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Abstract 
In this paper we make a contribution to the analysis of nonholonomic 
systems with exponential rates of convergence. A key idea is the use 
of control laws which render the closed loop system homogeneous with 
respect to a dilation. The analysis is applied to nonholonomic systems 
in power form and consists of two steps. The first step is a reduction to 
an invariant set and then the application of an averaging result. The 
averaging theorem is a stability result for CO homogeneous order zero 
vector fields. 

1 Introduction 
This paper develops some preliminary tools for analyzing and generat- 
ing exponentially stabilizing control laws for systems of the form 

111 

i = C g i ( z ) u i ( s , t )  z E A”, (1) 
i=l 

where each gi is a smooth vector field on R” and the controls, ~ ( z ,  t), 
are continuous functions of 2. Systems of this form arise in the study 
of mechanical systems with velocity constraints and have received re- 
newed attention as an example of strongly nonlinear systems. See [12] 
for an introduction and more detailed motivation. For such systems, 
control methods based on linearization cannot be applied and nonlinear 
techniques must be utilized. 

A control law U = k ( z , t )  globally stabilizes a point zo E R” if 
z ( t )  + zo as t + 00 for all initial conditions of the system. For a 
nonholonomic control system, the dependence of a stabilizing control 
law on time is essential since the system (1) does not satisfy Brockett’s 
necessary condition for smooth or even continuous stabilization 111. 
Hence there does not exist a smooth static state feedback law which 
stabilizes the system to a point. Recent work by Coron has shown that 
it is possible to stabilize a nonholonomic system using time-varying 
feedback [2, 31. Constructive approaches have been presented by Sam- 
son [17], Pomet [14], and Coron and Pomet [3]. 

All existing approaches based on Coron’s results produce smooth 
asymptotic stabilizers which have very slow convergence rates (see [lo] 
for an d y s i s ) .  Stabilizing difFerentiable controls laws for driftless 
nonholonomic vector fields must necessarily decay at an algebraic rate 
(i.e. not exponential). This is easy to see because the linearized closed 
loop system is degenerate [13]. The algebraic rate of convergence gen- 
erally decreases as the number of state variables increases over the 
number of control inputs. This is undesirable in practice since small 
disturbances of the state can mean relatively long times for the state 
to return to some neighborhood of the equilibrium point. If decay rate 
of solutions to the equilibrium point is a measure of the system perfor- 
mance then this translates to poor performance. It can be shown that 
if exponential rates of convergence are desired, then the result control 
law must be C” with 0 5 a < 1. Coron has also proved the existence 
of continuous, time-wrying controllers which are C” away from the 
origin and have exponential rates of convergence [3], but these con- 
trollers have not yet been exhibited on a sample system. In this paper 
we present a set of tools which are directed at generating continu- 
ous, time-periodic, controllers which result in exponential stability of 
nonholonomic systems. We apply these tools to some low-dimensional 
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examples and demonstrate the existence of continuous exponential sta- 
bilizers for nonholonomic systems. 

The techniques described in this paper are based on the study 
of of a special class of nonholonomic systems called chained s y s t m ,  
originally introduced in [12]. These systems highlight the geometric 
structure of the control system and have been very useful in the study 
of nonholonomic systems. We consider here a particular case and rep- 
resentation of a chained system which we call “power form” [18]. 

Systems in power form characterize the fundamental difficulties 
of nonholonomic systems in a very simple and useful way. By under- 
standing the geometry of controllers applied to power form, we hope 
to understand the geometry of controllers applied to more general non- 
holonomic systems. This point of view has been used very successfully 
by Sussmann, who has shown how results applied to a “symbolic” rep- 
resentation of the control system can be used to understand systems 
with a compatible control Lie algebra [9]. 

Work of a similar spirit to ours is contained in Smdalen’s recent 
thesis [15] and a paper with Canudas de Wit [4]. They study expo- 
nential stabilization of car-trailer systems in the context of piecewise 
analytic feedbacks. 

We study a specific class of continuous feedbacks, namely controls 
which render the closed loop vector field homogeneous with respect to 
a given dilation. The authors have derived such examples in modifying 
smooth stabilizing controls laws for nonholonomic systems in power 
form [lo]. It is an open question as to what systems can be stabilized 
using homogeneous feedbacks. An undesirable feature of homogeneous 
vector fields is their coordinate dependent nature. This is somewhat 
perplexing since many important properties of control systems are coor- 
dinate independent (for example, nilpotentcy of the input vector fields). 
However, positive results for the low dimensional cases imply that ho- 
mogeneous feedbacks warrant a closer look. Homogeneous vector fields 
have some nice properties, 

1. they are “easier” to study, 
2. a class of perturbations may be identified which does not affect 

The first statement deserves some clarification: the structure of homo- 
geneous vector fields allows analysis in lower dimensions. This aspect 
and other properties are briefly reviewed in the next section. The sec- 
ond point has been demonstrated by Hermes for time-invariant vector 
fields [7]. It seems natural for this result to extend to time-varying ho- 
mogeneous vector fields when the stability is uniform in t. This aspect 
is not pursued although we prove an averaging stability result for time- 
periodic homogeneous vector fields. Before embarking on any general 
synthesis procedure for exponentially stabilizing controllers it is useful 
to have developed some analysis tools for the study of nonholonomic 
systems when the closed loop system is homogeneous. The three di- 
mensional example examined in detail is used, along with a four and 
five dimensional example, to motivate the analysis tools presented in 
this paper. 

The paper is organized as follows. Section 2 reviews dilations and 
some properties of homogeneous vector fields. Section 3 introduces the 
nonholonomic power form systems as well as the smooth stabilizing 
controllers from [18]. The approach which we take is to modify these 
smooth feedbacks and construct nondifferentiable control laws which 
render the system homogeneous relative to a certain dilation. Simu- 
lations of three, four and five dimensional power form systems with 
the modified control laws are presented and erhibit exponential con- 

the local asymptotic stability of the vector field. 
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vergence. A general method of analyzing the closed looped stability 
properties is proposed. The method consists of a reduction step and 
analysis of the corresponding lower dimensional system. The lower 
dimensional "reduced" vector field is still homogeneous and time peri- 
odic. Section 4 proves an averaging theorem which is applicable to the 
reduced vector fields obtained in the Section 3. The reduction proce- 
dure is completely justified for the 3 dimensional case, however, these 
results are not included since the computations are long. The authors 
can provide details upon request. 

2 Dilations and Homogeneous Norms 
Let V be a real finite dimensional vector space of dimension n. Suppose 
a basis has been chosen for V such that its elements are represented by 
the following n-tuple: 

5 = (21,22,. . . , 2"). 
A dilation is defined by assigning n positive rationals T = (1 5 r1 5 
t2 5 . rn) and the following map 6,' : Y + Y, 

n 

6,'z = A'.Z,, x > 0. 
.=1 

In most applications the T,'S are integers and the T is dropped from 
from the notation. 
Definition 1 A continuous function f : R" + R is homogeneous of 
degree 1 2 0 with respect to hAr, denoted f E El iff(&'x) = A'f(z).,A 
continuous vector field X on R" is homogeneous of degree m 5 1 waul 
respect to 6, if Xf E If3-,,, whenever f is smooth and f E If3.  

We wil l  take V = R" with the usual vector space structure for the 
problems studied here. The standard dilation (T, = 1, I = 1,. . ., n )  on 
R" warps the space isotropically, that is it stretches each coordinate 
direction the same amount. 
Definition 2 A continuous map from R" to R, z + p ( x ) ,  is called a 
homogeneorrs noma with respect to the dilation &when 

1. p ( z )  2 0, p(z )=  0 w z = 0, 
1. p(d,x) = Ap(2) vx > 0. 

Calling this function a "norm" is a misnomer since it need not satisfy 
the triangle inequality. However, the triangle inequality is not required 
to define convergence of a sequence. The important property of p is its 
positive definiteness. The topology on R" induced by p( .) is equivalent 
to the topology induced by any of the usual p-norms. We are primarily 
interested in the convergence of time dependent functions using the 
homogeneous norm as a measure of their size. When a vector field is 
homogeneous it is most natural to use a corresponding homogeneous 
norm as the metric. 

The concept of exponential stability of a vector field is now in- 
troduced in the context of a homogeneous norm. This definition was 
introduced by Kawski [8]. Let f(t,z) be a continuous vector function 
of its arguments, 

f(t,z) : R x R" + R". (2) 
Without loss of generality we assume that z = 0 is an isolated equilib- 
rium point of the system, f ( t ,  0) = 0, Vt. A solution of the equations 
passing through zo at time to is represented by z(t,zo,to). 

Definition 3 The equilibrium point z = 0 is locally ezponentially sta- 
b& with respect to the homogeneous norm p( . )  if there exist two strictly 
positive numbers a and B such that 

p(z(t ,zo,h))  5 ap(zo)e-B(t-'o) V t  2 to, 

provided p(zo) is sufliciently small. 
We will see that this notion of stability is important when considering 
vector fields which are homogeneous with respect to a dilation. The 
convergence of trajectories is naturally studied using the corresponding 
homogeneous norm. The standard results on local exponential stabil- 
ity may be interpreted in this hamework: when the linearization is 
defined, the "correct" dilation to employ is the standard dilation and 
the homogeneous norm reduces to any L, norm on R" . 

Furthermore, the following are equivalent for homogeneous vector 
fields of order zero: 

944 

~~ ~~~ ~~ r - r  

1. x = 0 is locally uniformly asymptotically stable with respect 

2. 2 = 0 is globally exponentially stable with respect to p'. 

This fact is stated in [8] for the time-invariant case and also holds for 
time-varying vector fields. 

Lastly, some important aspects of homogeneous order zero vector 
fields are now presented. The action of the dilation on a solution of (2) 
satisfies 

to P ( * ) ,  

z ( t ,  t o ,  U z o ) )  = & ( Z ( t ,  to ,  2 0 ) ) .  (3) 

Furthermore, the dilation 6, specifies a transformation group on the 
phase space which facilitates the study of equation (2) by considering 
a vector field on the quotient manifold specified by the group. The 
quotient manifold is given by p(z )  = 1 which is just a warped sphere, 
Sn-', naturally embedded in R". The projection map x : R"\{O} + 
sn-1 onto the sphere is 

Pushing forward the vector field with this map defines a unique vector 
field on the sphere by virtue of the transformation group invariance. 
Once the flow on the sphere is known the flow of the original vector 
field is determined by lifting the sphere flow with an additional scalar 
equation. The scalar equation is merely the differential equation for p 
written in the sphere coordinates. Determining the asymptotic behav- 
ior of the full set of equations amounts to computing the nonwandering 
set, R, on the sphere and observing the behavior of p on R. Full de- 
tails of the time invariant case are found in [SI. Related work for the 
time-varying case is in [lo]. 

3 Examples and Analysis 
We wil l  study a three dimensional example in detail and briefly present 
some higher dimensional cases. The nonholonomic systems studied are 
those in power form, 

(4) 

The control Lie algebra for this system is spanned by the input vector 
fields and Lie products of the form ~d:~g,. Necessary and sufEcient 
conditions for converting a system into power form are given in [Ill. 
Al l  two-input nonholonomic systems in R3 and R4 are locally feedback 
transformable to power form. In the sequel, the origin is always taken 
to be the point that is stabilized. 

The starting point for our analysis is modification of the smooth 
stabilizing control laws derived by Teel et al. [18], 

n-2 

U 1  = -21 - c C j Z j + 2  cosjt, 
j=1 
n-2 

U 2  = - 2 2  - z;+2(sint - cost), 
(5) 

j=l 

with cj > 0 (actually, we have switched the roles of 21 and z2 in 
that reference). In [lo] we used the following general form for the 
3-dimensional system control law, 

This control is essentially the same as the feedback used by Teel et al., 
the only difference being the phases of the time periodic terms (the 
relative phases amongst the terms remains the same). We showed 
in [lo] that, based on a simple multiscale perturbation argument, the 
convergence of 23 is controlled by the product of Fl and F2. The 
reasoning behind this heuristic analysis is as follows: if 23 evolves on 
a much slower time scale than 2 1  or z2 then we may take 23 equal to 
a constant in the k1 and x2 equations. We then solve for 2 1  and z2 as 



a function of 2 3  and substitute these expressions into the x3 equation 
to determine its stability. Of course this analysis is nothing more than 
center manifold theory when the Fi’s are C2. The perturbation analysis 
reveals the x3 equation to have the form, 

We choose F1 = S P ( S 3 ) m  and Fz = so that their prod- 
uct is z3. An important fact to note is that the 3-D closed loop vector 
field is invariant under the group action, 

Choosing a homogeneous norm, 

p ( 2 )  = (2: t 2: + z$, 

we were able to derive the equations on the sphere p(z)  = 1. We nu- 
merically proved for the attractive sets on the sphere that all solutions 
back in the full phase space, corresponding to these sets, were exponen- 
tially stable with respect to the homogeneous norm. However, it was 
noted that identifying the entire R-limit set could be difficult. For in- 
stance, an exhaustive numerical study would be required to rigorously 
identify R. This may be satisfactory for specific problems but if one is 
interested in proving general results the numerical approach cannot be 
used. 

Another interesting fact which is currently being explored is how 
to choose the “right” dilation. In the 3-D example we chose the form 
of the feedback based on perturbation analysis. Results by Gurvitz 
and Li seem to indicate that the inverse of the degree of nonholonomy 
(the smallest order of brackets required for controllability) is an upper 
bound for the Holder continuity of the control law [5] .  Our examples 
discussed below achieve this bound. The powers of the dilation we 
choose for these examples are intimately connected with the control- 
lability growth vector of each system. The intuition behind this last 
statement is as follows: suppose it takes a certain number of Lie brack- 
ets before a given direction in the control Lie algebra is spanned, then 
it s c a n s  reasonable to give the states spanning that new direction a 
weighted value corresponding to the bracket number since moving in 
that direction is “harder” than moving in a direction spanned by fewer 
brackets; if exponential stability is desired, then the weight forces a cer- 
tain Holder continuity to keep the vector field homogeneous of order 

The growth vector for the 3-D power system is (2,l). Thus, the 
first two states can be directly controlled through the inputs and the 
last state direction is spanned after one level of brackets so the vector 
ofpowersin the dilationis taken to be (r1,r2,r3) = (1,1,2). Similarly, 
vectorsfor t h e 4  and5-Dpowersystemsare(1,1,2,3)and(l,1,2,3,4), 
respectively. Hence the 4-D dilation to is, 

zero. 

6 ~ ( 2 1 , 2 2 ,  237 $4) = (xzi, x2%, x3S4), (7) 
and the 5-D dilation, 

6A(2i722,%24~25) = (xzi,xz2,~223,x324,x42~). ( 8 )  

Now in order to modify the smooth controls ( 5 )  intelligently we will use 
the previous dilations to determine the Holder exponent of the individ- 
ual terms in the control law which makes the closed loop vector field 
homogeneous of order zero. In addition, we will respect the algebraic 
sign of each term. We also take ci = E for all i. When E = 0, z1 --$ o 
and the q ’ s ,  for i = 3,4.. ., limit to constant values. This set is an 
attractive invariant set for the closed loop system. Near this set zi ,  
t = 1,3,4.. . , vary slowly. When 0 < e << 1, it is quite possible that a 
perturbed form of the set persists. This fact is proven by the authors in 
an extended version of this paper for the 3-D power form system with 
the feedback described below. The modified feedbacks are, for the 3-D 
system, 

‘111 = - 2 1  - €SgXl(23)&COSt, 
(9) 

212 = -22  - Jlz,J(sint -cost), 

the 4-D system, 
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Figure 1: Exponential Rates of Convergence of 3-D System 
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Figure 2: Exponential Rates of Convergence of 4-D System 

and the 5-D system, 

‘111 = -21 - e(SgXl(23)mCOSt t sp(z4)lZ41t t SgXl(zs)1zs1’) 

‘112 = -x2 - (& t /z4l* t IzsIf)(sint - cost). (11) 

Simulations with random initial conditions in a ball are presented in 
Figures 1 to 3. The log of the homogeneous norm of the states versus 
time is plotted. The fact the the plots are bounded above by a straight 
line implies exponential stability. For the 5-D case this is difficult to 
see because there are multiple rates of decay, some of them very slow. 
However, the solutions are certainly asymptotically stable (this fact 
will be transparent once the proof in Section 4 is understood) and 
since the vector field is periodic in t ,  the stability is d o r m .  Hence, 
the states are converging exponentially to the origin (see the review 
of homogeneous systems). The arguments presented above have some 
merit and we endeavor to show why they are true. 

In terms of an analysis procedure, what can be done to rigorously 
determine the stability of the closed loop system and, ifpossible, obtain 
estimates on the exponential rates of convergence? We are proposing 
these systems may be studied using a two-step procedure: 

1. first a ”reduction” where z1 and 2 2  are approximately repre- 
sented in terms of the remaining states, 

2. then a stability analysis of the reduced n - 2 dimensional 
system. 

The most desirable result would be stability of the reduced system 
implying similar behavior of the original system. When the vector 
field is at least C2 this two-step analysis is nothing more than sin- 
gular perturbation theory (when the equilibrium point is hyperbolic) 
or center manifold theory (when the equilibrium point posses a center 
eigenspace). For these cases, if the invariant manifold is stable, stabil- 
ity of the original system is determined by the stability of its reduced 
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Figure 3: Exponential Rates of Convergence of 5-D System 

part. However, we can never hope to have a differentiable vector field, 
so applying these well known results is not possible without further 
analysis. 

Suppose we proceed with the heuristic analysis mentioned de- 
saibed above and consider zi, i = 3,4 ,..., fixed in the z1 and 2 2  

equations. The following general form of x1 and 2 2  is arrived at, 

2 1  = t-sgn(xj+2))zj+2)rlr(-jsinjt - cosjt) 
j=l, ..., n-2 l + j 2  

2.2 = c IZj+2J*(C0st).  
j=l, ..., n-2 

Substituting (12) into the higher order equations for z , ,  i 2 3, 

4. * - -  - .';-'U1 
( i  - 2)! 

The systems of equations formed by (13) are homogeneous with re- 
spect to the same dilation with z 1  and z2 eliminated. Furthermore, 
the reduced equations are periodic with period 257. If we average the 
reduced vector field over one period the reader can check the following 
result, 

. i-2 

for i 2 0. The overhe denotes the averaged variable. The averaged 
set of reduced equations (14) is asymptotically stable by inspection 
since the "cdcient"  in front of the sgn(Zi)l?~~l* term is positive 
definite on the reduced phase space. Now we may apply the "averag- 
ing theorem" proven in Section 4 to conclude exponential stability of 
the original set of reduced equations (13) for e sufficiently small. At 
this point, we would like to conclude exponential stability of the full 
set of equations (4) with the feedbacks (9) to (11) and their higher 
dimensional extensions. The initial reduction procedure has not been 
rigorously justified. However, the simulations and averaging analysis 
strongly suggest that the reduction results are correct, at least for de- 
termining the stability of the system. A proof for the 3-D power form 
system with the feedback given by (9) is available from the first author. 

4 Averaging Results for Homogeneous Sys- 
tems 

In this section we present an averaging result which will be useful for 
analyzing the closed loop equations. First we introduce the class of 
systems of interest. Consider the differential equation 

2 = ef ( t , z ,e ) ,  (15) 

where f E C(R x R" x I ,R"), C(R x R" x 1,R") being the set of 
continuous map from R" x Rn x I into R". f is periodic of period 
T with respect to t and f ( t ,O,e)  = 0 for all t in (-w,w). We will 
rescale time so that the period is always 2 ~ .  We further restrict OUT 
attention to a class of homogeneous vector fields. The vector field 
in (15) is homogeneous of order zero with respect to the dilation 6, = 
(Xr121,Xr122,...,Xrr2n). A solution of (15) through the point 20 at 
time to is denoted z(t,to,zo). 

Before moving to the averaging result we give an equivalent d d -  
nition of asymptotic stability of a k e d  point of a general differential 
equation with continuous vector field, 

2 = g(t ,  21, (16) 

where g ( t ,  0) = 0 for all t .  The solution z = 0 of (16) is asymptotically 
stable if it is stable and if there exists a 6 = 6(to),  and for all e > 0 
there exists a i ( e , tO) ,  such that lzol < 6 implies lz ( t ,b ,zo) l  < e for 
all t > i This is easily shown from the usual definition of asymptotic 
stability. 

In the averaging theorem we will infer stability (instability) of the 
zero solution of equation (15) from stability (instability) of the zero 
solution of the aweraged system, 

2 = e f o ( x ) ,  (17) 

where 

The vector field in (15) is 2wperiodic in t so the average in (18) is 
equivalent to 

1 2r 
f o ( z )  = 1 f ( t ,  2, o p t .  

Note that f o  is homogeneous of order zero with respect to the dilation 
6x. Before the averaging result is stated we prove another lemma. 

Define the one-parameter family of diffeomorphisms on the ex- 
tended phase space of equation (15) which leave it invariant, 

: S1 x R" + S1 x R" 

( t ,  2) ( t ,  642)) > 0. 

We also define three nested homogeneous balls in the extend phase 
space 

where c1 > c2 > c3 > 0. 

Lemma 4.1 (Sealing &emma). For time periodic homogeneous of- 
der zero vector fields (15) and given the B, 's defined above, suppose we 
know the following facts, 

1. (to, 50) E B2 implies ( t ,  z(t, to, zo)) E B1 for all t > tor  
2. there exists a T > 0 such that (tO,xo) E B2 implies 

Bi = { ( t , z )  E S' X R"lp(2) 5 ci} i = {1,2,3}, 

( t ,  x(t, to, zo)) E B3 for all t > T. 
Then the zero solution of (15) is asymptotically stable. 

P m f .  We first prove stability. Start (15) with initial conditions in B2. 
Then ( t , s ( t , to , zo) )  E B1 for all t > to. In other words, p(zo) < c2 

implies p(z( t , to ,zo))  < c1 for all t > to. This condition may be 
extend to any neighborhood using the mapping 6,. Suppose the bound 
p(z(t,to,zo)) < el for all t > to is desired, then restrict p(zo) < e l z .  
Specifically, 

(19) 
z ( t ,  to, 2 0 )  = z( t , to ,  6e,/c1(6e,/e,(Zo))) 

= 6el/cl(Z(t,  to, ( 6 c 1 / e 1 ( 4 ) ) ) ,  

but, 
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Figure 4: Homogeneous balls used in proof: use the dilation to map 2 2  

to z1 thus extending the trajectory starting at 2 0 .  

To demonstrate asymptotic stability we proceed in a similar man- 
ner. Define the annulus, 

Az = B2 \ B3. 

We h o w  that solutions with initial conditions in Az enter B3 in finite 
time T and remain there. Since the differential equation is invariant 
under then we may map the annulus Az to another annulus that sits 
inside A2 and shares a common boundary. In this way solutions starting 
in Az are extended into the new anuulus (because of the invariance) 
and can only remain in the new annulus for a finite time. Define the 
sequence of nested annuli, 

A = %/C,(AQI-l), i = 3 , 4 ,  .... 
Note that the outer boundary of A,, denoted B"Ai, is the inner bound- 
ary of A,-1, denoted @A,.-l, because, 

BOA, = 3c,/c,(BoAj-l) 
= *(c,/ca);-l (ao&) 
= @(c./c.)'-* (%/c,(BOAz)) 
= Q(c8/c,);-8 (a'&) 
= a'A,-l. 

The properties of solutions with initial conditions in Az are shared by 
the other annul. Hence, an initial condition in Ai must enter Ai+l in 
time T. Extending this to the larger annulus defined by 

E N =  U Ai, N > 2  

implies that solutions with initial conditions here will enter the set 
 AN+^ in a time no less that N T  and can never reenter EN. Thus we 
pick 6 = cz and for e > 0 choose 2 = mT where m satisfies (z)m < e. 
This is equivalent to asymptotic stability. 

Remark This lemma actually demonstrates ezponential stability of 
the zero solution because the time taken to leave any given annulus 
is independent of the "size" of the annulus (this is a result of the 
vector field having degree zero with respect to the dilation &). At 
time t > mT any solution may be bounded by a homogeneous ball 
with size proportional to (E)". Hence, this bound plus stability of the 
solutions may be recast as an exponential stability result with respect 
to the homogeneous norm p. 

Theorem 4.1 Consider the. equations (15). Suppose x = 0 is an 
asymptotically stable fized point of the avemged system y = e f O ( y ) .  
Then for B > 0 suficiently small, the solution x = 0 is ezponentially 
stable for the full equations (15). 

This result is already well known for C' vector fields where x = 0 is 
a hyperbolic fixed point. Proving the theorem when the vector field is 
differentiable is straight forward since the standard averaging change of 
coordinates places the vector field into a form where the time-varying 
part is bounded with an arbitrarily small Lipschitz constant (by making 
e SufEciently small). Hence, if z = 0 is a hyperbolic tixed point of fo 
then the stability of the full system is determined by the stability of 
fo for e suiEcient1y small. Unfortunately this proof does not extend 
to our case since the averaging change of coordinates tends to "mix" 
the new coordinates so that the transformed vector field is no longer 
homogeneous. However we may get a total stability result in the new 

,= I ,  ..., N 

coordinates which will imply certain strong behavior of the solutions of 
the original homogeneous system. The idea of the proof uses the fact 
that in the new coordinates we may choose e small enough BO that we 
may make a ball about the origin attractive and invariant. Mapping 
this ball back to the original coordinates implies the same for solutions 
of equation (15). Now we may use the homogeneity of the vector field 
to extend the solutions to an arbitrarily small attractive neighborhood 
of the origin. The details are now presented. 

P m f .  We fist  recall the usual averaging results. The reader is referred 
to Hale [6] (Lemma V3.1, Lemma V3.2 and Lemma 5 of the appendix). 
For any compact set R in R" there exists an €0 and a function u(t, z, e) 
such that the averaging transformation, 

z=y+eu( t ,Y ,e )  ( t , y , ~ ) E R x R x [ O , e o ) ,  (22) 

(23) 

applied to (15) yields the equation 

i = e fo (Y)  + eF( t ,  Y, 4,  
where fo is the averaged vector field as defined above. F ( t , y , e )  is 
continuous for ( t ,  y ,  e) E R x R x [0, eo) and F( t ,  y, 0) = 0. The function 
U possesses the following properties on R x R x [0, €0): 

1. u(t, z, e) is periodic with period 2 r  (same period as the vector 

2. has continuous derivatives with respect to t and derivatives 

3. eu and E% approach 0 as E + 0 uniformly in t E R" and 

The solution y = 0 of (17) is asymptotically stable. Since this vector 
field is homogeneous with respect to 8, we may apply the recent results 
of Rosier [16] to obtain a Lyapunov function V : R" + R with the 
following properties, 

field), 

of an arbitrary specified order with respect to 2. 

Y E R .  

1. V is as smooth as we require, 
2. V(0) = O,V(y) > Oforally # O,andVisradiallyunbounded, 
3. V is homogeneous with respect to the same dilation 6 A ,  
4. VV . fo (y)  < 0 for all z # 0. 

Consider the compact sets defined by 

D, = {y E R"(V(y) 5 a}. a > 0 
The boundaries of these sets are denoted BD,. Given D, we define 
const ants 

Choose cI > 0 such that D,, c R. Now find cz, and corresponding 
D,,, such that 5 ~ = ,  < gDc,/2.  This may always be done because V is 
positive definite and continuous. Evaluating V along solutions of the 
transformed vector field (23) yields 

dv 
- = EVV . fo(z) + EVV . F(t ,  y ,  e ) .  dt  

On the compact set D,, \ D,, we calculate 

p = - min vv . f o ( y ) .  
YED., \Ds 

Clearly p > 0. We also define M(e)  as 

M ( E )  is continuous because F is a continuous function of e and 
M ( 0 )  = 0 since F( ., ., 0) = 0. The averaging transformation will 
not, in general, respect the dilation scaling. Hence the vector field 
F ( t ,  2, E) will not be homogeneous. For example we may be forced to 
bound F with homogeneous functions of lower order than fo and hence 
asymptotic stability cannot be concluded with this Lyapunov analysis. 
On the annulus D,, \ D,, the time derivative of V is bounded by 

dV 
dt  - - < e(+ + M ( e ) ) .  

Now choose Z E (0, eo) such that M(P) 5 5. The choice of P renders D,, 
and D,, invariant. Trajectories through points in De, \ D,, will reach 
D,, in a finite time no greater than 

iji - 2(c1- cz) 
Zp ' 
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because V < -4/2 on De, \ Des. Choosing any e E (0,Z) does not 
change the invariance or attractive nature of the sets. The only modifi- 
cation in this case is T. The functional relationship of T is exactly the 
one given above with Z replaced by the new e. In the y-coordinates we 
can't say anything more about the stability of the zero solution. How- 
ever, we may map the Di's back to the extended phase space of (15) 
with the diffeomorphism (22). This will result in a warped version 
of S' x Di's. We would like to bound these warped sets with ho- 
mogeneous balls and apply the scaling lemma to conclude asymptotic 
stability. This is worked out in detail below. 

Recall the map z = y + eu(t,y,a) is a C' difeomorphism for 
(t, y, e) E S' x Cl  x [O ,  eo). As e -+ 0 this map approaches the identity. 
Since U is 2~ periodic in t it is useful to define the following meomor- 
phism between S' x $2 and the extended phase space of the vector field 
in (15), S' x R", 

Define the compact sets in S' x R", 
V 4 t ,  Y )  = ( t ,  Y + 4, Y ,  €1). 

E,, = Vc(t,Dc,) Eca = Vc(t,Dca). 

For fixed t ,  E,, -+ ( t ,  Dei)  as e + 0. The boundaries of Eci are denoted 
aEci. As for the sets D,, we defme the quantities, 

Note that 

(24) 
- 
uE.i 3Doi EEC; + EDci 7 

as e -+ 0 since aE,, + ( t ,  aD,,) for each t E S'. It is possible for EE=, > 
%a, for the choice of C made above (at Werent times of course). The 
relations in (24) imply e may be further decreased to enaure FE- < sex 
since FE- -+ FD=. as e + 0 (recall FDD9 < /2 from the choice of 
c1 and CZ). Hence aE,, n aE,, = 0 .  Now we may define homogeneous 
balls that are proper subsets of one another. Defme the homogeneous 
balls in S1 x R", 

BEsc1 = { ( t ,  z) E s' x R"lp(z) 5 EEC, 1 
B F ~ . ,  = { ( t , z )  E s' R"b(z) 5 1 
BFS., - - { ( t , Z )  E s' X R"lp(2) 5 'sr.~-}. 

The previous choice of e leads to the following inclusions, 

Now we will say a few words about solutions with initial conditions 
in these sets. E,, is invariant under (15) because D,, is invariant un- 
der (23) and the diffeomorphism (22) takes D,, into Eel. Furthermore, 
solutions of (15) with initial conditions in E,, wil l  reach the set E,, in 
no less than time T and remain thereafter because these correspond- 
ing facts hold for D,, and D,, and the (23) maps D,, to Ec2. Hence, 
solutions through points in BEE., are constrained to remain in BFB0, 
and furthermore must enter in finite time, T ,  and remain there. 
Now apply Lemma 4.1 with B1 = BF~. ,  , BZ = B,,., and B3 = 
to conclude asymptotic stability of the zero solution. 0 

Remark The same arguments may be used to show that trajecto- 
ries moving from B3 to the outer boundary of Bz imply the origin is 
unstable. 

5 Conclusions 
This paper introduces some new tools for the analysis of nonholonomic 
systems as well as introducing useful ideas in the search for exponen- 
tially stabilizing controllers. A general stability analysis procedure 
was proposed and applied to power form equations with homogeneous 
feedbacks. The stability analysis involves two steps. The first step is a 
reduction to an invariant set. This was motivated by a "naive" pertur- 
bation scheme. The stability of the reduced equations on the invariant 
set was then performed using a modified averaging theorem. The usual 
invariant manifold theory cannot be applied directly because the sys- 
tems are only Co. Simulations indicate the possibility of proving some 
reduction results for these systems. 

The idea of reduction seems to be a recurring theme in nonholo- 
nomic system analysis because the control inputs can directly stabilize 
only a few states in the phase space. The remaining directions are sta- 
bilized by "bracket" motions and occur at slower rates. For Cz vector 
fields, this idea is embodied in the center manifold theory. 

Homogeneous feedbacks were shown to be a nice choice for the 
CO stabilizing feedback. A key concept of the analysis is the equiva- 
lence of uniform asymptotic stability with exponential stability in the 
appropriate homogeneous norm. 
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