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Abstract

We propose a non-intrusive reduced-order modeling method based on the notion of space-time-

parameter proper orthogonal decomposition for approximating the solution of non-linear parame-

trized time-dependent partial differential equations. A two-level proper orthogonal decompo-

sition method is introduced for constructing spatial and temporal basis functions with special

properties such that the reduced-order model satisfies the boundary and initial conditions by

construction. A radial basis function approximation method is used to estimate the undetermined

coefficients in the reduced-order model without resorting to Galerkin projection. This nonintru-

sive approach enables the application of our approach to general problems with complicated

nonlinearity terms. Numerical studies are presented for the parametrized Burgers’ equation and

a parametrized convection-reaction-diffusion problem. We demonstrate that our approach leads

to reduced-order models that accurately capture the behavior of the field variables as a function

of the spatial coordinates, the parameter vector and time.

Keywords: Reduced-order model; physics-based surrogate model; time-dependent

parametrized partial differential equation; proper orthogonal decomposition; radial basis

functions

1. Introduction

Parametrized partial differential equations (PDEs) arise in a number of important application

areas, including design optimization, uncertainty analysis, optimal control and inverse param-

eter estimation. The computational cost associated with these applications can be exorbitant,
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particularly when the underlying PDE model is required to be solved with high accuracy using

a fine spatial mesh and small time-steps. In order to solve challenging problems on a limited

computational budget, there is a need for efficient numerical methods for constructing approxi-

mation models (also commonly known as surrogates or emulators) of parametrized PDEs. Such

techniques enable the PDE solution to be efficiently approximated at any point in the param-

eter space, thereby leading to significant computational cost savings in applications requiring

multiple evaluations of the PDE solution over the parameter space of interest. This has moti-

vated a number of researchers to investigate numerical methods for approximating the solution

of parametrized PDEs.

Reduced-order modeling (ROM) has emerged as a powerful approach for tackling parametrized

PDEs and a number of formulations based on this idea has been proposed in the literature. The

basic idea underlying ROM is to approximate the solution using an appropriate set of basis vec-

tors/functions and subsequently estimate the undetermined coefficients in the expansion using

Galerkin projection or an error minimization scheme. Existing approaches include methods

based on Lagrange, Hermite or Taylor subspace and proper orthogonal decomposition (POD)

strategies; see references [1, 2, 3] for an overview. However, most of the work on this topic

has focused on parametrized steady-state PDEs [4, 5, 6, 7, 8, 9] and very little work has been

done on developing general computational methods for ROM of time-dependent parametrized

nonlinear PDEs. This can be primarily attributed to the inevitable computational difficulties that

arise when it is sought to approximate the PDE solution as a function of the spatial coordinates,

time and the parameter vector.

In [10], we proposed a principal component analysis (PCA) methodology to construct ROMs

of steady-state parametrized PDEs. The key idea was to apply PCA to a training dataset obtained

by solving the fine solver at a set of design points chosen using a design of computer experiments

(DoCE) algorithm to derive a set of spatial and parameter-space basis functions. A greedy adap-

tive algorithm was developed to ensure that the method scales well to high-dimensional problems

that may necessitate a large number of runs of the fine solver. Detailed numerical studies were

presented to demonstrate that this approach allows for the construction of highly accurate ROMs

with modest computational effort.

Time-dependent parametrized PDEs are much more challenging compared to steady-state

problems, particularly when the boundary conditions vary as a function of time and the pa-

rameter space. The main difficulty arises from the requirement of constructing a reduced-order

approximation model that satisfies the initial and boundary conditions at all points in the param-

eter space. Gunzburger et al. [11], studied this problem for a special class of parametrized PDE

models, where only the boundary conditions are parametrized. However, this approach cannot

be readily extended to problems where the governing equations are also parametrized. Hay et

al. [12] proposed sensitivity-based approaches for constructing reduced-order models of unsteady

PDEs over parametrized geometries. Both these approaches are based on Galerkin projection due
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to which they can be difficult to implement for problems with complicated nonlinearity terms.

It is worth mentioning here that the reduced basis method studied in [13] has been applied to

the unsteady Burgers’ equation in one space dimension and a posteriori error bounds were de-

rived for the approximation. The so-called discrete empirical interpolation method [14] is also

a very interesting approach that has been applied for approximating the solution of nonlinear

parametrized PDEs.

In this paper, we present a general non-intrusive method for constructing reduced-order ap-

proximations to the solution of time-dependent parametrized nonlinear PDEs, where the gov-

erning equations, the boundary and initial conditions are parametrized. The methodology pre-

sented here can be considered to be a generalization of our PCA based method for steady-state

parametrized PDEs. Our goal is to construct a ROM that can eventually be used to approxi-

mate the PDE solution at a huge number of points in the parameter space very efficiently. The

key idea underpinning the proposed method is to split the reduced-order approximation into two

terms. The first term is defined as the solution of an auxiliary parabolic linear parametrized PDE

– this is to guarantee that the ROM satisfies the boundary and initial conditions by construc-

tion. The second term in the approximation is composed of a linear combination of a tensor

product of physical space and temporal domain empirical proper orthogonal modes. We pro-

pose a two-level POD approach for constructing the spatial and temporal basis functions starting

from an ensemble of solution snapshots obtained by solving the original PDEs at a finite set

of points in the parameter space. The undetermined coefficients in the approximation are esti-

mated using a non-intrusive approach based on radial basis function approximation (in contrast

to Galerkin projection), thereby enabling the straightforward application of our methodology

to parametrized PDEs with complicated nonlinearity terms. We present numerical studies for

a model parametrized Burgers’ equation and a parametrized form of the convection-reaction-

diffusion problem to illustrate the accuracy of the proposed approach.

The remainder of this paper is organized as follows: In Section 2, we outline the central ideas

used in the proposed formulation. In the section that follows, we show how spatial and temporal

basis functions that obey certain conditions can be constructed using a two-level POD method.

Subsequently, in Section 4, we present a nonintrusive method based on radial basis function

approximation to estimate the undetermined coefficients in the reduced-order approximation.

Section 5 focuses on approximating the solution of the auxiliary parametrized parabolic PDE

so that the ROM can be evaluated at any point in the parameter space in real-time. Section 6

is devoted to numerical studies for a parametrized Burgers’ equation. Eventually, numerical

results are presented in Section 7 for a more complex parametrized convection-reaction-diffusion

problem. Section 8 concludes the paper and outlines some possible directions for further work

on this topic.
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2. Problem statement and methodology

Consider the parametrized time-dependent PDE model given below:

∂uθ

∂t
+N (uθ,∇uθ) = f θ in Ω × (0, T ], (1)

where θ ∈]0, 1[p (p ≥ 1) is a vector of p parameters, t ∈ (0, T ] denotes time and Ω is the

physical domain over which the PDE operator is defined with regular boundary ∂Ω. We denote

by N (uθ,∇uθ) a nonlinear parametrized operator; uθ is the field variable which we seek to

approximate as a function of the physical coordinates x, the parameter vector θ and time t. The

governing equations are supplemented by parametrized boundary and initial conditions of the

form

uθ(·, t) = gθ(·, t) on ∂Ω × (0, T ], (2)

uθ
|t=0
= uθ0(x) in Ω. (3)

For any value of θ, it is assumed that (1-3) is well-posed in a usual Hilbert space made of regular

functions – typically H1(Ω) ⊗ L2(0, T ) – meaning that uθ
0
, f θ and gθ are smooth enough related

to the nonlinearity term N (·).

Our objective is to construct a reduced-order approximation of the solution of (1-3) as a func-

tion of x, θ and t. One straightforward approach to tackle this problem would be to work with the

finite-dimensional representation of (1-3) obtained after spatial discretization with mesh spacing

h and an appropriate time-stepping scheme. Then for each time instant of interest, say tn, the

field variable can be approximated as a function of space x and θ using the methodology outlined

in [10] for steady-state parametrized PDEs. Even though this approach is easy to implement, it is

computationally not very attractive due to the need for constructing a ROM at each time step. We

shall not pursue this approach any further and instead focus on developing numerical schemes

that deal with time as a continuous variable.

In order to ensure that the approximation for uθ(x, t) satisfies the boundary and initial condi-

tions for any value of θ, we propose an ansatz of the form:

ûθ(x, t) = vθ(x, t) +

K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t) (4)

where αkm, k = 1, . . . ,K, m = 1, . . . ,M denote a set of undetermined coefficients in the ap-

proximation, and ϕk(x) and ξm(t) are spatial and temporal basis functions with the following

properties:

ϕk
|∂Ω
= 0, ∀k = 1, . . . ,K,

ξm(0) = 0, ∀m = 1, . . . ,M. (5)
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The above conditions essentially state that all the spatial basis functions ϕk are zero on the

boundary ∂Ω, while all the temporal basis functions ξm are zero at t = 0. Due to these properties

of the spatial and temporal basis functions, we now only need to choose the term vθ(x, t) such

that the parametrized boundary and initial conditions (2-3) are satisfied by construction. For the

special case when the boundary conditions do not vary as a function of time, we can set the first

term in (4) as vθ(x, t) = uθ
0
(x). Due to the properties of our basis functions stated in (5), it can be

easily seen that for t = 0, we have

ûθ(x, 0) = uθ0(x),

and in addition

ûθ
|∂Ω
= uθ0|∂Ω

= gθ.

Therefore, it follows that for the above choice of vθ(x, t), the initial and boundary conditions are

automatically satisfied by the approximation (4).

However, the choice for vθ(x, t) is not that obvious for the more general case when the bound-

ary conditions are time-dependent. In this paper, we propose the idea that solution of the follow-

ing auxiliary parabolic linear PDE1 can be chosen to be the first term in the approximation (4)

∂vθ

∂t
− ∆vθ = 0 in Ω × (0, T ], (6)

vθ(·, t) = gθ(·, t) on ∂Ω × (0, T ], (7)

vθ
|t=0
= uθ0 in Ω. (8)

It can be clearly seen that due to the prescribed properties of the chosen spatial and temporal

basis functions (5) and the above choice of vθ, our approximation will automatically satisfy both

initial and boundary conditions.

In the next section, we shall delve into details of how basis functions with properties (5) can

be constructed using a two-level POD method. After an appropriate set of basis functions have

been constructed, the approximation problem eventually boils down to estimation of the undeter-

mined coefficients αkm in (4). A commonly used approach in ROM construction is the Galerkin

method, wherein the approximation (4) is substituted into the original nonlinear parametrized

equations (1-3) and the residual error is made orthogonal with respect to the approximating

space of basis functions. This approach, however, is not straightforward to implement when the

nonlinear parametrized term N (uθ,∇uθ) has a complicated structure [21]. In the present work,

we propose a general nonintrusive approach that circumvents this difficulty. Subsequently, we

outline the steps involved in numerical solution of the auxiliary PDE model to approximate the

term vθ so that the reduced-order approximation (4) can be evaluated in real-time at any point

1Note that this auxiliary PDE model is a linear initial boundary value heat equation with parametrized boundary and

initial conditions.
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in the parameter space. We will also discuss in the next section the limitations of the proposed

methodology, namely which parametrized PDE models can be correctly approximated with such

an approach.

3. Construction of spatial and temporal basis functions

In this section, we focus on constructing the spatial and temporal basis functions, namely

ϕk(x) and ξm(t), that satisfy (5). The key idea underpinning our approach is to employ a two-

level POD procedure on data obtained by solving the original PDEs (fine solver) at a set of points

in the parameter space.

To illustrate, consider the following space-filling set of design points within the parameter

space

W
I
= {θi ∈]0, 1[p, i = 1, . . . , I} . (9)

Such a space-filling set of design points can be obtained using Latin Hypercube sampling or

minimum discrepancy sequences such as Sobol, Halton and Faure sequences [15, 16]. The fine

solver (i.e., a high-fidelity solver for the original nonlinear PDEs) can be run at these I points to

generate a training dataset that is eventually used in a two-level POD procedure to construct the

spatial and temporal basis functions that satisfy the conditions outlined earlier in (5).

Next, we introduce a coarse sampling of the spatial domain, i.e.,

X
J
= {x j ∈ Ωh, j = 1, . . . , J}, (10)

where Ωh denotes the discretized computational domain with the index h referring to the spatial

mesh diameter. Similarly, a coarse sampling of the temporal domain can be written in the form

Y
N
= {tn, 0 = t1 < · · · < tN = T }. (11)

Consider the following set of shifted snapshots obtained by running the fine solver (1-3) and

the auxiliary PDE model (6-8) at a point (say θi) within the set (9):

S
N

i =

{
uθi (·, tn) − vθi (·, tn), n = 1, . . . ,N

}
. (12)

Note that the shifted snapshots are computed at all time-instants defined in the coarse temporal

domain sampling (11). It is also worth emphasizing that we use here a subscript i for the snapshot

set S N
i

to highlight the fact that we compute a set of shifted snapshots for each point in the set (9).

Consider the spatial Gram matrix defined below

(Mi
x)nm =

(
uθi (·, tn) − vθi (·, tn), uθi (·, tm) − vθi (·, tm)

)
L2(Ωh), n,m = 1, . . . ,N,
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where the L2-scalar product is defined as

(u, v)L2(Ωh) =

∫

Ωh

u(x)v(x)dx.

Let us denote by (λi
n)n=1,...,N the positive eigenvalues of Mi

x arranged in descending order

λi
1 ≥ λ

i
2 ≥ · · · ≥ λ

i
N ≥ 0.

We assume that the spectrum of the Gram matrix decays rapidly, which is typically the case

for a large class of elliptic and parabolic PDEs.2 In other words, for a given small threshold

ε > 0, there exists an integer Ki
= Ki(ε) with Ki/N small enough such that

Ki∑

k=1

λi
k

N∑

k=1

λi
k

≥ 1 − ε

meaning that the solutions of the considered PDE problems have a principal direction property.

The first Ki eigenfunctions (ϕk,i)k associated with the first Ki eigenvalues λi
k
, provide the orthog-

onal principal directions of the set S N
i

. If rk,i
= (rk,i)n denotes the kth eigenvector of Mi

x, the kth

eigenfunction ϕk,i can be computed as

ϕk,i(x) =

N∑

n=1

(rk,i)n

(
uθi (x, tn) − vθi(x, tn)

)
(13)

and then normed in the L2(Ωh)-sense.

In summary, what we have done so far is to carry out PCA of the set of shifted snapshots

S N
i

, to compute a set of basis functions (ϕk,i)k=1,...,Ki , where Ki is a (small) number. For more

details concerning the POD method (also referred as Principal Component Analysis (PCA) or

Karhunen-Loève decomposition), we refer the reader to [17, 18, 19].

After the basis sets (ϕk,i)k=1,...,Ki have been computed for all parameter space points θi ∈ W I ,

we apply, as in [20], a second PCA to all the families of spatial modes previously computed, to

construct a set of common POD modes (ϕk)k=1,...,K .

A similar two-level POD method can be employed to construct temporal basis functions

(ξm)m=1,...,M . For each parameter space point θi ∈ W I and x j ∈ X J , we first construct Mi

temporal POD modes (ξm,i)m=1,...,Mi , from the set

T
J

i =

{
uθi (x j, ·) − u

θi

0
(x j), j = 1, . . . , J

}
(14)

2We wish to highlight here that this assumption may not hold for hyperbolic problems where the Gram matrix spec-

trum decay can be very slow. In addition, hyperbolic problems often involve discontinuous solutions which are poorly

approximated by POD-type methods.

7



and then apply a second PCA on (ξm,i)m,i to get the temporal basis functions.

The following proposition holds:

Proposition 1. Let S N
i

(resp. T J
i

) be the spatial (resp. temporal) snapshot sets given by (12)

(resp. (14)). Then the spatial and temporal basis functions ϕk and ξm satisfy the properties

(5), meaning that the ROM ûθ given by (4) satisfies both the boundary and initial conditions by

construction.

Proof. To prove this result, we use the expansion (13) of ϕk,i as a linear combination of shifted

spatial snapshots, and exploit a property of the “snapshot method” developed by Sirovich [17].

By construction, since uθi (·, tn)|∂Ω = vθi(·, tn)|∂Ω = gθi(·, tn) we deduce that

ϕk,i(·, tn)|∂Ω = 0, ∀k = 1, . . .Ki.

Applying a PCA to all the basis sets (ϕk,i)k,i then leads to spatial modes (ϕk)k=1,...,K that are also

linear combinations of (ϕk,i)k,i. Consequently the modes ϕk also vanish on ∂Ω.

Similar arguments can be used to establish the stated properties of the temporal basis func-

tions ξm since we have

ξm,i(t) =

J∑

j=1

(sm,i) j

(
uθi(x j, t) − u

θi

0
(x j)

)
, (15)

where sm,i
= (sm,i) j denotes the mth eigenvector of the temporal Gram matrix Mi

t defined as

(Mi
t) j j′ =

(
uθi (x j, ·) − u

θi

0
(x j), u

θi (x j′ , ·) − u
θi

0
(x j′)

)
L2([0,T ]), j, j′ = 1, . . . , J.

Since we have

ξm,i(0) = 0,∀i = 1, . . . , I,∀m = 1, . . . ,Mi

it follows that ξm(0) = 0,∀m = 1, . . . ,M.

4. Estimation of the undetermined ROM coefficients

In this section, we look at how the undetermined coefficients αkm of the ROM (4) can be

computed for any design point θ. We proceed as follows. In the first step, we compute the

coefficients αkm for each design point θi ∈ W I . Considering the space-filling sets X J and Y N ,

we have, for a fixed value of θi,

ûθi (x j, tn) = vθi (x j, tn) +

K∑

k=1

M∑

m=1

αkm(θi)ϕ
k(x j) ξ

m(tn), (16)

∀ j = 1, . . . , J, ∀n = 1, . . . ,N. For a fixed index i, the preceding equation can be written in the

compact form

ûi
= vi
+ ϕαi ξT , (17)
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where ûi ∈ MJN with coefficients (̂ui) jn = ûθi (x j, tn), vi ∈ MJN with coefficients (vi) jn =

vθi (x j, tn), ϕ ∈ MJK with coefficients (ϕ) jk = ϕ
k(x j), α

i ∈ MKM with coefficients (αi)km =

αkm(θi), and ξ ∈MNM with coefficients (ξ)nm = ξ
m(tn).

The undetermined coefficients αi can be computed by solving

ui
= vi
+ ϕαi ξT (18)

where ui ∈ MJN denote the extracted elements of the fine solutions, that is to say (ui) jn =

uθi (x j, tn). Since the columns of ϕ and ξ are orthonormal, we deduce the coefficients αi by the

relations

αi
= ϕT (ui − vi)ξ. (19)

The final step involves approximating the coefficients αkm(θ) as a function of θ so that they

can be evaluated at any arbitrary point in the parameter space efficiently. For fixed k,m, we first

expand the undetermined coefficients using Radial Basis Functions (RBFs) as follows

αkm(θ) =

I∑

i=1

γkm
i Φ

(
|θ − θi|

σ

)
. (20)

Setting θ = θi′ in (20) for i′ = 1, . . . , I, leads to

I∑

i=1

Ai′i γ
km
i = αkm(θi′ ), (21)

where the symmetric interpolation matrix A is such that Ai′i = Φ

(
|θi′−θi |

σ

)
. We give more details

about the choice of Φ and σ later in Section 7.3. The preceding equation can be rewritten in

compact form as

Aγkm
= bkm, (22)

where bkm is a vector of length I defined by (bkm)i = αkm(θi). The unknown coefficients γkm can

be calculated by solving the following penalized normal equations (again with a small regular-

ization parameter µ > 0)

(AT A + µI)γkm
= AT bkm. (23)

Given the solution of the above matrix system of equations, the undetermined coefficients can be

efficiently computed at any point in the parameter space using (20).

5. Enabling real-time predictions using the ROM

5.1. Motivation

We now look at how the ROM (4) can be employed in a real-time prediction framework.

There are essentially two options available to the user of such a ROM, depending on the time-

dependent PDE model which is under consideration.
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In the first case, let us consider the scenario when the ROM is to be evaluated at a limited

number of points in the parameter space. Then we can directly use the expansion (4) to get

approximate solutions ûθ for different values of θ. Once the spatial and temporal modes ϕk and

ξm have been computed through the two-level PCA procedures (see Section 3), we can compute

the coefficients αkm(θ) using the methodology described in Section 4: use (19), next solve (23)

and then use (20). To compute ûθ, the final step involves computing vθ (i.e., the solution of the

auxiliary parabolic linear PDE (6-8)).

The second case involves the scenario where it is required to compute ûθ at a large number

of points in the parameter space. In principle, the steps outlined earlier can still be employed;

however, the main computational obstacle arises from computation of the term vθ while making

predictions at any point in the parameter space. This is because direct numerical simulations of

(6-8) cannot be done efficiently (say in real-time), even though the auxiliary PDE model is linear.

Consequently one needs to construct an adapted ROM for (6-8), which is not an obvious task

since the boundary conditions are time-dependent. This would enable faster online evaluations

of the reduced-order model at the expense of additional offline computations (due to the step of

constructing an approximation model to enable efficient evaluation of the term vθ).

In this section we focus on efficient numerical solution of the auxiliary parabolic PDE (6-8).

We take advantage of the linear nature of this equation to separate this PDE into two simpler

ones: an initial value problem with homogeneous boundary conditions and a boundary value

problem with zero initial conditions. The solution vθ of (6-8) can be split according to

vθ = wθ + zθ (24)

where wθ and zθ are, respectively, solutions of the following PDEs

∂wθ

∂t
− ∆wθ = 0 in Ω × (0, T ], (25)

wθ(·, t) = 0 on ∂Ω × (0, T ], (26)

wθ
|t=0
= uθ0 in Ω, (27)

and

∂zθ

∂t
− ∆zθ = 0 in Ω × (0, T ], (28)

zθ(·, t) = gθ(·, t) on ∂Ω × (0, T ], (29)

zθ
|t=0
= 0 in Ω. (30)

Note that the first PDE (25–27) is a linear heat equation with homogeneous boundary con-

ditions, while the second PDE (28–30) is a linear heat equation with zero initial conditions. We

now move on to how the component terms wθ and zθ can be efficiently computed.
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5.2. Resolution of the auxiliary PDE with homogeneous BC

In order to approximate the solutions of (25-27) by a low-order model, we can use a classical

POD-Galerkin approach provided the initial condition uθ
0

is smooth enough. In other words, the

term wθ, which is parametrized through the initial value, is approximated as

wθ(x, t) =

KIV∑

k=1

aθk(t) ϕk
IV (x), (31)

where aθ
k
(t) denote a set of undetermined coefficients which is an implicit function of θ. We

denote by ϕk
IV

(x) a set of basis functions obtained via the POD method, i.e., by applying PCA to

the following snapshot dataset

{
wθi (·, tn), i = 1, . . . , I, n = 1, . . . ,N

}
. (32)

Now, for a fixed value of the parameter vector θ, the undetermined coefficients in (31) can

be computed by solving the following (small) system of coupled linear ordinary differential

equations 

daθ

dt
+ R aθ = 0,

aθ
k
(0) = (uθ

0
, ϕk

IV
)L2(Ωh)

(33)

where the stiffness matrix is defined as

Rkl =

∫

Ωh

∇ϕk
IV (x)∇ϕl

IV (x) dx

and aθ = (aθ
1
, . . . , aKIV

)T .

It is worth noting here that since the stiffness matrix is not a function of θ, it can be pre-

computed once for all. Hence, the solution of (33) can be computed efficiently for a given value

of θ. Given the solution of (33), the term wθ(x, t) can be computed for any arbitrary value of θ

using (31).

5.3. Resolution of the auxiliary PDE with zero initial condition

We need to exercise particular care while solving (28-30) since the boundary function gθ(·, t)

is time-dependent. Once again, we take advantage of the linear feature of this PDE. A POD

Petrov-Galerkin projection scheme appears to be suited in this case. To begin with, let us consider

a set of boundary conditions L2(∂Ω)-valued snapshots

U
I

n =

{
gθi(·, tn), i = 1, . . . , I

}
, (34)

where tn belongs to a coarse temporal discretization.
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The idea behind using the set (34) is to identify the principal components related to the BC

and to lower the dimension of the representative space of the time-dependent BC. Once a PCA

is performed on the set U I
n , the first KBC POD modes ηk(·, tn) ∈ L2(∂Ω) associated with U I

n

are stored. This procedure is performed for all coarse time instants tn, n = 1, . . . ,N. From a

computational point of view, the previous procedure is achievable since the N PCA calculations

can be run independently of each other in parallel. Moreover, the storage requirements of the

corresponding NKBC modes ηk is reasonable since KBC is expected to be small, N is not too large

since it corresponds to the size of a coarse temporal grid, and also because ηk are L2(∂Ω)-valued

functions.

For a fixed instant time t, let us now denote by πgθ the projection of the trace function gθ(·, t)

onto the linear vector space spanned by the family
{
η1(·, t), . . . , ηKBC (·, t)

}
:

πgθ(·, t) =

KBC∑

k=1

cθk(t) ηk(·, t) (35)

with

cθk(t) =
(
gθ(·, t), ηk(·, t)

)
L2(∂Ω)

. (36)

Next, we then define the function z̃θ

z̃θ(x, t) =

KBC∑

k=1

cθk(t) ξk(x, t), (37)

where
{
ξ1(·, t), . . . , ξKBC (·, t)

}
are the solutions of the following KBC secondary equations that are

independent of θ:

∂ξk

∂t
− ∆ξk = 0 in Ω × (0, T ], (38)

ξk(·, t) = ηk(·, t) on ∂Ω × (0, T ], (39)

ξk
|t=0
= 0 in Ω, (40)

for k = 1, . . . ,KBC. The following proposition holds:

Proposition 2. Let z̃θ be defined by (36-37) and (ξk) by (38-40). Then z̃θ is the solution of the

problem

∂z̃θ

∂t
− ∆z̃θ =

KBC∑

k=1

ċθk(t) ξk in Ω × (0, T ], (41)

z̃θ(·, t) = πgθ(·, t) on ∂Ω × (0, T ], (42)

z̃θ
|t=0
= 0 in Ω. (43)
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Proof. In Ω × (0, T ] we have, from (37):

∂z̃θ

∂t
− ∆z̃θ =

KBC∑

k=1

cθk(t)

(
∂ξk

∂t
− ∆ξk

)
+

KBC∑

k=1

ċθk(t) ξk

=

KBC∑

k=1

ċθk(t) ξk from (38).

Eq. (42) directly follows from (39):

z̃θ
|∂Ω
=

KBC∑

k=1

cθk(t) ξk
|∂Ω
=

KBC∑

k=1

cθk(t) ηk
= πgθ

and eq. (43) from (40):

z̃θ|t=0
=

KBC∑

k=1

cθk(0) ξk|t=0
= 0.

In our ROM, we propose to use z̃θ defined by (37) as an approximation for zθ, the solution

of the original equation (28-30). We theoretically justify this approximation later in Section 5.4,

where we provide an upper bound for ||(zθ − z̃θ)(·, t)||L2(Ω).

We now discuss different computational aspects of such a methodology, showing that the

computations at every step can be carried out efficiently. First of all, it has to be noted that both

ηk and ξk have to be known on the fine temporal grid because of (37) and (39). However, it seems

impossible to directly compute ηk on the fine temporal grid since it would require us to perform

a PCA for each time instant which would be computationally prohibitive. Therefore we propose

the following strategy: once ηk are computed on a coarse temporal grid as described previously,

we deduce its values on a fine grid using temporal interpolations. More precisely, for any point

x j ∈ X J ∩ ∂Ωh we interpolate the set of values {yk j
= ηk(x j, tn), n = 1 . . . ,N}, using classical

one-dimension interpolation functions (such as linear or cubic spline interpolators).

Once the ηk are known on the fine temporal grid, we have to solve the problems (38-40).

These problems can be solved in parallel for each ξk since they are independent of each other.

Moreover, since these problems do not depend on θ, the dual basis
{
ξ1, . . . , ξKBC

}
can be precom-

puted once and for all and used as the low-order basis to approximate the solutions of (28-30).

We next examine an important aspect of our methodology, related to data storage complexity.

From a computational point of view, it is not always feasible to keep in memory KBC spatio-

temporal modes ξk that are needed to expand the solution z̃θ (see (37)). To overcome this dif-

ficulty, we propose a second-level ROM with low-dimensional representation by projecting ξk

onto low-order spatial/temporal POD modes, for example:

ξk(x, t) =

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t). (44)
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Using the second-level ROM (44) allows us to store KBC(Lk Mk
+ Lk(Nx)d

+ MkNt) values,

instead of KBC(Nx)dNt ones if we directly store the ξk values on the fine spatial/temporal grids

(respectively of size (Nx)d and Nt). Both (χk,l)l and (ςk,m)m can be obtained by applying PCA to

ξk(x, t) using a standard snapshot method for dataset generation. For x j and tn belonging to the

coarse spatial/temporal discretizations (10) and (11), we write, for k = 1, . . . ,KBC

ξk(x j, tn) =

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x j)ς
k,m(tn).

The preceding equation can be rewritten in the compact form

ξk
= χkβk(ςk)T (45)

where we denote ξk ∈ MJN with coefficients (ξk) jn = ξ
k(x j, tn), χk ∈ MJLk with coefficients

(χk) jl = χ
k,l(x j), β

k ∈ MLk Mk with coefficients (βk)lm = β
k
lm

and ςk ∈ MNMk with coefficients

(ςk)nm = ς
k,m(tn). Solving (45) with the penalized minimization problems

min
βk∈M

Lk Mk

||ξk − χkβk(ςk)T ||2 + µ||βk ||2, (46)

where µ > 0 is a small regularization parameter, leads to the Euler-Lagrange equations

(
(χk)Tχk

)
βk

(
(ςk)Tςk

)
+ µβk

= (χk)Tξkςk. (47)

We can reshape (47) as a linear algebraic system of equations size Lk × Mk as shown below

(Dk
+ µ I)βk

= dk (48)

where

Dk
=



b11(ςk)Tςk . . . b1Lk (ςk)Tςk

...
. . .

...

b1Lk (ςk)Tςk . . . bLk Lk (ςk)Tςk


(49)

with bi j = ((χk)Tχk)i j, and where the rows of βk (resp. of the rhs of (47)) are put in the vector

βk (resp. in dk). Recall that a similar approach was previously used in the first-level ROM to

estimate the undetermined coefficients αkm(θ); see Section 4.

5.4. Error estimation of the auxiliary problem with zero initial condition

We give here an error estimate between z̃θ (i.e., the solution of (41-43)) and zθ (i.e., the

solution of the original equation (28-30)).

Proposition 3. Let Ω be a bounded subset of R
d. Let gθ be a boundary function such that gθ

and
∂gθ

∂t
∈ C0([0, T ] ; L2(∂Ω)), ∀θ ∈]0, 1[p. If zθ is the solution of (28-30) and z̃θ is the solution of

(41-43), then the following error estimate holds:

||(zθ − z̃θ)(·, t)||L2(Ω) ≤ A(t) + tB exp

(
−

t

2Cp(Ω)2

)
(50)
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where Cp(Ω) > 0 is the Poincaré constant, A(t) is a function of time which can be arbitrary small

depending on KBC, cθ
k

and ξk, and B is a constant depending on ċθ
k
, ξk and T .

Proof. As a first step, we give the weak formulation of (28-30). Because of its nonhomogeneous

BC, we formally define yθ = zθ−gθ
Ω

with gθ
Ω
=

∑

k≥1

cθkξ
k. It is easy to check that gθ

Ω
is an extension

of gθ to the whole domain Ω, and that yθ is the solution of

∂yθ

∂t
− ∆yθ = bθ in Ω × (0, T ], (51)

yθ(·, t) = 0 on ∂Ω × (0, T ], (52)

yθ
|t=0
= 0 in Ω, (53)

with bθ = ∆gθ
Ω
−
∂gθ
Ω

∂t
. The weak form of (51-53) then reads

d

dt
(yθ, ϕ)L2(Ω) + (∇yθ,∇ϕ)L2(Ω) = (bθ, ϕ)L2(Ω), ∀ϕ ∈ H1

0(Ω). (54)

We follow the same procedure for the problem (41-43). We define ỹθ = z̃θ − (πgθ)Ω where

(πgθ)Ω =

KBC∑

k=1

cθkξ
k is the extension of πgθ to the whole domain Ω, so that ỹθ is the solution of

∂ỹθ

∂t
− ∆ỹθ = 0 in Ω × (0, T ], (55)

ỹθ(·, t) = 0 on ∂Ω × (0, T ], (56)

ỹθ
|t=0
= 0 in Ω. (57)

The weak form of (55-57) is given by

d

dt
(ỹθ, ϕ)L2(Ω) + (∇ỹθ,∇ϕ)L2(Ω) = 0, ∀ϕ ∈ H1

0(Ω). (58)

Subtracting (58) to (54), and taking ϕ = zθ − z̃θ as a test function, leads to

d

dt

(
||(yθ − ỹθ)(·, t)||2

L2(Ω)

)
+ ||(yθ − ỹθ)(·, t)||2

H1
0
(Ω)
= (bθ, yθ − ỹθ)L2(Ω).

Using Poincaré and Cauchy-Schwarz’s inequalities (see [23, 24]) then gives

d

dt

(
||(yθ − ỹθ)(·, t)||L2(Ω)

)
+

1

2Cp(Ω)2
||(yθ − ỹθ)(·, t)||L2(Ω) ≤

1

2
||bθ||L2(Ω)

or, integrating over [0, t]:

||(yθ − ỹθ)(·, t)||L2(Ω) ≤
1

2

∫ t

0

||bθ(·, s)||L2(Ω) ds −
1

2Cp(Ω)2

∫ t

0

||(yθ − ỹθ)(·, s)||L2(Ω) ds.
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Using the integral form of the Grönwall lemma (see [25]), we have the following inequality

||(yθ − ỹθ)(·, t)||L2(Ω) ≤ α(t) −
1

2Cp(Ω)2

∫ t

0

α(s) exp

(
−

t − s

2Cp(Ω)2

)
ds

where α(t) =
1

2

∫ t

0

||bθ(·, s)||L2(Ω) ds. Since α is a positive and nondecreasing function, we get

||(yθ − ỹθ)(·, t)||L2(Ω) ≤ α(t) exp

(
−

t

2Cp(Ω)2

)
.

Coming back to the definition of yθ and ỹθ, we have

yθ − ỹθ = zθ − z̃θ −
∑

k>KBC

cθkξ
k

which yields

||(zθ − z̃θ)(·, t)||L2(Ω) ≤

∣∣∣∣∣
∣∣∣∣∣
∑

k>KBC

cθk(t)ξk(·, t)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

+ α(t) exp

(
−

t

2Cp(Ω)2

)
. (59)

We then estimate A(t) =

∣∣∣∣∣
∣∣∣∣∣
∑

k>KBC

cθk(t)ξk(·, t)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

. For this, we invoke the maximum princi-

ple property related to the heat problem (41-43). Since gθi ∈ C0([0, T ] ; L2(∂Ω)) for all θi,

we deduce that ηk also belong to C0([0, T ] ; L2(∂Ω)), ∀k = 1, . . . ,KBC , by linearity of the

POD modes with respect to the snapshots. As a consequence, we get from (35) that πgθ ∈

C0([0, T ] ; L2(∂Ω)), ∀KBC. By virtue of the maximum principle, the solution z̃θ of (41-43) be-

longs to C0([0, T ] ; L2(Ω)), ∀KBC . It follows that the series

∣∣∣∣∣
∣∣∣∣∣
∑

k≥1

cθk(t)ξk(·, t)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

converges,

meaning that A(t) can be arbitrary small provided that KBC is large enough.

The last step involves estimating the function α(t) which appears in (59). By construction,

we have

bθ = ∆gθ
Ω
−
∂gθ
Ω

∂t
=

∑

k≥1

cθk

(
∆ξk −

∂ξk

∂t

)
−

∑

k≥1

ċθkξ
k
= −

∑

k≥1

ċθkξ
k

which leads to

α(t) =
1

2

∫ t

0

||bθ(·, s)||L2(Ω) ds ≤ tB

with

B =
1

2
sup

s∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣
∑

k≥1

ċθk(s)ξk(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

. (60)

We justify the convergence of the series in (60) as follows. Using the Cauchy-Schwarz’s inequal-

ity, we have, ∀KBC:

∣∣∣∣∣
∣∣∣∣∣

KBC∑

k=1

ċθk(s)ξk(·, s)

∣∣∣∣∣
∣∣∣∣∣
2

L2(Ω)

≤

KBC∑

k,l=1

|ċθk(s)| |ċθl (s)| ||ξk(·, s)||L2(Ω) ||ξ
l(·, s)||L2(Ω). (61)
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We first prove that

sup
s∈[0,T ]

||ξk(·, s)||L2(Ω) < +∞, ∀k = 1, . . . ,KBC. (62)

Since ηk ∈ C0([0, T ] ; L2(∂Ω)), we deduce from the maximum principle applied to (38-40) that

ξk ∈ C0([0, T ] ; L2(Ω)), meaning that (62) holds. We then need to show that

sup
s∈[0,T ]

|ċθk(s)| < +∞, ∀k = 1, . . . ,KBC. (63)

Since cθ
k
(s) = (gθ(·, s), ηk(·, s))L2(∂Ω) by definition, using the Cauchy-Schwarz’s inequality, we

have

|ċθk(s)| ≤

∣∣∣∣∣
∣∣∣∣∣
∂gθ

∂t
(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(∂Ω)

||ηk(·, s)||L2(∂Ω) + ||g
θ(·, s)||L2(∂Ω)

∣∣∣∣∣
∣∣∣∣∣
∂ηk

∂t
(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(∂Ω)

. (64)

In (64), ||gθ(·, s)||L2(∂Ω) < +∞ since gθ ∈ C0([0, T ] ; L2(Ω)), and ||ηk(·, s)||L2(∂Ω) = 1 since ηk are

L2 normalized POD modes. We finally use the second assumption to conclude: since
∂gθ

∂t
∈

C0([0, T ] ; L2(∂Ω)), ∀θ ∈]0, 1[p, we deduce that
∂ηk

∂t
∈ C0([0, T ] ; L2(∂Ω)), by linearity of the

POD modes with respect to the snapshots. This allows us to conclude the proof since

∣∣∣∣∣
∣∣∣∣∣

KBC∑

k=1

ċθk(s)ξk(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

< +∞

holds, ∀s ∈ [0, T ], ∀KBC .

5.5. Overview of the proposed methodology

Gathering all the previous steps of the ROM methodology, namely eqs. (4), (31), (37) for the

first-level ROM, and (44) for the second-level ROM, the approximate solution ûθ can be written

as

ûθ(x, t) =

KIV∑

k=1

aθk(t) ϕk
IV (x) +

KBC∑

k=1

(
gθ(·, t), ηk(·, t)

)
L2(∂Ω)

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t)

+

K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t). (65)

The different steps of the proposed ROM methodology are summarized in Algorithms 1 and

2, where θ denotes any design parameter point. Algorithm 1 outlines the steps involved in com-

puting the ROM solution of the full non-linear problem, ûθ, given by (65). Algorithm 2 outlines

the steps involved in computing the ROM solution of the auxiliary parabolic linear PDE, v̂θ, cor-

responding to the two first terms of (65).
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Algorithm 1 ROM algorithm for general time-dependent parametrized PDEs

1: Apply DoCE to generate a set of points {θi}
I
i=1

and compute the fine solutions uθi at these points.

2: ROM methodology (full non-linear initial model):

3: For each design point θi, compute the spatial and temporal POD modes (ϕk,i)Ki

k=1
and (ξm,i)Mi

m=1
.

4: Compute the common POD basis (ϕk)K
k=1

and (ξm)M
m=1

using PCA.

5: Carry out parameter-space analysis to compute the coefficients (αkm(θ)):

6: for i = 1 to I do

7: Compute (αkm(θi))k,m using (19)

8: end for

9: for k = 1 to K do

10: for m = 1 to M do

11: solve the linear system (23) to compute γkm

12: Compute αkm(θ) using (20)

13: end for

14: end for

15: Assemble the third term of (65) using (αkm(θ))k,m, (ϕk)k and (ξm)m.

16: Final assembling : Compute ûθ using (65) and v̂θ computed using Algorithm 2.

Algorithm 2 ROM algorithm for the auxiliary parabolic linear PDE

1: ROM for Initial Value:

2: From the snapshots
{
wθi (·, tn)

}
of solutions of (25-27), compute the spatial modes (ϕk

IV
)

KIV

k=1
.

3: Solve the ODE system (33) to compute aθ
k
(t) on the fine temporal grid.

4: Assemble wθ on the fine temporal grid using (31).

5: ROM for Boundary Conditions:

6: From the L2(∂Ω)-valued snapshots U I
n (see (34)), compute the KBC spatial POD modes (ηk(·, tn))

KBC

k=1
,

for each coarse time tn, n = 1, . . . ,N.

7: Interpolate ηk on the fine temporal grid using classical one-dimensional interpolation.

8: for k = 1 to KBC do

9: solve (38-40) to generate the spatial snapshots ξk(·, tn) and temporal snapshots ξk(x j, ·)

10: Compute the spatial and temporal (second-level) POD modes (χk,l)Lk

l=1
and (ςk,m)Mk

m=1

11: end for

12: for k = 1 to KBC do

13: Compute and store the coefficients (βk
lm

)l,m obtained by solving the linear system (48)

14: end for

15: For each k = 1, . . . ,KBC , assemble (ξk)
KBC

k=1
on the fine temporal grid using (44).

16: Assemble z̃θ according to (37).

17: Final assembling : Compute v̂θ as the sum of wθ and z̃θ, corresponding to the two first terms of (65).
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6. Numerical test-case (1d-x 1d-θ 1d-t)

6.1. Definition of the test-case

To illustrate the proposed methodology, we first consider the following unsteady Burgers’

equation in Ω × [0, T ] 

∂uθ

∂t
+ uθ

∂uθ

∂x
= 0 in Ω = [−2, 2],

uθ(−2, t) = uL(θ), uθ(2, t) = uR(θ),

uθ
|t=0
= uθ

0

(66)

where the continuous initial data is given by

uθ0(x) =



uL(θ) = 1 + 0.1θ x ∈ [−2,−a],

−
uL(θ)

a
x ∈ [−a, a],

uR(θ) = −uL(θ) x ∈ [a, 2]

(67)

with a ∈]0, 2[. The non-linear problem (66-67) is inspired from [26] where a randomly parametrized

Burgers’ equation with an initial shock is studied. The solution of (66-67) is continuous for time

t ∈ [0, a/uL(θ)[ and is given by

uθ(x, t) =


uL(θ) x < 0

uR(θ) x > 0
(68)

for times t ≥ a/uL(θ), since uθ is a shock solution travelling with the speed s(θ) = 1
2
(uL(θ) +

uR(θ)) = 0. In our numerical experiments, we will consider an integration time T < a
/

max
θ
|uL(θ)|

in order to study the transient phase, namely before the shock appears.

6.2. Numerical results

Since the boundary conditions in (66) do not vary as a function of time, the ROM (4) boils

down to

ûθ(x, t) = uθ0(x) +

K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t) (69)

meaning that we don’t need to solve an auxiliary PDE of the form (6-8). This simple test-case

allows us to validate the first level of our ROM methodology described in Sections 3 and 4.

In our numerical experiments, we take a = 1, T = 0.8s and θ ∈ [−2, 2]. We consider a set

of I = 20 design points θi uniformly spread in [−2, 2] for the parameter-space sampling and a
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uniform spatial grid made of Nx = 100 points. For the coarse temporal sampling, we use N = 51

points in [0, T ] to generate the spatial snapshots. We consider a coarse spatial mesh of J = 50

points x j and a time-step δt = 4.25 × 10−3 to generate the temporal snapshots, corresponding to

a grid of Nt = 201 points.

In order to compute the spatial and temporal basis functions ϕk and ξm needed in the expan-

sion (69), we first compute, for each design parameter θi ∈ W I , Ki spatial modes ϕk,i and Mi

temporal modes ξm,i, by applying PCA methods. Using thresholds of ǫ = 10−3, we get a total

of
∑I

i=1 Ki
= 105 and

∑I
i=1 Mi

= 105 POD modes. By applying another PCA method on these

different sets of modes with thresholds of ǫ = 10−2, we finally retain a set of common POD

modes (ϕk)k=1,...,K and (ξm)m=1,...,M, with K = 8 and M = 7.

For the estimation of the coefficients αkm(θ), we use a Gaussian radial basis function Φ(r) =

e−
r2

2σ with σ = 0.13 in (20). This optimal value for σ has been numerically obtained by minimiz-

ing the distance between αkm(θi) given by (19) and their RBF approximations (20).

As a first illustration, we compare on Figure 1 the approximate ROM solution ûθ to the exact

solution uθ for θ = 2.0, which is the maximal value of the parameter space interval. One can

see a good agreement between the two solutions, even if small oscillations appears in the ROM

approximation at the final time T .

For a more systematic comparison, we plot on Figure 2 different L2 errors between the exact

and the ROM solutions when the parameter θ belongs to a fine grid made of 200 points uniformly

spread in [−2, 2]. For each design parameter, we represent the maximal L2 error

max
tn∈[0,T ]

||̂uθ(·, tn) − uθ(·, tn)||L2(Ω) (70)

and the relative L2 error

1

Nt

Nt∑

n=1

||̂uθ(·, tn) − uθ(·, tn)||L2(Ω)

||uθ(·, tn)||L2(Ω)

(71)

showing a good level of accuracy of the ROM (69).

7. Numerical test-case (2d-x 3d-θ 1d-t)

7.1. Definition of the test-case

To illustrate the whole ROM approach described in Sections 3, 4 and 5, we consider a more

complex parametrized model test-case, where the parameters are involved within the initial value,

the boundary conditions and the governing equation of the model. In this case, we will consider

the ROM in its more advanced form (65), where we approximate the split solution (24) of the

auxiliary PDE problem using the second-level ROM (44).
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Figure 1: Comparison of the exact and ROM solutions for θ = 2.0.

7.1.1. Parametrization of the equations

To illustrate the application of the proposed methodology, we consider the following unsteady

convection-reaction-diffusion problem in Ω × [0, T ]


∂u

∂t
+ ∇ ·

(
τ

u2

2

)
− ν∆u = f θ1 in Ω =]0, 1[2,

u = gθ2 on Γ (upper BC),

u = 0 on ∂Ω\Γ,

u|t=0
= u

θ3
0

(72)
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Figure 2: L2 errors in log10 scale between the ROM and the exact solution for θ defined on a fine parameter space grid.

with 3 parameters: one in the reactive term (θ1), one in the BC (θ2) and one in the initial condition

(θ3). Here ν denotes the viscosity, τ(x, y) is a rotating field defined by

τ(x, y) =
1

||(−(y − 1/2), x − 1/2)||


−(y − 1/2)

x − 1/2

 (73)

and the reactive term is given by

f θ1 = 0.1 − 0.01 θ1 u |u|. (74)

This model is an extension of the steady-state parametrized PDE model studied in [10].

7.1.2. Parametrization of the BC

We justify here the chosen form of the parametrized BC, since there exists many possible

choices for the function gθ. First of all gθ must satisfy the condition gθ(·, 0) = 0, because of

eqs. (29-30). Moreover, considering an usual expression for gθ, namely as the product of a

temporal function and a spatial one, is restrictive. It is worth noting that if gθ(x, t) = α(t)βθ(x),

then it can be seen from (34) that for different times tn , tm, the snapshots of U I
n and U I

m are

colinear since

gθi (·, tn) =
α(tn)

α(tm)
gθi (·, tm),∀i = 1, . . . I.

Therefore we get the same eigenfunctions ηk
BC

by performing a PCA on the sets U I
n or U I

m . In

order to consider the most general case, namely time-dependent POD modes ηk
BC

, we use the
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following expression for gθ

gθ(x, t) = α1(t)βθ1(x) + αθ2(t) (75)

with α1(0) = αθ
2
(0) = 0 since gθ(·, 0) = 0.

In our numerical simulations we take

α1(t) = sin

(
πt

2T

)
, (76)

βθ2
1

(x) = 1 − θ2 sin

(
2π(x −

1

2
)

)
, (77)

and

αθ2
2

(t) =
θ2t

T
. (78)

7.1.3. Parametrization of the initial value

For parametrization of u0, we consider some perturbations of a known function ū in the form

uθ0(x) = ū(x) + θc(x), (79)

with ū|∂Ω = c|∂Ω = 0, because of the homogeneous BC of the heat problem (25-27). The rela-

tion (79) can be viewed as a simplified representation of Karhunen-Loève expansions used for

modeling random fields in a stochastic framework (see [22]), where ū is a deterministic mean

function and θ are random variables.

In our numerical simulations θ = θ3 and ū is taken as an harmonic function that satisfies the

Poisson problem 
−∆ū = f in Ω,

ū = 0 on ∂Ω,
(80)

with f ≡ 1. We choose

c(x) = λ

(
x +

1

2

) (
x −

1

2

) (
y +

1

2

) (
y −

1

2

)
, (81)

with λ =
8

5
max
Ω

|ū| so that the maximal amplitude of c represent a tenth of max
Ω

|ū|.

7.2. Numerical results: approximation of the auxiliary PDE

In order to validate the methodology presented in Section 5, we first present numerical results

for approximation of the auxiliary PDE model (6-8). The BC conditions and the initial value are

defined by (75-78) and (79-81), respectively, meaning that we consider a two-parameter problem.
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Figure 3: Computation of ϕk
IV

: spectrum of the Gram matrix in log10 scale. We retain KIV = 6 spatial modes.

After presenting the different parameters chosen for these simulations, we will compare the ROM

solution

v̂θ2,θ3(x, t) =

KIV∑

k=1

a
θ3
k

(t) ϕk
IV (x)

+

KBC∑

k=1

(
gθ2(·, t), ηk(·, t)

)
L2(∂Ω)

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t), (82)

which corresponds to the two first terms of (65), to the solution vθ2,θ3 obtained by directly solving

(6-8) with a precise implicit Euler scheme.

We choose the following parameters for our simulations: T = 2s, Nx = 20 points per spatial

direction, and a time-step δt = 0.002 for the fine Euler resolution. For the heat problem resolution

with homogeneous BC (see §5.2), we take N = 51 points for the temporal sampling, half of them

being uniformly spread in [0, 0.2] to capture the unsteady behavior of the solution wθ3 . Applying

PCA with a threshold of ε = 10−12 leads to KIV = 6 spatial modes ϕk
IV

(see Figure 3). Figure 4

shows the time history of each coefficient a
θ3
k

(t) of the expansion (31). It can be seen that each

coefficient converges towards 0, which is consistent with the fact that we analyze the solution

with respect to its initial value dependency.

Concerning the heat problem with null initial value (see §5.3), we sample the parameter θ2
24
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Figure 4: Time history of the coefficients a
θ3
k

(t), k = 1, . . . , KIV in log10 scale. It can be seen that all the coefficients

vanish for large times.

with I = 7 values uniformly spread in [0, 1]. Applying PCA with a threshold of ε = 10−6 leads

to KBC = 2 spatial modes ηk (see Figure 5(a)).

For the second-level ROM (44) we store, for each k = 1, . . . ,KBC, NT = N spatial snapshots

(ξk(·, tn))n and NX = 200 temporal series (ξk(x j, ·)) j where x j belongs to a coarse spatial grid

uniformly spread in Ω. Applying PCA methods with thresholds of ε = 10−9 in both cases leads

to Lk
= 7 spatial modes χk,l(x) and Mk

= 8 temporal modes ςk,m(t), for each k (see Figures 5(b)

and 5(c)).

For θ2 = 0.2 and θ3 = 0.1 we now compare the approximate ROM solution to the fine

Euler solution. The results presented in Figures 6 and 7 show a good agreement between the

approximated and fine Euler solutions. The mean L2 relative error is

1

N

N∑

n=1

||̂vθ2,θ3(·, tn) − vθ2,θ3(·, tn)||L2(Ω)

||vθ2,θ3(·, tn)||L2(Ω)

≃ 7.47 × 10−2.
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Figure 5: (a) – Computation of ηk : spectrum of the Gram matrix in log10 scale. We retain KBC = 2 spatial modes. (b) –

Computation of χk,l : spectrum of the Gram matrix in log10 scale. We retain Lk
= 7 spatial modes. (c) – Computation of

ςk,m : spectrum of the Gram matrix in log10 scale. We retain Mk
= 8 temporal modes.

It is worth noting that on the upper BC Γ, the solution is better approximated:

1

N

N∑

n=1

||̂vθ2,θ3 (·, tn) − vθ2,θ3 (·, tn)||L2(Γ)

||vθ2,θ3(·, tn)||L2(Γ)

≃ 4.99 × 10−2.

The L2 relative errors over the whole domain Ω and the upper boundary Γ as a function of

time is shown in Figures 8(a) and 8(b), respectively. It can be noted that the quality of the ap-

proximated solution is not affected by the size of the temporal coarse grid used for the modes

ηk. We maintain the same level of accuracy using a temporal undersampling, with a coarse grid

made of only 21 points. Figures 9(a) and 9(b) compare the temporal evolution of the solution at

a fixed point in the interior and boundary for the ROM and the direct Euler solution.
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Figure 6: First few snapshots of the direct implicit Euler solution vθ2 ,θ3 (·, tn), n = 1, . . . , 12, for θ2 = 0.2 and θ3 = 0.1.

We would like to point out that computation and storage of the POD modes ηk(·, tn) on the

coarse temporal grid require a numerical post-processing. Since these modes are obtained for

different times tn, it is possible to generate discontinuities, because eigenvectors in the PCA

methods are defined up to the sign. A simple procedure is hence needed to detect the possible

changes of sign and has been used in our simulations.

7.3. Numerical results: full non-linear problem

We present now numerical results corresponding to the full non-linear problem (72), with the

parametrization described in Sections 7.1.1, 7.1.2 and 7.1.3. For our numerical simulations we

take ν = 0.05 and T = 5s. The fine spatial grid is made of 20×20 points and the coarse one of J =

344 points uniformly spread in Ω, including the upper BC. For the temporal discretization, we

take N = 101 points to generate the spatial snapshots (12) and N f ine = 501 for the snapshots time

series (14), half of them being uniformly spread in [0, 0.5]. For the parameter-space discretization

we use a regular grid of I = 53
= 125 design points.
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Figure 7: First few snapshots of the ROM solution v̂θ2 ,θ3 (·, tn), n = 1, . . . , 12 given by eq. (82), for θ2 = 0.2 and θ3 = 0.1.

We proceed as follows to construct the spatial and temporal basis functions, ϕk and ξm, needed

in the expansion (4). For each design parameter θi ∈ W I , Ki spatial modes ϕk,i and Mi temporal

modes ξm,i are computed by applying PCA methods. Using thresholds respectively of ǫ = 10−4

and ǫ = 10−5, we get a total of
∑I

i=1 Ki
= 500 and

∑I
i=1 Mi

= 375 POD modes. From these

different sets of POD modes linked to each design parameter, we deduce common spatial and

temporal basis sets applying PCA once again on the families

{
(ϕk,i)k=1,...,Ki

}
i=1,...,I

and {
(ξm,i)k=1,...,Mi

}
i=1,...,I

.

Considering thresholds of ǫ = 10−5 in both cases, we obtain a set of common POD modes

(ϕk)k=1,...,K and (ξm)m=1,...,M , with K = 9 and M = 4. The corresponding eigenvalues of the Gram

matrices are shown in Figure 10, showing a quick decay of the spectra. The spatial and temporal

modes are depicted in Figures 11 and 12. It can be seen from Figure 12 that the conditions

ξm(0) = 0 are satisfied by the temporal basis functions.
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Figure 8: (a) – L2 relative errors on the whole domain Ω between direct and ROM solutions, for each times tn . (b) – L2

relative errors on the upper boundary Γ in log10 scale between direct and ROM solutions, for each times tn .
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Figure 9: (a) – For a fixed point in the interior of Ω, trajectory of the ROM and direct solutions. (b) – For a fixed point

on the upper BC, trajectory of the ROM and direct solutions.

29



In our simulations we using the Gaussian radial basis function Φ(r) = e−
r2

2σ with σ = 0.15.

This optimal value ofσ is numerically obtained by minimizing the maximal distance between the

known coefficients αkm(θi) given by (19), and their RBF estimations given by (20). Such a value

of σ leads to a maximal difference of 1.57 × 10−4. The condition number of the interpolation

matrix involved in (22) is around 15.8 for the chosen value of the scaling parameter σ.
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Figure 10: (a) – Computation of ϕk: spectrum of the Gram matrix in log10 scale. (b) – Computation of ξm: spectrum of

the Gram matrix in log10 scale.
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Figure 12: First 4 temporal basis functions ξm, with ξm(0) = 0.

Concerning the initial value part of the ROM, we consider the same temporal sampling in

[0, T ] used for the non-linear snapshots generation, to get the snapshots of the heat problem with

null BC (N = 101). This leads us to consider KIV = 4 modes ϕk
IV

. For the BC part of the ROM,

we consider 20 values of θ2 uniformly spread in [0, 1] in order to perform PCA on the set (34).

This leads us to retain KBC = 2 POD modes ξk. The spatio-temporal modes ξk are not computed

exactly but are approximated by (44), with Mk
= Lk

= 5, for each k = 1, . . . ,KBC.

Figures 13 and 14 show some temporal snapshots of the solution directly obtained by an im-

plicit Euler scheme at the beginning and at the end of the simulation. We consider the parameter

vector θ0 = (0.27, 0.92, 0.23)T, which is not included in our snapshot generation process (12) and

(14). The temporal snapshots approximated by the ROM for the same parameter θ0 are shown in

Figures 15 and 16. It can be seen that the reduced-order model provides a very accurate approx-

imation of the full direct solution during all time-instants in the interval [0, 5]. It is to be noticed

that the snapshots directly generated by a fine Euler scheme are obtained with N2
x × NT = 40400

unknowns, while the ROM snapshots require KIV +
∑KBC

k=1
Lk Mk

+ KM = 90 unknowns, once all

the POD basis are generated. In addition, we represent in Figure 17 the normalized L2 errors

E(tn) =
||̂uθ0 (·, tn) − uθ0 (·, tn)||L2(Ω)

max
n
||uθ0 (·, tn)||L2(Ω)

(83)

showing the ability of the ROM to reproduce accurately the full direct solution as a function of
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time. As another illustration, we give in Figures 18 and 19 a three-dimensional representation of

these two solutions at initial and final time-instants, showing the good agreement between each

other.

To illustrate the accuracy of the ROM at other points in the parameter space, we use the mean

L2 error defined below

E(θ) =
1

N

N∑

n=1

E(tn), (84)

where E(tn) is the normalized L2 error at time instant tn defined earlier in (83). Figure 20 shows

the mean L2 errors (84) represented for the 125 design points of the DoCE. It can be seen from

these results that the mean value of these errors is about 9× 10−3 with a maximum error equal to

0.0123, showing that the ROM provides good accuracy.
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Figure 13: A few snapshots of the direct solution uθ0 (·, tn) on Ω × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 1, . . . , 12.

8. Concluding remarks

In this paper, we proposed a non-intrusive method for reduced-order modeling of parametrized

time-dependent PDEs where the governing equations, the initial and time-dependent boundary

conditions are parametrized. The key idea was to represent the reduced-order model as the sum

of two terms. The first term was chosen as the approximate solution of an auxiliary parabolic
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Figure 14: A few snapshots of the direct solution uθ0 (·, tn) on Ω × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 90, . . . , 101.
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Figure 15: A few snapshots of the ROM solution ûθ0 (·, tn) on Ω × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 1, . . . , 12.
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Figure 16: A few snapshots of the ROM solution ûθ0 (·, tn) on Ω × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 90, . . . , 101.
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Figure 17: Normalized L2 error E(tn) in log10 scale between the ROM and direct solutions for θ0 = (0.27, 0.92, 0.23)T ,

n = 1, . . . ,N.

linear PDE which enforces satisfaction of the boundary and initial conditions, while the second

term is a linear combination of a tensor product of adapted spatial and temporal basis functions
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Figure 18: 3D representation of the direct solution (left side) and of the ROM one (right side) at time t = 0.
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Figure 19: 3D representation of the direct solution (left side) and of the ROM one (right side) at time t = T .

obtained using a two-level POD method. The ability of this approach to accurately reproduce

the solutions has been numerically validated for unsteady parametrized Burgers’ and convection-

reaction-diffusion models. We also provide an error estimate for the reduced-order model used

to approximate the solution of the auxiliary parabolic PDE.
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Figure 20: Mean L2 errors E(θ) (eq. (84)) in log10 scale, for θ belonging to the DoCE.

It would be of interest to develop greedy versions of the proposed approach to improve com-

putational efficiency further (see [10] for a detailed exposition of the ROM-greedy algorithm for

stationary parametrized problems, and [27, 28] for more general considerations on greedy ap-

proaches). It is also of interest to investigate the application of the proposed numerical schemes

to solve PDEs that are randomly parametrized (see [29] for ongoing work on this topic). We

would like to mention here that the method proposed in this paper can be directly applied to

randomly parametrized PDEs since the final reduced-order approximation given by (65) can be

efficiently postprocessed to estimate the statistical moments of the solution given the joint prob-

ability density function of the parameters. The error estimate provided in this work only applies

for the approximation to the auxiliary parabolic PDE and not the original parametrized PDE. Fur-

ther work is required to establish error estimates for the full non-linear problem. Furthermore,

it could be useful to study numerically the influence of the different ROM parameters (number

of modes, size of the samplings, etc) on the level of accuracy of the approximate solution. It is

also expected that the proposed ROM method may find applications to optimal control theory

problems with complex time-dependent boundary conditions.
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Nomenclature

Ω physical space, Ω ⊂ R
d

∂Ω boundary of the physical domain

Γ upper boundary of Ω

p dimension of the parameter space

x spatial coordinates

t time, t ∈ [0, T ]

θ vector of parameters, θ ∈]0, 1[p

f θ source term of the PDE, f = f (u, θ)

gθ inhomogeneous Dirichlet boundary conditions, gθ = gθ(x, t)

uθ
0

initial value function uθ
0
= uθ

0
(x)

Ωh discretized domain with polygonal boundary

L2(Ωh) L2-scalar product

uθ exact solution uθ = uθ(x, t) of the non-linear PDE problem

under consideration

ROM Reduced-Order Model

ûθ approximate ROM solution

vθ solution of the auxiliary linear PDE

wθ solution of the auxiliary linear PDE with homogeneous

boundary conditions

zθ solution of the auxiliary linear PDE with zero initial conditions

z̃θ approximate ROM solution of zθ

DoCE Design of Computer Experiments

I number of fine simulations to perform the DoCE

θi sampled design parameter vector

W I set of design vectors θi, i = 1, . . . , I

x j spatial coordinates belonging to a subsampling cloud

X J set of points x j, i = 1, . . . , J

tn instant time belonging to a coarse sampling

Y N set of time instants tn, n = 1, . . . ,N

ϕk,i spatial POD modes of the full non-linear problem, k = 1, . . . ,Ki,

linked to θi

ϕk common spatial POD modes, k = 1, . . . ,K

ϕ matrix of coefficients ϕ jk = ϕ
k(x j)

ξm,i temporal POD modes of the full non-linear problem, m = 1, . . . ,Mi,

linked to θi

ξm common temporal POD modes, m = 1, . . . ,M
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ξ matrix of coefficients ξnm = ξ
m(tn)

αkm parameter function in the full ROM decomposition, αkm(θ),

k = 1, . . . ,K, m = 1, . . . ,M

αi matrix of coefficients (αi)km = αkm(θi)

ui for a fixed θi, matrix of coefficients (ui) jn = uθi (x j, tn)

ûi for a fixed θi, matrix of coefficients (̂ui) jn = ûθi (x j, tn)

vi for a fixed θi, matrix of coefficients (vi) jn = vθi (x j, tn)

µ small regularization parameter for linear system resolutions

RBF Radial Basis Function

Φ RBF kernel

σ scaling factor of Φ

A interpolation matrix

γkm
i

ith coefficient in the expansion of αkm

ε thresholds for the choice of the number of POD modes

BC boundary condition

IV initial value

KIV number of modes related to the auxiliary linear PDE with

homogeneous BC

ϕk
IV

spatial POD modes for the IV treatment (k = 1, . . . ,KIV )

KBC number of modes related to the auxiliary linear PDE with

null initial condition

ηk spatial L2(∂Ωh)-valued POD modes for the BC treatment,

k = 1, . . . ,KBC

ξk spatio-temporal POD modes in the expansion of z̃θ, k = 1, . . . ,KBC

χk,l second-level spatial POD modes to reduce ξk, l = 1, . . . , Lk

ςk,m second-level temporal POD modes to reduce ξk, m = 1, . . . ,Mk
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