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Abstract
Animal models are important for determining the pathogenesis of and potential treatments for obesity and diabetes. 
Nonhuman primates (NHPs) are particularly useful for studying these disorders. As in humans, type 2 
diabetes mellitus is the most common form of diabetes in NHPs and occurs more often in older obese animals, 
with a metabolic progression from insulin resistance (IR) and impaired glucose tolerance to overt diabetes. 
Histopathologic changes in pancreatic islets are also similar to those seen in humans with diabetes. Initially, 
there is islet hyperplasia with abundant insulin production to compensate for IR, followed by insufficient 
insulin production with replacement of islets with islet-associated amyloid. Diabetic NHPs also have adverse 
changes in plasma lipid and lipoprotein concentrations, biomarkers of obesity, inflammation, and oxidative 
stress, and protein glycation that contribute to the numerous complications of the disease. Furthermore, sex 
hormones, pregnancy, and environmental factors (e.g., diet and stress) affect IR and can also contribute to 
diabetes progression in NHPs. Additionally, due to their similar clinical and pathologic characteristics, NHPs have 
been used in many pharmacological studies to assess new therapeutic agents. For these reasons, NHPs are 
particularly valuable animal models of obesity and diabetes for studying disease pathogenesis, risk factors, 
comorbidities, and therapeutic interventions.
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SYMPOSIUM

Etiology of Diabetes in Humans

The prevalence of diabetes mellitus has increased 
exponentially since the 1990s.1 The American Diabetes 
Association classifies diabetes mellitus into four categories: 
type 1 diabetes mellitus (T1DM), in which there is an 
absolute deficiency of insulin due to autoimmune 
destruction of the pancreatic β cells; type 2 diabetes 

mellitus (T2DM), in which there is a relative deficiency 
of insulin resulting from a progressive insulin secretory  
defect on a background of insulin resistance (IR); gestational 
diabetes mellitus (GDM); and other specific types of 
diabetes.2 Currently, in the United States, ~8% of the 
population has diabetes3 and another 25% has impaired 
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glucose tolerance (IGT), prediabetes, or metabolic 
syndrome with an increased risk of developing diabetes.4 
The increased prevalence of diabetes, which has occurred 
in parallel with the increased incidence of obesity,5 is 
due to an increase in T2DM, which accounts for 90% to 
95% of diabetes cases.2 The morbidity associated with 
T2DM results from hyperglycemia-related complications 
that include both microvascular (retinopathy, neuropathy, 
nephropathy) and macrovascular (cerebrovascular, coronary 
artery, peripheral vascular) diseases.6 

Prediabetic conditions are also associated with increased 
health risks.7 For example, obesity not only aggravates, 
but also precipitates diabetes by increasing IR, which, 
in turn, increases tissue insulin requirements.8 This has 
major health care considerations since >30% of U.S. adults 
are obese, with another 35% overweight.5 In addition, 
the incidence of overweight children/adolescents is  
now >15% and has quadrupled since the 1980s.5 
Furthermore, half of the obese population, and 25%  
of the general population, have metabolic syndrome, a 
condition associated with abdominal obesity, hypertension, 
increased plasma triglycerides, decreased high-density 
lipoprotein (HDL) cholesterol, and IR, which increases 
the risk for cardiovascular disease (CVD).4,9 

Insulin resistance, a key feature of obesity, represents 
the earliest metabolic abnormality in the transition from 
normal to IGT that precedes T2DM development.10 As IR 
worsens, insulin secretion increases to help move glucose 
into target tissues, resulting in compensatory hyper-
insulinemia.8 As the disease progresses, IGT develops 
with initially only a slight elevation in fasting glucose, 
followed by overt hyperglycemia as pancreatic exhaustion 
develops, normal islet architecture is replaced with islet-
associated amyloid, and insulin secretion declines.8 

Type 2 diabetes mellitus is also associated with a specific 
dyslipidemia [elevated triglycerides, reduced HDL 
cholesterol, and increased small, dense low-density 
lipoprotein (LDL) particles] that further increases the risk 
of developing CVD.4 Cardiovascular disease, the primary 
cause of death among persons with diabetes, occurs at 
an earlier age and results in 2–8-fold greater mortality 
rates than in persons without diabetes.7,11 Persons with 
diabetes also have higher mortality rates after their first 
myocardial infarction.12

Inflammation and oxidative stress are also major 
contributors to both microvascular and macrovascular 
diabetic complications. It has been suggested that many 

mechanisms relating hyperglycemia to vascular disease 
involve the overproduction of reactive oxygen species.13–15

Genetic and Chemically Induced Diabetes 
in Rodents
To study the development and progression of diabetes 
at the molecular level in ways not possible in humans, 
many evaluations have utilized rodent models of T1DM 
and T2DM. Since rodents do not typically develop 
spontaneous diabetes, and many are also resistant to 
the development of diet-induced obesity-mediated T2DM, 
even though they develop all of the characteristics 
and comorbidities of metabolic syndrome,4 researchers 
have relied on chemical induction of diabetes with 
streptozotocin (STZ) to produce models of T1DM16 and 
development of genetic models of T2DM, such as the  
ob/ob, Ay/Ay, NZO, KK, and db/db mouse models and the 
Zucker diabetic fatty, OLETF, GK, and sand rat models.16 

A number of other species, including cats, dogs, pigs, and 
nonhuman primates (NHPs) do develop spontaneous 
diabetes (discussed later), and these animals offer important 
advantages in studying the characteristics, development, 
and comorbidities of diabetes in ways not possible in 
STZ-treated or genetically manipulated rodents.

Naturally Occurring Diabetes in Domestic 
Animals
Cats that spontaneously develop T2DM are generally 
obese with body weight inversely proportional to insulin 
sensitivity.17,18 Cats that share their environment with 
humans also have many of the same risk factors for T2DM, 
including obesity and physical inactivity.19 Diabetic cats 
exhibit pathophysiological and clinical derangements 
similar to those seen in humans with diabetes and 
experience a prolonged period of prediabetes, which is 
characterized by obesity and IR.7,20–24 Cats also develop 
retinopathy and peripheral neuropathy and, like humans 
and NHPs, develop islet amyloidosis.25 Diabetic cats also 
have dyslipidemia and develop hypertension.

Domesticated dogs also share their environment with 
humans and are increasingly sedentary and obese. 
Dogs that develop diabetes are middle-aged and older. 
However, canine diabetes has a poorly understood patho-
physiology and does not fit well into human diabetes 
classifications. In addition, pancreatitis, acromegaly, 
and hyperadrenocorticism are often associated with 
canine diabetes.26 Some breeds are at increased risk of 
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developing diabetes, while others are at decreased risk.27 
Dogs better compensate for persistent hyperglycemia 
than do other species, do not lose appreciable β-cell 
mass, do not have islet amyloidosis, and less frequently 
progress to clinically overt diabetes.27,28 Dogs also do 
not develop diabetic dyslipidemias, and CVD is not a 
common complication in dogs. A canine model of T2DM 
was developed utilizing diet-induced obesity followed  
by mild chemical β-cell destruction.29

Pigs are a good model for human obesity and diabetes 
because they have a similar omnivorous diet, a predilection 
for obesity, a similar cardiovascular anatomy, and a similar 
metabolism and lipoprotein profile.30 The primary 
deterrents to use of pig models are expense and size,  
particularly for the Yorkshire pig, a classic swine model 
of streptozocin-induced diabetes for studying T1DM.30 
Swine models of T2DM are the Ossabaw pig, which 
has lived in isolation for several hundred years and 
has developed the “thrifty genotype,”31 and the Yucatan 
minipig, which has altered glucose tolerance and 
develops obesity and IR when overfed a Western diet.32,33 
Unlike cats and dogs that do not develop diabetic 
vascular disease, pigs are an important model for this 
complication. The atherosclerotic lesions found in pigs 
are in similar anatomic locations as in humans,34,35 

with similar histopathologic characteristics.36 Pigs with 
chemically induced diabetes have been used to study the 
pathogenesis of diabetic cardiovasculopathies.30

Naturally Occurring Diabetes in 
Nonhuman Primates
A number of NHP species develop obesity and diabetes, 
as reviewed previously.37,38 Commonly used species of 
Old World primates that develop spontaneous diabetes 
include macaques (Macaca sp.),37,38 vervets (Chlorocebus 
aethiops),39,40 baboons (Papio sp.),41–44 and mandrills 
(Mandrillus sphinx).45 New World monkeys that develop 
spontaneous diabetes include marmosets (Callithrix 
jacchus),46–48 squirrel monkeys (Saimiri sciureus),49,50 capuchins 
(Cebus apella),49 and tamarins (Saquinus sp.).49 Chimpanzees 
(Pan troglyodytes) also develop spontaneous diabetes.51,52 

Categorically, these NHPs all exhibit clinical features 
of diabetes, including obesity, IR, dyslipidemia, and 
pancreatic pathology that are similar to those observed 
in humans37,49,53 and are therefore excellent models for 
studying human T2DM. In many NHPs, T2DM is 
associated with increased age and body weight37,39,41,42,54–57 
and is initially characterized by normal glucose tolerance 

that is followed by IR, a compensatory increase in 
insulin secretion, and deterioration of carbohydrate 
metabolism.37,56,58,59 As the disease progresses, NHPs 
develop IGT with a moderate elevation in fasting plasma 
glucose before becoming overtly hyperglycemic due to a 
decrease in pancreatic insulin secretion as normal islet 
architecture is replaced with islet-associated amyloid, 
resulting in the classic signs of diabetes.37 Type 1 diabetes 
mellitus has also been reported in some NHPs but at a 
much lower frequency,59 and GDM has been reported in 
several species,60,61 with complications similar to those 
observed in human GDM.59 As in humans, other atypical 
forms of diabetes also occur in NHPs.40

The most widely studied NHPs that develop spontaneous 
diabetes are the macaques. Spontaneous diabetes has 
been demonstrated in cynomolgus macaques (Macaca 
fascicularis),37,38,62 rhesus macaques (Macaca mulatta),38,49,62 
black Celebes macaques (Macaca nigra),53,63–65 bonnet 
macaques (Macaca radiata),66,67 Formosan rock macaques 
(Macaca cyclopis),49 and pig-tailed macaques (Macaca 
nemestrina),49 but the most extensive research regarding 
the development, characteristics, and comorbidities 
of diabetes in these animals has been conducted in 
cynomolgus and rhesus macaques.

Diabetes in cynomolgus macaques was initially reported  
in the 1980s,50,68,69 with more detailed characterization in 
the 1990s.25,56 Approximately 30% of cynomolgus monkeys 
>15 years of age (expected life span ~30 years in captivity) 
have basal and/or postprandial hyperinsulinemia and 
may also exhibit IGT.59 Monkeys that progress from IGT 
to T2DM are typically obese, with body weights and 
body mass indices outside 95% confidence intervals.56 
However, as their glycemic profile deteriorates, they 
often lose weight.56 Type 2 diabetes mellitus monkeys are 
hyperglycemic and hypertriglyceridemic, yet nonketotic, 
are severely insulin resistant, and can exhibit increased 
glycation [hemoglobin A1c (HbA1c)] and delayed glucose 
clearance for several years before requiring clinical 
intervention.56 Obese, insulin-resistant nondiabetic, 
and T2DM cynomolgus monkeys also exhibit aberrant 
lipid and lipoprotein metabolism, including increased 
total cholesterol, triglycerides, and free fatty acids and 
decreased HDL cholesterol.37,70 Inflammation and blood 
pressure also increase during progression from IR to 
T2DM in these animals.37

Diabetes in rhesus macaques was initially described in 
the 1970s, and the progression from normal to overt 
T2DM in these animals was characterized by Hansen 
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and colleagues58,71 who categorized monkeys into 
sequential phases of the disease based on age, body 
weight, glucose clearance, and fasting and secretory insulin 
levels. These studies showed that T2DM in rhesus 
monkeys is a progressive disorder with increased basal 
insulin secretion and impaired insulin response to 
glucose challenge as the earliest abnormalities. As rhesus 
monkeys become diabetic, islet amyloid is abundant.72,73 
Rhesus monkeys also exhibit age-related decreases in 
insulin sensitivity, insulin response to glucose, lean body 
mass, and energy expenditure,74,75 and obese animals 
exhibit increased fasting triglycerides, increased fasting 
insulin, and impaired insulin responses to glucose.76 
Obesity-related hyperinsulinemia and abnormal glucose 
tolerance have also been found in feral rhesus monkeys.77 

Gestational diabetes mellitus has also been described in 
both cynomolgus60 and rhesus61,78 monkeys. Monkeys 
with GDM have elevated glucose and insulin and deliver 
macrosomic infants, similar to women with GDM.60,79 
As in humans, there is a risk of T2DM following GDM  
in monkeys.59

Vervet monkeys can become obese, develop IR and 
dyslipidemia, and progress to T2DM even while consuming 
a low-fat diet.39,40 Interestingly, some vervets are insulin 
sensitive with abundant islet insulin staining but are 
hyperglycemic. There appears to be a strong heritable 
pattern in these animals, suggesting the presence of 
a monogenic form of diabetes, such as maturity-onset 
diabetes of the young or mitochondrial diabetes.40

Baboons have been used extensively to study CVD and 
also for obesity and diabetes research. Clinical and 
pathologic signs of T2DM in baboons are similar to those 
observed in macaques and humans,41 and many glycemic 
and obesity parameters are heritable.42,43 The baboon has 
therefore been characterized as a model for studying the 
genetics of obesity, with many obesity-related phenotypes 
already collected with genotyping in progress.44 

Marmosets are small (~400 g) South American primates 
that develop obesity.47,48 Marmosets mature rapidly and are 
considered aged at ~8 years, making diseases of old age 
easier to study in these animals.46–48 Obese marmosets 
have increased body fat with little change in lean mass, 
elevated glucose and HbA1c, and increased triglycerides 
and very-low-density lipoprotein (VLDL) cholesterol, 
consistent with other models of obesity,47 and could be 
considered diabetic if urinary glucose or pancreatic 
pathology were available.

Type 2 diabetes mellitus has also been described in aging 
captive chimpanzees based on persistent fasting hyper-
glycemia and glycosuria.51 Reference intervals for fasting 
plasma glucose and HbA1c for healthy-nondiabetic, 
prediabetic, and diabetic chimpanzees show a positive 
correlation and have demonstrated that the overall 
incidence of T2DM in chimpanzees is nearly five times 
greater in aged animals than in the general population.52

Induction of Diabetes in Nonhuman 
Primates
While NHPs are ideal models for studying spontaneous 
diabetes development, the time course of progression 
is extensive and the percentage of animals progressing 
to overt diabetes is small. The ability to induce T1DM 
with STZ and to enhance the progression of overweight 
animals to overt T2DM with high-carbohydrate and 
high-fat diets increases the utility of these models 
dramatically.

Streptozotocin is a specific β-cell toxin that generates 
a reproducible form of diabetes with limited side effects.16 
In cynomolgus macaques and other NHPs, STZ treatment 
results in a marked hyperglycemia and dyslipidemia, with 
changes in pancreatic islets that are characteristic of 
T1DM.59,80–83 Streptozotocin-induced diabetic monkeys 
are generally not insulin resistant but, depending on the 
extent of islet damage, often require exogenous insulin.84

Many NHPs develop diet-induced obesity when fed 
diets high in fat and/or sugars (sucrose or fructose) 
or when allowed to eat to caloric excess,37 and as in 
humans, this diet-induced obesity leads to development 
of metabolic syndrome and to progression from IR and 
IGT to T2DM.4,37 For example, cynomolgus and rhesus 
macaques fed diets high in fructose or containing trans-
fatty acids gain weight or central adiposity and develop 
dyslipidemia,37,85 and administration of a Western (high-fat/
high-cholesterol) diet induces atherosclerosis and obesity 
in these animals.50,86,87 Baboons fed high-sucrose/high-fat 
diets gain adiposity and develop features of metabolic 
syndrome within 8 weeks of exposure,88 suggesting that 
they may represent a clinically relevant animal model 
for studying the progression of obesity to T2DM.88 
Marmosets fed diets high in fat and/or monosaccharides 
develop metabolic syndrome and, when fed a glucose-
enriched diet, develop an obese phenotype and a 
prolonged hyperglycemic state as early as 16 weeks, with 
subsequent pancreatic islet hyperplasia and increased 
atherosclerotic lesion development.89
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Pathologies and Comorbidities of Diabetes 
in Nonhuman Primates
Due to the similar clinical and pathologic characteristics 
of diabetes in humans and NHPs, and the fact that NHPs 
are good models to study aging and atherosclerosis,50,87,90 
NHPs are useful for studying not only diabetes 
characteristics and development, but also comorbidities.

In both humans and NHPs, histopathologic changes within 
the pancreas are restricted to the islets of Langerhans, 
with morphologic changes varying with diabetes type 
and stage of development. Islets from nondiabetic 
monkeys are generally cellular, with abundant immuno-
staining for both insulin and glucagon25,37,59 and resemble 
in distribution and cellular composition islets from 
nondiabetic humans.91

The histopathologic features of T1DM in humans and 
NHPs are islet inflammation, which occurs through an 
autoimmune mechanism, lymphocyte infiltration, and 
selective β-cell destruction, with subsequent islet loss and 
reduced insulin staining.92 In cynomolgus monkeys with 
T1DM, although insulin staining is significantly reduced, 
glucagon staining remains robust.59 Islet amyloid does not 
play a role in the pathogenesis of T1DM.37

The histopathologic features of T2DM in humans and 
NHPs include islet hyperplasia and hypertrophy, islet 
amyloidosis, and variable insulin staining, depending 
on the stage of disease development.25,37,56,59 Early in the 
disease, the pancreas responds to peripheral IR by 
increasing insulin production, and this manifests as 
an increased number of islets that stain intensely for 
insulin.40 With continued insulin demands, amylin, 
which is cosecreted with insulin, accumulates, amyloid 
formation ensues, and the degree of islet mass replaced 
by amyloid correlates with both increasing IR and 
worsening glycemic control.25,56,73,93 Islet amyloidosis is 
found in ~90% of humans with T2DM and has been 
documented in macaques, vervets, and baboons.25,40,72,94–97 
Type 2 diabetes mellitus monkeys with less islet amyloid 
and greater insulin staining generally do not require 
insulin therapy.37,56 However, once islets are replaced with 
amyloid, less insulin staining is discernable and exogenous 
insulin therapy is required.37 Despite abundant amyloid 
infiltration and markedly reduced insulin staining in 
advanced T2DM, glucagon staining remains abundant.40

Macrovascular disease is the leading cause of death in 
humans with both T1DM and T2DM, with increased 

progression of atherosclerosis resulting in CVD.6,98,99 
Atherosclerosis is increased in NHPs with both naturally 
occurring diabetes and chemically induced diabetes,50,64,86 
and when monkeys are fed an atherogenic diet, their 
dyslipidemia resembles that of humans with diabetes 
consuming a Western diet.86 In naturally occurring 
diabetic primates, atherosclerotic plaques appear as fibro-
fatty expansions of the tunica intima with large foci of 
necrosis and inflammation evident in unstable lesions.50,64 
Over time, unstable plaques may rupture and thrombose, 
resulting in acute myocardial or cerebral infarction.100 
Although atherosclerotic plaques form in the arteries 
of T2DM cynomolgus monkeys fed a chow diet, little 
atherosclerosis forms in chow-fed nondiabetic monkeys.64 

Microvascular disease is an ischemic process that results 
from endothelial and smooth muscle dysfunction in 
combination with vascular wall remodeling.101 In developed 
countries, diabetic nephropathy is the most common 
cause of end-stage renal disease, and this condition also 
occurs in diabetic macaques.102,103 Diabetic retinopathy 
and peripheral neuropathy are also occasionally seen in 
diabetic macaques.104,105

Physiological Interventions in Nonhuman 
Primates
In addition to similarities in development and charac-
teristics of obesity, IR, metabolic syndrome, and T2DM 
in humans and NHPs, many physiological factors that 
predispose humans to T2DM also predispose NHPs to 
the disease. Key examples are outlined here.

Sex hormones affect body weight, fat distribution, and 
IR and influence the risk of diabetes and CVD in both 
humans and NHPs.37,46,59,106–110 Nonhuman primates 
are uniquely important models in this area of research 
because their reproductive physiology is similar to 
humans. Old World monkeys and great apes, for example, 
are the only species with a menstrual cycle similar to 
humans.111 This is important when assessing insulin 
action, because women have decreased insulin sensitivity 
during the luteal phase and improved sensitivity 
during the follicular phase of the normal menstrual 
cycle,112 and similar findings have been reported in 
rhesus monkeys.106

Natural menopause has also been reported in cynomolgus 
and rhesus macaques, chimpanzees, and baboons,78,113–116 
and as in nondiabetic women,117 the postmenopausal 
state is associated with increased IR in postmenopausal116 
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and ovariectomized NHPs.118,119 In general, an increase 
in body weight and a redistribution of body fat occurs 
postmenopausally,120 which may contribute to increased 
IR. Supplemental estrogens prevent weight gain in 
postmenopausal women121 and monkeys118,119 by reducing 
abdominal fat and improving insulin sensitivity.81,122,123 
Estrogen treatment in postmenopausal monkeys also 
improves lipoprotein profiles.90,124 

Psychosocial stress also contributes to IR and risk of 
developing T2DM in humans and NHPs.62,125–128 In NHPs, 
housing situations can be stressful, and this varies by 
species. For example, when living under crowded social 
conditions, young vervet and patas monkeys, species 
that emphasize avoidance and spatial dispersion as 
social strategies,129 are more insulin resistant than their 
noncrowded counterparts.37 By contrast, for macaques 
and baboons that live in large aggregations, interventions 
that disrupt their species-typical lifestyle are more 
stressful and can induce metabolic abnormalities.130 

Caloric restriction can be a successful adjunct for 
management of metabolic abnormalities associated with 
T2DM in both humans and NHPs.131–135 Indeed, a consistent 
physiological change observed with caloric restriction 
in cynomolgus and rhesus monkeys is a lowering of 
plasma glucose and insulin and an increase in insulin 
sensitivity.136–139

Early life experiences also effect subsequent development 
of metabolic syndrome in marmosets140 and cynomolgus 
monkeys.141 For example, in marmosets, a fetal program-
ming paradigm, developed using a brief antenatal 
exposure to dexamethasone, did not affect weight gain 
during the gestational period, but offspring of mothers 
treated late in pregnancy showed higher rates of weight 
gain postnatally and elevated glucose concentrations by 
24 months.140 In cynomolgus monkeys, infants reared by 
mothers consuming animal-based protein (casein and 
whey) gained less weight and had better glycemic and 
lipid profiles than those reared by mothers consuming 
plant-based protein (soy).141

Pharmacologic Interventions in Nonhuman 
Primates
Because development and characteristics of obesity, IR, 
metabolic syndrome, and T2DM in humans and NHPs 
are similar, obese insulin-resistant and diabetic NHPs are 
ideal animal models for studying potential therapeutic 
interventions. Indeed, NHPs have been used to study 

the consequences of drugs that directly increase insulin 
production, increase insulin sensitivity, reduce hepatic 
glucose production, reduce appetite, increase energy 
expenditure, and alter lipid metabolism, and there has 
been a high translation of efficacy (as well as nonefficacy) 
in NHPs to efficacy (and nonefficacy) in the clinic.38 
Key examples are outlined here.

Peroxisome proliferator-activated receptor (PPAR) γ is a 
nuclear receptor found in tissues important to insulin 
action and is the therapeutic target of the glitazone 
class of antidiabetic agents.142–146 Peroxisome proliferator-
activated receptor γ is highly expressed in brown and 
white adipose tissue and is thought to trigger adipocyte 
differentiation, promote lipid storage, and modulate 
insulin action.147,148 Improved glycemic control has been
reported in patients treated with the PPARγ agonists 
rosiglitazone and pioglitazone149,150 and also in 
cynomolgus37,151,152 and rhesus153,154 monkeys. The fluid
retention and edema that occur in humans after treatment 
with PPARγ agonists also occur in NHPs, rendering 
NHPs important models of tolerability for this class of 
therapeutics.152

Peroxisome proliferator-activated receptor α is highly 
expressed in liver, skeletal muscle, and heart; is activated 
by various naturally occurring lipids; potentiates fatty 
acid oxidation; modulates lipoprotein metabolism; 
and is the therapeutic target of the fibrate class of 
antidyslipidemic agents.143–145 Use of NHPs in studying 
PPARα agonists is of particular importance since, in 
rodents, PPARα agonists induce peroxisomal fatty acid 
oxidation enzymes, leading to peroxisomal proliferation, 
hepatomegaly, and hepatic carcinomas,142,144 an effect 
that does not occur in either humans or NHPs.142,144 
Furthermore, due to differences in the PPARα response 
elements in the rodent and primate apolipoprotein A1 
promoters, rodents and primates respond differently, and  
in opposite directions, to the actions of PPARα agonists 
on HDL metabolism.142,144 

In clinical studies, fibrates such as fenofibrate and 
bezafibrate reduce plasma triglycerides, reduce VLDL 
and LDL cholesterol, increase HDL cholesterol through 
increases in apolipoprotein A1 production, and favorably 
affect atherosclerotic progression and cardiovascular 
outcomes.142,144,155–160 Similarly, in vervets, fenofibrate 
increases HDL cholesterol and decreases triglycerides,161 
and in obese rhesus monkeys, fenofibrate lowers plasma 
triglycerides and LDL cholesterol, increases HDL cholesterol, 
and ameliorates hyperinsulinemia.143 Although fenofibrate 
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is not specific for PPARα activation and shows similar 
PPARγ activation,144,156 the ability of PPARα agonism 
to favorably affect glycemic control independent of 
associated PPARγ agonism was confirmed using a 
highly specific PPARα agonist, CP-900691.162 In addition 
to reducing plasma triglycerides and triglyceride-rich 
lipoproteins and elevating HDL cholesterol in diabetic 
cynomolgus monkeys, CP-900691 also improved glycemic 
control and reduced exogenous insulin requirement.162 

Mixed PPARα/γ agonists have also been evaluated in NHP 
models of T2DM and have recapitulated the combined 
efficacy of rosiglitazone and fenofibrate.151,163 For example, 
in prediabetic rhesus monkeys, the mixed PPARα/γ 
agonist, TAK-559, increased HDL cholesterol and reduced 
plasma triglycerides, triglyceride-rich lipoproteins, hyper-
insulinemia, and IR after 12 weeks of treatment.164

The endocannabinoid system plays a key role in energy 
homeostasis by modulating both food intake and energy 
expenditure.165–170 Cannabinoid 1 (CB1) receptor antagonists 
exhibit pharmacological properties favorable to treatment  
of obesity and diabetes,171,172 but the relative contribution 
of their effects on appetite and energy expenditure 
are uncertain and difficult to assess clinically. Studies 
evaluating the CB1 receptor antagonist, PF-95453, in obese, 
insulin-resistant cynomolgus macaques demonstrated 
that, as in humans, the effects of CB1 receptor blockade 
on energy metabolism in monkeys involve both drug-
dependent reductions in food intake and food intake-
independent effects on energy expenditure.173

Oversecretion of glucagon in the postabsorptive state 
leads to nocturnal hyperglycemia, and there is evidence 
that increased glucagon contributes to T2DM in humans 
through altered glucose sensing and β-cell function 
defects.174 In addition to its insulinotropic effects, the 
incretin hormone, glucagon-like peptide-1 (GLP-1) also 
suppresses glucagon release, both of which occur in a 
glucose-dependent manner, resulting in lower plasma 
glucose without increased risk of hypoglycemia.174 
This favorable action, which was initially reported in 
rodents, baboons, and humans, has resulted in the use 
of GLP-1 analogs (e.g., exenatide) clinically.174,175 In one 
study, exenatide, administered subcutaneously to 
cynomolgus macaques for 2 weeks at clinically relevant 
doses (1 µg/kg three times daily), reduced glucose 
excursion and increased insulin responses to 
intravenously administered glucose in insulin-resistant 
monkeys and markedly reduced insulin requirements in 
diabetic monkeys (unpublished observations of Wagner 
and Harwood).

Summary
With the increased incidence of human obesity and diabetes, 
animal models are especially relevant to studying the 
interactions among obesity, IR, aging, and associated 
comorbidities. Nonhuman primates are particularly 
important models because the metabolic progression 
from IR through IGT to overt diabetes, the pathological 
changes that occur in the pancreatic islets as diabetes 
develops, and the comorbidities that manifest as a 
consequence of disease progression are all comparable 
to characteristics of the disease in humans. Additionally, 
studies of atherosclerosis progression (as well as CVD 
risk factor intervention studies) and studies of other 
lesion development such as diabetic microangiopathies, 
retinopathies, nephropathies, and vasculitides are all quite 
plausible in NHPs. In addition, the similar pathogenetic 
characteristics and accompanying risk factors observed 
in both humans and NHPs make NHPs unique models 
for studying early development and environmental factors 
that affect obesity and diabetes and for studying potential 
pharmacological interventions. Nonhuman primates 
therefore represent important animal models for 
studying disease development, pathogenesis, risk factors, 
comorbidities, and potential therapies.
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