f
2

point towards C1 and C2 respectively. There-

fore, f0 on Γ0 is pointing towards C1 ∪ C2. Applying lemma 1

for f (1,2) and f3, it follows that the vector field f (1,2,3):



















f1, x ∈ ((M1 ∩M3) ∪ (M1 ∩M2) \ {0}) ∪ C1

f2, x ∈ ((M2 ∩M3) \ {0}) ∪ C2

f3, x ∈ C3,

0, x = 0.

is globally asymptotically stable. Assume that lemma 2 holds

for k = n. Then similarly the field f :































f
1, x ∈ ((M1 ∩M3) ∪ · · · ∪ (M1 ∩Mn) \ {0}) ∪ C1

...

f
n, x ∈ ((Mn ∩Mn+1) \ {0}) ∪ Cn

fn, x ∈ Cn,

0, x = 0.

is globally asymptotically stable. By induction follows that

lemma 2 holds for every k.

G. Proof of Proposition 2

The functions sign(·) and atan2(·, ·) are defined as:

sign(x) ,

{

1, x ≥ 0

−1, x < 0
, atan2(y, x) , arg(x, y),

Consider the partition of the configuration space Q = C1⊕· · ·⊕
C2k ⊕ Γ induced by the navigation function V (q) = V j(q) for

q ∈ Cj, j = 1, . . . , 2k. Then the time derivative V̇ j(q) of

V (q) in Cj is:

k
∑

r=1

kv|fxr
cos θr + fyr

sin θr|‖f‖ + ωrfθr
+ ∂V j

∂qar

Ka

(

∂V j

∂qar

)T

(

∑

p‖h
p
2‖

2
)2

If wr ≥ 0, then ωr = ko(θdr
− θr) and

vr(
∂V j

∂xr

cos θr +
∂V j

∂yr

sin θr) + ωr

∂V j

∂θr

=
wr(q)

(

∑

p‖h
p
2‖

2
)2 ≥ 0

If wr < 0, then ωr = −vr(fxr
cos θr + fyr

sin θr)(fθr
)−1

which gives vr(
∂V j

∂xr
cos θr + ∂V j

∂yr
sin θr) + ωr

∂V j

∂θr
= 0 Given

Ka is positive definite,
∑k

r=1

(

∂V j

∂qar

)

Ka

(

∂V j

∂qar

)T

≥ 0, and

V̇ j(q) is positive semidefinite. Now let S , {q ∈ Cj ∪
Γ | V̇ j(q) = 0}. If there exists an invariant set Ω ∈ S then

in Ω, vr = ωr = 0, ∀r. From (18) it follows that vr van-

ishes only at the origin. By LaSalle’s principle for 1
V j(q) on

Cj ∪ Γ, asymptotic stability for the system is established on

Mj , Cj ∪ Γ \ {0}. By lemma 2, the system is globally

asymptotically stable.


