NONIN JECTIVE CYCLIC MODULES

B. L. OSOFSKY ${ }^{1}$

In [3], it is shown that a ring R such that every cyclic right R module is injective must be semisimple Artin. In this note, that proof is greatly simplified, and it is shown that a hereditary ring cannot contain an infinite direct product of subrings.
R will denote a ring with 1 , all modules will be unital right R modules, and all homomorphisms R-homomorphisms. For a module $M, E(M)$ will denote its injective hull (see [2]).

Theorem. Let $\left\{e_{i} \mid i \in \mathfrak{G}\right\}$ be an infinite set of orthogonal idempotents of R. Assume for each $A \subseteq g$, there exists $m_{A} \in R$ such that $m_{A} e_{i}=e_{i}$ for all $i \in A$, and $e_{j} m_{A}=0$ for all $j \in \mathscr{g}-A$. Then for all $M_{R} \supseteq R_{R}$, $M /\left(\sum_{i \in \mathfrak{g}} e_{i} R+\operatorname{ker} \pi\right)$ is not injective, where $\pi: R \rightarrow \prod_{i \in \mathfrak{g}} e_{i} R, \pi(m)$ $=\left\langle e_{i} m\right\rangle$.

Proof. Let $\mathfrak{g}=\mathrm{U}_{A \in \mathfrak{A}} A$, where \mathfrak{A} is infinite and for all $A, B \in \mathfrak{A}$, A is infinite and $A \cap B \neq \varnothing \Leftrightarrow A=B$. By Zorn's lemma, \mathfrak{A} can be enlarged to a set $\mathfrak{B} \subseteq$ the power set of \mathfrak{g} maximal with respect to the properties
(i) for all $A \in \mathfrak{B}, A$ is infinite, and
(ii) for all A and B in $\mathfrak{B}, A \neq B \Rightarrow A \cap B$ is finite.

Let $\Sigma=\sum_{i \in g} e_{i} R+\operatorname{ker} \pi$. Then Σ is precisely the set of elements of R annihilated by almost all e_{i}. Let $A \in \mathfrak{B}, r \in R$, and assume $m_{A} r \notin \Sigma$. Then there exist an infinite number of $i($ all in $A)$ such that $e_{i} m_{A} r \neq 0$. For any set $\left\{A_{j} \mid 1 \leqq j \leqq n\right\} \subseteq \mathfrak{B}-\{A\}, A \cap \bigcup_{j=1}^{n} A_{j}$ is finite. Thus for all but a finite number of $i \in A, e_{i} m_{A_{j}}=0$ for all $j, 1 \leqq j \leqq n$. Then $m_{A} r \notin \sum_{j=1}^{n} m_{A_{j}} R+\Sigma$, so $\sum_{A \in \mathfrak{F}}\left(m_{A}+\Sigma\right) R$ is direct in M / Σ.

Define $\phi: \sum_{A \in \mathfrak{B}}\left(m_{A} R+\Sigma\right) / \Sigma \rightarrow M / \Sigma$ by

$$
\begin{aligned}
\phi\left(m_{A}\right) & =m_{A} & & A \in \mathfrak{A} \\
& =0 & & A \in \mathfrak{B}-\mathfrak{N} .
\end{aligned}
$$

Assume ϕ extends to a homomorphism $\bar{\phi}$ from $R / \Sigma \rightarrow M / \Sigma$. Let $\bar{\phi}(1+\Sigma)=m+\Sigma$. Then for all $A \in \mathfrak{A}, m m_{A}=m_{A}+\sum_{l=1}^{n} e_{i_{l}} r_{l}+k$, so $A^{\prime}=\left\{a \in A \mid e_{a} m e_{a}=e_{a}\right\} \supseteq A-\left\{i_{l} \mid 1 \leqq l \leqq n\right\}$ is infinite.

Let C be a choice set for $\left\{A^{\prime} \mid A \in \mathfrak{A}\right\}$. By the maximality of \mathfrak{B}, $C \cap D$ is infinite for some $D \in \mathfrak{R}$, and D cannot belong to \mathfrak{A}. But then

Received by the editors July 10, 1967.
${ }^{1}$ The author gratefully acknowledges partial support from the National Science Foundation under grant GP 7162.
$m m_{D} \in \Sigma$, so for all but a finite number of $i \in \mathscr{G}, e_{i} m m_{D}=0$. Hence for all but a finite number of $d \in C \cap D, 0=e_{d} m m_{D}$, but for all $d \in C \cap D$, $e_{d}=e_{d} m m_{D} e_{d}$, a contradiction.

Corollary. Let R contain an infinite ring direct product $\prod_{i \in \mathfrak{g}} R_{i}$, where R_{i} is a ring with identity e_{i}. Then R is not hereditary.

Proof. By [1, p. 14], a ring R is hereditary if and only if every quotient of an injective module is injective. $\left\{e_{i} \mid i \in g\right\}$ are orthogonal idempotents, and the characteristic function of A will serve as m_{A} in the theorem. Then $E(R) / \Sigma$ is not injective.

Corollary. Let R be a ring such that every cyclic R-module is injective. Then R is semisimple Artin.

Proof. R is von Neumann regular and self injective. For any set of orthogonal idempotents $\left\{e_{i} \mid i \in g\right\} \subseteq R$ and $A \subseteq G$, let m_{A} be the projection of 1 on $E\left(\sum_{i \in A} e_{i} R\right) \subseteq R$. Clearly $m_{A} e_{i}=e_{i}$ for all $i \in A$. Let $j \in \mathfrak{g}-A$. Then $R e_{j} m_{A}=R e$ for some $e=e^{2}$. If $x=m_{A} e r \in \sum_{i \in A} e_{i} R$, then $e_{j} x=0$ so $e_{j} m_{A} e r=0$, er $=0$, and finally $x=0$. Since $m_{A} R$ is an essential extension of $\sum_{i \in A} e_{i} R, m_{A} e R=0$. Then $e_{j} m_{A}=e_{j} m_{A} \mathcal{C}=0$. The theorem then shows that g cannot be infinite, so R is semisimple Artin (see [4]).

References

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
2. B. Eckmann, and A. Schopf, Über injektive Moduln, Arch. Math. 4 (1953), 75-78.
3. B. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math 14 (1964), 645-650.
4. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713.

The Institute for Advanced Study and Rutgers, The State University

