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Cross-streamline noninertial migration of a vesicle in a bounded Poiseuille flow is investigated
experimentally and numerically. The combined effects of the walls and of the curvature of the
velocity profile induce a movement toward the center of the channel. A migration law �as a function
of relevant structural and flow parameters� is proposed that is consistent with experimental and
numerical results. This similarity law markedly differs from its analog in unbounded geometry. The
dependency on the reduced volume � and viscosity ratio � is also discussed. In particular, the
migration velocity becomes nonmonotonous as a function of � beyond a certain �. © 2008
American Institute of Physics. �DOI: 10.1063/1.3023159�

Flow of confined soft entities, such as vesicles �closed
quasi-inextensible lipid membranes� or blood cells in the cir-
culatory system and in microfluidic devices, is a problem of
paramount importance with both fundamental and practical
interests. While inertial effects can induce lateral migration
of any flowing body in a channel,1–3 the ability of these soft
entities to adapt their shapes under nonequilibrium condi-
tions gives them the possibility to migrate transversally even
at low Reynolds number. Transverse migrations induce non-
uniform lateral distributions of the suspended entities, which
has important consequences on the rheology of a confined
suspension �e.g., the Fahraeus–Lindquist effect in blood
vessels4�, or should impact on transport efficiency in the
various sorting microfluidic devices that are now being
developed.5

Despite the considerable interest for transverse migration
in many circumstances, there is, to our knowledge, yet no
quantitative law that would allow one to relate the lateral
migration velocity of a deformable entity flowing in a chan-
nel, even isolated, with its position, its mechanical proper-
ties, and the flow parameters. We propose a law for the case
of a single vesicle placed in a bounded Poiseuille flow, from
experiments in microfluidic devices as well as simulations
based on the boundary integral method.

The behavior of vesicles under unbounded shear flow
has been the subject of several theoretical6–10 and
experimental11–13 studies. When the viscosity ratio between
the inner and the outer fluids is small, vesicles perform a
tank-treading dynamics where the orientation of the main
axis of the vesicle is constant and the membrane undergoes a
tank-treading motion. In a bounded Poiseuille flow, tank-
treading vesicles experience a transverse force and reach the
center where they assume a steady shape. The latter stage has
been described in several papers.14–16 Migration in Poiseuille
flows has been also reported on capsules,17–19 red blood
cells,18,19 and drops.20,21 The latter seem to have a very dif-

ferent behavior: Depending on the viscosity ratio and the
confinement, the reported equilibrium positions are not al-
ways on the centerline. In addition, a drop interface and a
vesicle membrane are mechanically different: A vesicle has a
constant surface area and its equilibrium shape is not a
sphere in general. As a consequence of these intrinsic differ-
ences the vesicle shape under flow is described �in the co-
moving frame�, to leading order, by a nonlinear shape equa-
tion while a drop obeys a linear equation.8

Lateral migration has two distinct sources. �i� A wall-
induced lift force.22–25 In agreement with the numerical and
theoretical studies for simple shear flows,22,24 we showed
recently that the migration velocity decreases like 1 /y2,
where y is the distance to the wall of the center of mass of
the vesicle.26 �ii� The nonconstant shear rate in a parabolic
velocity profile �even unbounded� leads to a subtle interplay
between the gradient of shear and the shape,27 resulting in
migration toward the center with a constant drift velocity
except near the centerline. In a realistic channel, both effects
coexist and we shall see that this leads to a new and non-
trivial noninertial migration law.

The considered microfluidic channel is straight and has a
rectangular cross section. The flow direction is Ox, and we
investigate lateral migration along Oy. Let 2w denote the
channel width in the y-direction, and v0 the imposed flow
velocity at the center of the channel in the absence of vesicle.
The two walls are located at y=0 and y=2w.

A vesicle is characterized by two geometrical param-
eters: Its effective radius R0, determined from its constant
volume V by R0= �3V /4��1/3, and its reduced volume �
=V / �4��S /4��3/2 /3� �S is the constant area of the vesicle�
characterizing vesicle deflation. Volumes are calculated at
lift-off �see below� by assuming axisymmetric shape about
the vesicle’s main axis. The viscosity ratio is defined as �
=�in /�out, where �in ,�out denote the inner and the outer vis-
cosities. Relevant space and time scales are the vesicle radius
R0 and the characteristic time needed by the vesicle to relax
to its equilibrium shape �in the absence of imposed flow�,a�Electronic mail: gcoupier@spectro.ujf-grenoble.fr.
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which is given by �=�outR0
3 /�, where ��20kBT is the mem-

brane’s bending rigidity �typically, ��10 s�.
Therefore dynamics depends a priori on the four dimen-

sionless parameters �ŵ�w /R0, v̂0�v0� /R0, �, ��. We con-
sider first the case ��1. The strategy is to vary ŵ and the
imposed velocity v̂0 and investigate the migration law ŷ�t̂�
=y�t /�� /R0 for each value of �. Then we discuss the influ-
ence of � and �.

In the experiments, we used straight channels of height
h0=66.6 �m �in the direction of gravity z� and width 2w
�rectangular cross section� between 70 and 140 �m. The
walls of the channels are made of polydimethylsiloxane
glued to a glass slide. The flow is induced by gravity, by
connecting the inlet and the outlet to reservoirs at different
heights. Vesicles are prepared following the electroformation
method. They are made of a dioleoylphosphatidylcholine
lipid bilayer enclosing an inner solution of sugar �sucrose or
glucose� in water or in a 1:4 glycerol-water �w :w� mixture.
Samples are diluted in a slightly hyperosmotic outer solution
of the same type, in order to deflate them by osmosis. Dex-
tran can be added to one of the solutions to modify the vis-
cosity ratio �. Vesicle size R0 lies in the range of 7–37 �m
while v0 varies between 200 and 1100 �m s−1. Note that for
our solutions of viscosity and density close to the one of
water, the Reynolds number Re=�v0R0 /�out is always lower
than 4	10−2.

A particular design of the upstream channel creates an
initial condition where incoming vesicles touch the y=0 wall
in the observation area and start to be lifted away from it. In
particular, they have already developed a nearly ellipsoidal
shape tilted with respect to the wall.23–25 The two-
dimensional �2D� fluid velocity profile in the xy plane where
their center of mass lies is nearly parabolic, since the rectan-
gular cross section of the three-dimensional �3D� channel
obeys 2w /h0
3.28 Moreover, we wait for the flow to be
established for a long time, resulting in preliminary centering
of the vesicles in the z direction. The imposed velocity pro-
file is thus written as vx

��r�=c�yw−y2 /2�, where c=2v0 /w2

is the curvature. A vesicle is tracked along its trajectory with
a phase contrast microscope, and the position y of its center
of mass is determined by image processing, starting with
y�t=0�=y0, where y0 is the position just before lift-off,
which is close to R0.

The evolution with time of the y position of two vesicles
with �=1.1 is shown in Fig. 1�a�. The vesicles quickly move
away from the wall, then the migration velocity decreases to
zero as they approach the centerline. Along their trajectory,
they continuously deform from a tilted ellipsoid to a sym-
metric bulletlike shape. For a given �, the function ŷ�t̂� de-
pends a priori on both parameters ŵ and v̂0. In order to
determine this functional dependence, which is not known
a priori, we rescale the time variable. The choice of a rel-
evant time scale is not obvious, however. Indeed, while the
inverse of the shear rate yields a natural scale, this is not an
adequate choice since the shear rate is not constant along the
trajectory. The trick is to rescale each infinitesimal time step
dt around the time t by the local shear rate �̇�y�=dv� /dy
=c�w−y� of the unperturbed flow at the position y�t�. The
new dimensionless timelike parameter is then obtained by

integrating the rescaled time steps: t̃=�0
t �̇�y�dt�

=c�0
t �w−y�t���dt�. t̃ accounts for the history of the shear

rates experienced by the vesicle along its trajectory. The raw
data �not shown� for the migration velocity spread over more
than a decade in the parameters space. Interestingly, as
shown in Fig. 1�b�, all experimental curves ŷ�t̃� for a given �
�or rather, a tiny interval around it� collapse, whatever the
values of ŵ and v̂0 within the explored range. A log-log plot
�not shown� of each master curve ŷ�t̃�− ŷ0 is linear, a clear
signature of a power law behavior ŷ�t̃�− ŷ0=t̃�, where the
dimensionless parameters � and  are thus independent from
ŵ and v̂0. The lateral migration velocity v̂m� ŷ̇ as a function
of the position ŷ and �ŵ , v̂0� is then easily extracted,

v̂m = �
�̂̇�ŷ�

�ŷ − ŷ0��
, that is, ẏ = �

R0
�+1�̇�y�

�y − y0�� . �1�

This law constitutes the central result of our finding. In
the range 0.970���0.975 we find for instance ���1/�

=1.2	10−2�0.2	10−2 and ��1 /�−1=1�0.1. The error
bars for these coefficients are mainly due to the uncertainties
on the measure of �, of order �0.005, since, as we shall see,
the velocity depends on the reduced volume. Note that the
differential equation �1� has no analytical solution but can be
easily solved numerically and the result used to fit the raw
data y�t� without rescaling procedure �Fig. 1�a��.

In the simulations, we studied 2D neutrally buoyant
vesicles �the 2D geometry captures the essential features�
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FIG. 1. �Color online� �a� Experimental time evolution of the lateral position
y for three vesicles of similar size �19�1 �m� and imposed flow velocity
v0=920 �m s−1 but different � and �. The dashed line indicates the center-
line �which will be reached much later by two of the vesicles�. The solid line
shows the y�t� curve obtained from the fit by the numerical solution of Eq.
�1�. �b� Evolution of ŷ− ŷ0 vs t̃ for vesicles with �=1.1 and different �. For
each � interval, the different symbols correspond to different vesicles, whose
ŵ and v̂0 vary in the explored intervals, that are 1.8� ŵ�9.6 and 400
� v̂0�14 800. The corresponding curves clearly collapse on a single one.
For clarity, the sets of curves corresponding to different � intervals are
switched vertically with an increment of 0.5.
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having no viscosity contrast ��=1�. The fluid flows inside
and outside the vesicle are governed by the Stokes equations
�rm��� is a membrane point�

− �p�r� + ��2v�r� = − ��r − rm�f�r�, � · v�r� = 0,

�2�

where p is the pressure, v is the velocity, and f the membrane
force, given by Eq. �8� of Ref. 27. Thanks to the linearity of
Eq. �2�, we solve them using a boundary integral method29

adapted to vesicle problems.7,24,27,30 The membrane velocity
is then given by the following integral equation, which we
solve numerically:

vi�rm� =
1

4��
	

��

Gij
W�rm,r��f j�r��ds�r�� + vi

��rm� , �3�

where Gij
W is the Green’s function for a fluid bounded by a

steady infinite plane wall located at y=0,

Gij
W�r,r�� = Gij�r − r�� − Gij�r − rI�� + 2ry�

2Gij
D�r − rI��

− 2ry�Gij
SD�r − rI�� . �4�

Gij�r�=−�ij ln r+ �rirj /r2� is the Green’s function for an un-
bounded fluid, or Stokeslet, rI�= �rx� ,−ry�� is the image of r�
with respect to the wall. The function

Gij
D�r� = �� jx − � jy�
�ij

r2 − 2
rirj

r2 � �5�

is the Stokeslet doublet, and the source doublet is

Gij
SD�r� = ryGij

D�r� + �� jx − � jy�
� jyri − �iyrj

r2 . �6�

The evolution of the vesicle’s shape and location are ob-
tained by updating every membrane point using a Euler
scheme: rm�t+�t�=v�rm , t�dt+rm�t�.

Note that we only consider one wall at y=0. Provided
ŵ�8, the vesicle reaches and stays on the ŷ= ŵ line at long
times, even without the symmetric wall at ŷ=2ŵ. This seems
to indicate that for ŵ�8, migration forces due to the curva-
ture dominate over wall effects near the centerline.

The variations of v̂m with ŷ are shown in Fig. 2�a� for
four different reduced volumes and given width and flow
velocity. They are well described by Eq. �1�. The adequation

to this law is confirmed by considering varying 8� ŵ�12
and 600� v̂0�800. Following Eq. �1�, it is convenient to
rescale the migration velocity in such a way that it should not
depend either on ŵ, nor on v̂0: ṽm� v̂m / �̂̇�ŷ�=� / �ŷ− ŷ0��.
The variations of ṽm with ŷ−1 are shown in Fig. 2�b� for �
=0.97. The collapse on a single line �in log-log scale� is in
agreement with Eq. �1�. We find ��0.8�0.1 and ��0.1.
The agreement between experiments and simulations regard-
ing the exponent � is quite satisfactory. However, numerical
studies overestimate the amplitude �. This is attributed to the
2D character �actually a translationally invariant form in the
z direction�, causing an enhancement of the lift force. While
2D simulations have captured some interesting facts, a 3D
simulation is necessary before drawing general conclusive
answers, and we plan to investigate this problem in the
future.

We now discuss the dependencies on � and �; for all the
values of � and � explored here, the experimental and nu-
merical curves are still very well fitted by the law given by
the resolution of Eq. �1� �see Fig. 1�a��. Values for ṽm at ŷ
=4 are reported on Fig. 3. For ��1, in the ranges 0.83
�

1 and 0.89
�
0.99 offered, respectively, by the experi-
ments and the simulations, we find an increasing migration
velocity with decreasing � �as seen on Fig. 2�a��.

Results for higher � are available from the experiments.
The new feature is the nonmonotonous behavior of ṽm as a
function of �. When � is decreased from 1, the migration
velocity first increases �as for �=1.1�, then reaches a maxi-
mum and decreases back to a very low value �Fig. 3�.

This nonmonotonous behavior of the velocity can be un-
derstood on a general physical basis. A spherical vesicle ��
=1�, does not migrate owing to the fore-aft symmetry. On the
other hand, when � decreases, the vesicle finally switches
from a tank treading to a tumbling motion.12 In the latter
regime, no global migration should occur either because the
averaging over the different orientations of the vesicle during
one rotation period leads to an almost symmetrical configu-
ration. From these considerations we infer a maximal veloc-
ity at a given value of �. Note that when ��1, no tumbling
motion occurs whatever �, so that a monotonous evolution of
the velocity with � is observed. The evolution with � and � is
in qualitative agreement with the predictions made by Olla22

for the migration velocity of a �shape preserving ellipsoidal�
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FIG. 2. �Color online� Simulations. �a� Migration velocity v̂m vs lateral
position for different reduced volumes. Solid lines show the fits to Eq. �1�.
�b� log-log plot of ṽm vs ŷ−1 for different ŵ and v̂0 and �=0.97.
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FIG. 3. �Color online� Reduced migration velocity ṽm of a vesicle at posi-
tion ŷ=4 vs its reduced volume. For readability, the simulations data are
uniformly rescaled by a factor �0.1.
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vesicle in the case of a simple shear flow bounded by a wall,
although the scaling is different.

In conclusion, our experiments and simulations yield a
similarity law for the lateral migration velocity of a vesicle
in a bounded Poiseuille flow as a function of its distance to
the walls and to the centerline, its effective radius, the chan-
nel’s width, and the flow velocity. We showed that the effects
of the walls and of the curvature of the velocity field are
coupled in a nonlinear manner: Curvature not only induces
migration27 but also affects the shape and orientation, which
affects the lift force. The law vm� �̇�y� /y markedly differs
from what the naive extrapolation of the results for a vesicle
near a wall and in a linear shear flow would give vm

� �̇�y� /y2.
Deflating a spherical vesicle increases its deformability,

thus its asymmetry under shear, and leads to higher migra-
tion velocities. However, beyond a given viscosity ratio, the
tank treading to tumbling transition is approached when the
deflation increases, and the migration velocity undergoes a
decline which can be understood on the ground of general
symmetry considerations.
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