NONINJECTIVE CYCLIC MODULES

B. L. OSOFSKY¹

In [3], it is shown that a ring R such that every cyclic right Rmodule is injective must be semisimple Artin. In this note, that proof is greatly simplified, and it is shown that a hereditary ring cannot contain an infinite direct product of subrings.

R will denote a ring with 1, all modules will be unital right Rmodules, and all homomorphisms R-homomorphisms. For a module M, E(M) will denote its injective hull (see [2]).

THEOREM. Let $\{e_i | i \in \mathfrak{s}\}$ be an infinite set of orthogonal idempotents of R. Assume for each $A \subseteq \mathfrak{g}$, there exists $m_A \in \mathbb{R}$ such that $m_A e_i = e_i$ for all $i \in A$, and $e_i m_A = 0$ for all $j \in \mathfrak{I} - A$. Then for all $M_R \supseteq R_R$, $M/(\sum_{i\in \mathfrak{g}} e_i R + \ker \pi)$ is not injective, where $\pi \colon R \to \prod_{i\in \mathfrak{g}} e_i R, \pi(m)$ $= \langle e_i m \rangle.$

PROOF. Let $\mathfrak{g} = \bigcup_{A \in \mathfrak{A}} A$, where \mathfrak{A} is infinite and for all $A, B \in \mathfrak{A}$, A is infinite and $A \cap B \neq \emptyset \Leftrightarrow A = B$. By Zorn's lemma, \mathfrak{A} can be enlarged to a set $\mathfrak{B}\subseteq$ the power set of \mathfrak{g} maximal with respect to the properties

(i) for all $A \in \mathfrak{B}$, A is infinite, and

(ii) for all A and B in \mathfrak{B} , $A \neq B \Longrightarrow A \cap B$ is finite.

Let $\Sigma = \sum_{i \in g} e_i R + \ker \pi$. Then Σ is precisely the set of elements of R annihilated by almost all e_i . Let $A \in \mathfrak{B}$, $r \in \mathbb{R}$, and assume $m_A r \notin \Sigma$. Then there exist an infinite number of i (all in A) such that $e_i m_A r \neq 0$. For any set $\{A_j \mid 1 \leq j \leq n\} \subseteq \mathfrak{B} - \{A\}, A \cap \bigcup_{j=1}^n A_j$ is finite. Thus for all but a finite number of $i \in A$, $e_i m_{A_j} = 0$ for all $j, 1 \leq j \leq n$. Then $m_A r \notin \sum_{j=1}^n m_{A_j} R + \Sigma$, so $\sum_{A \in \mathfrak{B}} (m_A + \Sigma) R$ is direct in M/Σ . Define $\phi: \sum_{A \in \mathfrak{B}} (m_A R + \Sigma) / \Sigma \to M/\Sigma$ by

$$\phi(m_A) = m_A \quad A \in \mathfrak{A}, \\
= 0 \quad A \in \mathfrak{B} - \mathfrak{A}.$$

Assume ϕ extends to a homomorphism $\overline{\phi}$ from $R/\Sigma \rightarrow M/\Sigma$. Let $\bar{\phi}(1+\Sigma) = m+\Sigma$. Then for all $A \in \mathfrak{A}$, $mm_A = m_A + \sum_{l=1}^n e_{il}r_l + k$, so $A' = \{a \in A \mid e_a m e_a = e_a\} \supseteq A - \{i_l \mid 1 \leq l \leq n\}$ is infinite.

Let C be a choice set for $\{A' | A \in \mathfrak{A}\}$. By the maximality of \mathfrak{B} , $C \cap D$ is infinite for some $D \in \mathfrak{B}$, and D cannot belong to \mathfrak{A} . But then

Received by the editors July 10, 1967.

¹ The author gratefully acknowledges partial support from the National Science Foundation under grant GP 7162.

1383

 $mm_D \in \Sigma$, so for all but a finite number of $i \in \mathfrak{g}$, $e_i mm_D = 0$. Hence for all but a finite number of $d \in C \cap D$, $0 = e_d mm_D$, but for all $d \in C \cap D$, $e_d = e_d mm_D e_d$, a contradiction.

COROLLARY. Let R contain an infinite ring direct product $\prod_{i \in s} R_i$, where R_i is a ring with identity e_i . Then R is not hereditary.

PROOF. By [1, p. 14], a ring R is hereditary if and only if every quotient of an injective module is injective. $\{e_i | i \in \mathfrak{s}\}$ are orthogonal idempotents, and the characteristic function of A will serve as m_A in the theorem. Then $E(R)/\Sigma$ is not injective.

COROLLARY. Let R be a ring such that every cyclic R-module is injective. Then R is semisimple Artin.

PROOF. *R* is von Neumann regular and self injective. For any set of orthogonal idempotents $\{e_i | i \in \mathcal{I}\} \subseteq R$ and $A \subseteq \mathcal{I}$, let m_A be the projection of 1 on $E(\sum_{i \in A} e_i R) \subseteq R$. Clearly $m_A e_i = e_i$ for all $i \in A$. Let $j \in \mathcal{I} - A$. Then $Re_j m_A = Re$ for some $e = e^2$. If $x = m_A er \in \sum_{i \in A} e_i R$, then $e_j x = 0$ so $e_j m_A er = 0$, er = 0, and finally x = 0. Since $m_A R$ is an essential extension of $\sum_{i \in A} e_i R$, $m_A eR = 0$. Then $e_j m_A = e_j m_A e = 0$. The theorem then shows that \mathcal{I} cannot be infinite, so R is semisimple Artin (see [4]).

References

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.

2. B. Eckmann, and A. Schopf, Über injektive Moduln, Arch. Math. 4 (1953), 75-78.

3. B. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math 14 (1964), 645-650.

4. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713.

The Institute for Advanced Study and Rutgers, The State University