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Abstract— Acoustic time-of-flight (ToF) measurements
enable noninvasive material characterization, acoustic
imaging, and defect detection and are commonly used in
industrial process control, biomedical devices, and national
security. When characterizing a fluid contained in a cylin-
der or pipe, ToF measurements are hampered by guided
waves, which propagate around the cylindrical shell walls
and obscure the waves propagating through the interro-
gated fluid. We present a technique for overcoming this
limitation based on a broadband linear chirp excitation and
cross correlation detection. By using broadband excitation,
we exploit the dispersion of the guided waves, wherein
different frequencies propagate at different velocities, thus
distorting the guided wave signal while leaving the bulk
wave signal in the fluid unperturbed. We demonstrate the
measurement technique experimentally and using numeri-
cal simulation. We characterize the technique performance
in terms of measurement error, signal-to-noise-ratio, and
resolution as a function of the linear chirp center frequency
and bandwidth. We discuss the physical phenomena behind
the guided bulk wave interactions and how to utilize these
phenomena to optimize the measurements in the fluid.

Index Terms— Guided wave dispersion, nondestructive
evaluation, noninvasive acoustic measurement.

I. INTRODUCTION

N
ONINVASIVE acoustic identification or classification
of materials is of great interest in a wide range

of applications. This includes chemical or biological
weapons’ classification [1], where invasive techniques pose
a potential safety hazard; in situ process control [2],
where existing techniques can incur great cost; or
chemical reaction monitoring [3], where acoustics provide
information not available via other techniques. Active
acoustic characterization techniques are typically categorized
as either frequency-domain or time-domain techniques.
Frequency-domain techniques excite the specimen at a
specific frequency and measure the resulting amplitude of
vibration in the specimen. Repeating this measurement for
a range of frequencies provides the frequency response
of the system. Resonant ultrasound spectroscopy [4], [5]
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and swept-frequency acoustic interferometry [6] achieve
these frequency-domain measurements in structures and
fluids, respectively, by exciting and measuring the vibrations
via contact transducers. Alternatively, frequency-domain
measurements have been achieved for submerged structures
via noncontact excitation and measurement using techniques
known as vibro-acoustography and resonance scattering. The
vibro-acoustography enables measuring the resonances of a
submerged structure in a noncontact manner by exciting the
structure with acoustic radiation force and then measuring
the acoustic emission from the structure [7], [8]. Resonance
scattering has been demonstrated for measuring the resonances
of submerged structures by transmitting a plane acoustic
wave and then measuring the wave that scatters from the
submerged structure [9], [10]. The resulting frequency
response is rich in data about the system resonances and can
provide information such as the shear and longitudinal sound
speed, density, and acoustic attenuation. However, determining
which frequency components correspond to each physical
component (fluid specimen, container, or transmitter/receiver)
can be challenging. Additionally, geometries or materials
with low-quality factors can inhibit the detection of different
features in the frequency response due to the overlap between
resonance peaks [11]. For resonance-scattering techniques,
the scattered wave consists of a radiated component that
contains information about the structure resonances and a
specular component that obscures the radiated component.
Thus, the radiated component must be isolated by subtracting
the specular component, which can be estimated analyti-
cally [12], [13]. Additionally, resonant modes can be identified
based on “jumps” in the phase of the frequency response [14].
These techniques are effective for identifying resonance peaks
in cylindrical shell structures with high-quality factors, but
not for fluids within the cylindrical shells, which tend to
be more attenuating. Rembert et al. [15] demonstrated a
resonance-scattering technique for measuring water resonances
within a cylindrical shell, but the technique requires measuring
the scattered wave from a wide range of angles around the
cylinder, which complicate implementation, and the technique
may not work for more highly attenuating fluids.

Alternatively, time-domain techniques use an acoustic burst
that propagates through the container and interacts with the
specimen. Time-domain techniques typically use either a
“pitch-catch” configuration, where the acoustic burst propa-
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gates from a transmitter through the specimen and is then
measured by an opposing receiver, or a “pulse-echo” configu-
ration, where the acoustic burst propagates from a transmitter
through the specimen and then reflects back to the transmitter.
In either configuration, the time-of-flight (ToF) Tb is measured
to calculate either the specimen sound speed c or size l based
on the simple equation Tb = nl/c, where n = 1 for pitch-catch
and n = 2 for pulse-echo measurements. Time-domain tech-
niques do not typically provide the same level of measurement
accuracy as frequency-domain techniques, but they also do
not require a high-quality factor specimen, they work for
more complicated geometries, and they utilize only basic
signal processing. Specifically, time-domain techniques require
measuring the arrival time of the acoustic burst, which is a
well-understood problem in estimation theory [16].

ToF measurement is efficient and simple to implement
when the measured signal contains a single burst. However,
in the case of noninvasive measurements of a fluid within a
cylindrical shell, the acoustic burst propagates simultaneously
through the fluid in the form of a bulk wave and through the
walls of the cylindrical shell in the form of circumferential
guided waves. Within the cylindrical shell wall, the burst can
excite multiple guided wave modes, each with a different
arrival time, based on the mode and excitation frequency.
Frequently, these guided waves will overlap with the bulk
wave, which inhibits identifying the bulk wave arrival
time, and thus, introduces significant error in the acoustic
measurement. Guided wave propagation has been studied
extensively in the literature [17]–[23]. However, separating
the contributions of the guided waves from one another or
from the bulk wave is challenging and currently an open
problem [24]. In practice, acoustic measurements within
the cylindrical shells typically rely on a time-separation
between the guided wave and the bulk wave arrivals [25]
or rely on nonlinear interactions within a flowing fluid [2].
In general, the guided wave and the bulk wave arrivals cannot
be separated temporally, and the material in the cylindrical
shell may not be flowing. Thus, to overcome the guided wave
interference, broadband chirp signals have been previously
implemented [26], [27]. Recently, Chillara et al. [27] reported
on a technique to enable measuring bulk wave arrivals in
the presence of guided waves in a cylindrical shell. The
technique first measures a baseline signal containing only
the guided wave signal by introducing gas into the fluid to
completely attenuate the bulk wave, while leaving enough
liquid to still achieve wetting of the inside wall. In subsequent
measurements, the bulk wave can be isolated by subtracting the
baseline signal from the measurement. One critical finding was
that simply measuring the baseline with an empty cylindrical
shell was not sufficient due to the interactions between the
liquid and the cylindrical shell. However, in many applications,
it is not feasible to introduce gas into the fluid to measure
the baseline signal. To our knowledge, there is currently no
analysis in the literature of how the frequency content of
the broadband excitation signal affects ToF measurements
in a cylindrical shell. As a result, there is a significant
gap in the literature on noninvasive acoustic measurements
within the cylindrical shells such as pipes, tubes, and vats.

Fig. 1. Noninvasive acoustic measurement within a closed cylindrical
shell. A time snapshot depicts the bulk and guided waves as they
propagate from the transmitter.

Thus, the objective of this work is to present a noninvasive
time-domain ultrasound technique to measure the sound
speed of a fluid within a closed cylindrical container based
on the linear chirp acoustic excitation. A theoretical basis for
the technique is presented and validated experimentally on a
water-filled cylindrical shell. We characterize the ToF error,
signal-to-noise ratio (SNR), and measurement resolution as a
function of the center frequency and bandwidth of the linear
chirp excitation. As a result, this work provides guidelines
for performing accurate and reliable noninvasive acoustic
characterization of a fluid within a closed cylindrical shell.

II. GUIDED AND PROPAGATING WAVES IN FLUID-FILLED

CYLINDRICAL SHELLS

Fig. 1 shows a schematic of the fluid-filled cylindrical shell
of inner diameter 2a, outer diameter 2b, and wall thickness
h = b-a with opposing transmitter/receiver ultrasound trans-
ducers mounted to the cylindrical shell exterior. We excite the
transmitter with a burst that generates an acoustic wave, which
propagates from the transmitter to the receiver in the form of
a bulk wave with pressure p, which propagates through the
fluid, and guided waves with von Mises stress σmises, which
travel around the circumference of the cylindrical shell wall.
In Fig. 1, the maximum values of pressure and von Mises
stress scale with the excitation voltage and follow 2 p0 ≈ σmax.
The ToF required for each acoustic wave to travel from the
transmitter to the receiver is dependent on the total distance
traveled and the sound speed. The bulk wave propagates
directly through the cylindrical shell wall, across the fluid,
and through the opposing wall before being detected by the
receiver. Thus, the bulk wave ToF Tb is calculated as

Tb =
2h

cl

+
2a

c f

(1)
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where cl is the longitudinal sound speed in the cylindrical
shell and c f is the sound speed in the fluid. Here cl and c f

are dependent on the material properties of the cylindrical shell
and fluid, respectively, and the environmental conditions such
as temperature, but their dependence on the frequency of the
acoustic wave is negligible compared to other effects such as
dispersion in the cylindrical shell wall. Similarly, the ToF Tg

of the guided waves is calculated as

Tg( f ) =
π

�

a + 1
2 h

�

cg( f )
(2)

where cg( f ) is the group velocity of the guided waves,
which is dependent on the frequency of the acoustic wave
f , the cylindrical shell geometry and material properties, and
the environmental conditions such as temperature. The group
velocity of the guided waves within a cylindrical shell are
obtained from the dispersion curves, which relate the acoustic
wavenumber and frequency by solving the equations of motion
and boundary conditions in the cylindrical shell. We compute
the dispersion curves using the global matrix method presented
by Qu et al. [22], [23]. This method involves representing the
waves within the cylindrical shell in terms of displacement
potentials with radial components

ϕ(r) = A1 Jkb

�

wr

cl

�

+ A2Ykb

�

wr

cl

�

(3a)

ψ(r) = A3 Jkb

�

wr

cs

�

+ A4Ykb

�

wr

cs

�

(3b)

where A1, A2, A3, and A4 are unknown coefficients and
Jkb(·) and Ykb(·) are (kb)th order Bessel functions of the
first and second kinds, respectively. Next neglecting the fluid
loading on the cylinder surfaces results in zero compressional
and shear stresses, where these stresses relate to the displace-
ment potentials according to Hooke’s Law. This yields four
equations (zero compressional stress at r = a and b and zero
shear stress at r = a and b). Thus, for every combination of
(k, f ), we obtain a linear system with four equations and four
unknowns (A1, A2, A3, and A4). We identify guided wave
modes as combinations (k, f ) for which the linear system is
singular. This results in one curve k( f ) for each guided wave
mode. Finally, for each guided wave mode, we calculate the
dispersion curve in terms of the group velocity

cg( f ) = 2π
d f (k)

dk
. (4)

For a full derivation of the dispersion curve computation, see
Qu et al. [22], [23].

Fig. 2 shows the dispersion curve for an empty 6061 alu-
minum cylindrical shell with longitudinal sound velocity
cl = 6420 m/s, shear sound velocity cs = 3040 m/s, inner
diameter 2a = 114.3 mm, and thickness h = 5.8 mm, where
we have assumed no loading (traction free) on the inner/outer
boundaries. We label the different guided wave modes 1–9.
We observe that the group velocity of most wave modes is zero
at low frequencies; and as the frequency increases, the group
velocity rapidly increases, and then drops down before
approaching the shear sound speed in the cylindrical shell.
As a result, a broadband excitation signal will be distorted as

Fig. 2. Dispersion curve for an empty cylindrical shell. The group velocity
of several guided wave modes is plotted as a function of frequency with
the shear sound speed cs (red) indicated for reference.

different frequency components propagate at different speeds.
This dispersive behavior has been exploited previously, e.g.,
to determine the resonance behavior of structures via chirp
excitations [28] or detect structural damage [29].

III. METHODS

We use the experimental setup illustrated in Fig. 1, with a
6061 Al cylindrical shell of inner diameter 2a = 114.3 mm
and thickness h = 5.8 mm, equipped with an opposing piezo-
electric transmitter/receiver (PZT-5J, resonance frequency
0.3 MHz, STEMiNC). The transmitter is driven by a function
generator (Tektronix AFG 3102) with 10V amplitude, and
the receiver is connected to an oscilloscope (Tektronix DPO
7054C) after being filtered (low-pass, 2 MHz) and amplified
(20 dB; Krohn-Hite Model 3945 Digital Programmable Filter).
We excite the transmitter with a linear chirp signal s0(t)

modulated by a Tukey window function W (t) to analyze the
effect of center frequency fc, frequency bandwidth 1 f , and
chirp duration T of the signal independently. The input signal
is given as

s0(t) = W (t) sin

�

2π

�

fc −
1

2
1 f

�

t +
π

T
1 f t2

�

(5)

where the Tukey window function is defined as

W (t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

2
[1 − cos(4π t/T )] for 0 ≤ t ≤ T/4

1 for T/4 ≤ t ≤ 3T/4
1

2
[1 − cos(4π(T − t)/T )] for 3T/4 ≤ t ≤ T .

(6)

After exciting the transmitter, we measure the receiver
response s(t). To detect the arrival time of the bulk wave,
we cross correlate (CC) the measured signal with the excitation
chirp

CC(t) =
� ∞

−∞
s(τ )s0(τ + t)dτ (7)

and calculate the CC envelope (CCE) based on the Hilbert
transform,

CCE(t) =








CC(t) + i
1

π

� ∞

−∞

CC(τ )

t − τ
dτ









(8)

where i =
√

−1.
Fig. 3(a) shows an example signal s(t) within an air-

filled cylindrical shell (red) and a water-filled cylindrical
shell (black), and Fig. 3(b) shows the corresponding CCEs.
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Fig. 3. Measured signal s(t) and corresponding CCE(t) in a fluid-filled
cylindrical shell, indicating the theoretical arrival time Tb.

In practice, when the transducer is at rest and then excited
with a sinusoidal signal, the resulting acoustic signal builds in
amplitude over the duration of the excitation and then decays
exponentially due to ringing in the transducer, rather than
stopping abruptly [30]. This gradual increase and then decrease
in amplitude elongate the transmitted acoustic signal and were
found to shift CCE(t) by approximately T /2. Thus, to correct
this elongation, we shift the CCE(t) by −T /2 in time. The
experimentally measured arrival time T̂b is calculated as the
time t that maximizes the shifted CCE(t).

From Fig. 3(a), we observe that the addition of fluid in
the cylindrical shell reduces the amplitude of the guided
waves, but their amplitudes are still on the order of the bulk
waves. From Fig. 3(b), we observe that despite the guided
and bulk waves having similar magnitude, the CCE amplitude
is significantly larger for the bulk waves. This is due to the
dispersion of the guided waves, wherein different frequency
components of the chirp signal travel at different speeds,
expanding or contracting the chirp signal. This then reduces
the CC between the input signal with linearly increasing
frequency and the measured signal with distorted frequencies.
This process is akin to a matched filter, where the filter is
designed to pass bulk waves and reject guided waves.

IV. RESULTS AND DISCUSSION

To determine the effect of the broadband excitation on
the guided waves, we measure the CCE amplitude of the
guided waves alone (no bulk wave) by exciting the empty
cylindrical shell with linear chirps of duration T = 10 µs,
center frequency fc�[0.1, 1.5] MHz, and bandwidth 1 f �[0.1,
1.0] MHz. Fig. 4 shows the maximum CCE amplitude
measured by the receiver for the empty cylindrical shell as
a function of fc and 1 f . We observe large CCE amplitudes
for center frequencies approaching fc = 0.35, 0.60, 1.10, and
1.65 MHz. We observe in Fig. 2 that near fc = 0.35 MHz,
the propagation is dominated by Modes 1–3, which have high
radial displacement amplitudes. Additionally, fc = 0.60, 1.10,
and 1.65 MHz corresponds approximately with longitudinal
resonances in the cylindrical shell wall, which results in
constructive wave interference that increases the wave
amplitude. Finally, we observe that at all center frequencies,

Fig. 4. Measured CCE of the guided waves as a function of center
frequency fc and bandwidth ∆f.

increasing the bandwidth reduces CCE amplitude of the guided
waves. This occurs because the broadband guided waves
experience more distortion (elongation/contraction) due to
different frequency components of the linear chirp propagating
at different group velocities. This indicates the feasibility of
using broadband excitation to mitigate interference between
detected bulk waves in the presence of guided waves.

To quantify the performance of the technique for measuring
the sound speed of a fluid, we implement the ToF measurement
technique described in Section III with the water-filled cylin-
drical shell. We characterize the ToF measurement technique
using three metrics.

1) The ToF error between the measured and theoretical
arrival times, i.e., ToF error = |T̂b − Tb|/Tb.

2) The SNR, where SNR = CCE(T̂b)/mean(CCE(|t −
T̂b| > T/2)) represents the amplitude of the initial
bulk wave, compared to the mean amplitude of other
waves such as the guided waves and reflections of the
bulk wave that arrive more than T /2 before or after the
measured ToF.

3) The resolution, which is related to the width of the
CCE arrival peak, and thus, determines the minimum
time-spacing between arrivals from the initial bulk wave,
guided waves, and/or reflected bulk waves that can be
distinguished. We measure the resolution based on the
full-width-at-half-maximum (FWHM) of the CCE peak,
nondimensionalized by the center frequency.

Fig. 5 shows the arrival time measurement metrics for
a water-filled aluminum cylindrical shell, for which (1)
gives a theoretical ToF of Tb = 78.1 µs. We calculate
(a) the ToF error, (b) the SNR, and (c) the resolution
of the measurement technique as a function of the center
frequency fc and bandwidth 1 f of the chirp excitation signal.
Additionally, we indicate four points (d)–(g) that correspond
to Fig. 5(d)–(g), which show the measured signal (solid black)
and CCE (dashed red) for several characteristic regions of
( fc, 1 f ) values. Based on the CCE peaks, we measure arrival
times and bulk sound speeds of 113.8 µs and 1020.9 m/s
[Fig. 5(d)], 78.2 µs and 1495.9 m/s [Fig. 5(e)], 78.5 µs and
1490.1 m/s [Fig. 5(f)], and 80.6 µs and 1450.9 m/s [Fig. 5(g)].
For low center frequencies ( fc < 0.8 MHz), we observe
large ToF errors on the order of 36%–50%. From Fig. 5(d),
we observe that there is a chirp arrival at approximately the
theoretical arrival time Tb, but there is also a high-amplitude
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Fig. 5. (a)–(c) Arrival time metrics for the noninvasive acoustic measurements in a cylindrical shell. Metrics include (a) ToF error, (b) signal-to-noise
(SNR), and (c) measurement resolution, represented as the product of the FWHM and the center frequency fc as a function of fc and bandwidth ∆f.
(d)–(g) Example measurement signals s(t) and cross correlation envelopes CCE(t) for selected (fc, ∆f) combinations.

wave arriving at the receiver approximately 35 µs after Tb,
which results in the large ToF error. To identify the source
of the high-amplitude chirp, we have simulated the wave
propagation using a 2-D finite element model (COMSOL).
The simulation involves exciting a piezoelectric transmitter
with a linear chirp voltage and then measuring the pressure
within the fluid and the von Mises stress within the cylindrical
shell walls. Fig. 6 shows the time snapshots of the propagating
waves in terms of pressure p in the fluid and von Mises
stress σmises at times (a) t < Tb and (b) t ≈ Tb. We observe
that the bulk wave propagating through the fluid splits into a
center wave and two high-amplitude side waves [Fig. 6(a)].
At t ≈ Tb, the central wave is measured by the receiver and
the side waves enter into the cylindrical shell walls [Fig. 6(b)]
where they are guided to the receiver, resulting in the late
chirp measurement. This splitting behavior occurs largely
due to the spreading of the acoustic burst in the fluid at low
frequencies. Additionally, low attenuation of the guided waves
at low frequencies yields large vibration amplitudes along the
fluid–cylinder interface. As a result, the bulk wave in the fluid

is excited by a wide area of the internal cylinder wall instead
of a small patch near the transmitter. We note that for the
selected dimensions and materials, the split wave dominates
the bulk arrival for center frequencies below approximately
0.8 MHz, as indicated in Fig. 5(a) and (b). Above this center
frequency, the wave splitting still occurs, but the split waves
become less prominent as more energy is focused into the
center beam. Finally, Fig. 5(e) shows the response for a higher
center frequency near a thickness resonance of the cylindrical
shell wall ( fc = 1.1 MHz ≈ cl/h) and a low bandwidth
(1 f = 0.15 MHz). At this ( fc, 1 f ) combination, we measure
low ToF error [Fig. 5(a)] and high SNR [Fig. 5(b)] but a poor
resolution [Fig. 5(c)]. This is due to the chirp resonating as
it passes through the walls to/from the fluid. This resonance
results in constructive interference that amplifies the bulk
wave, which increases the SNR. However, the resonance also
results in ringing within the wall, which elongates the chirp
and reduces the time resolution. Thus, the increased SNR
will reduce the effect of the guided waves, but the decreased
resolution will inhibit distinguishing between chirp arrivals
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Fig. 6. Snapshots of the time-domain pressure p in the fluid and von
Mises stress σmises for excitation signal with low center frequency fc =
0.5 MHz captured at times (a) t < Tb and (b) t ≈ Tb.

at similar times due to multiple transmissions or reflections
from any objects suspended within the fluid. Alternatively,
we observe that using fc = 1.1 MHz ≈ cl/h and increasing
the bandwidth to 1 f = 0.8 MHz [Fig. 5(f)] reduces the
number of periods where the chirp excites the wall resonance.
This results in low ToF error and good resolution, at the cost
of a slight reduction in SNR. Additionally, from Fig. 5(a)–(c),
we observe that near point (f), there is a larger range of ( fc,
1 f ) values where the ToF error, SNR, and resolution remain
approximately constant. This increases the robustness of the
measurement technique when the cylindrical shell dimensions
and material parameters are not known with a high degree of
accuracy. Finally, Fig. 5(g) shows the measured signals for
fc = 1.4 and 1 f = 0.60 MHz. We observe that the measured
signal includes two bursts that begin at approximately Tb and
Tb + T , respectively. We note that the second burst has higher
amplitude and is dominated by a 1.55 MHz signal, which
approximately coincides with a predicted thickness resonance
in the cylindrical shell wall. As a result, the resonance
amplifies the 1.55 MHz portion of the signal and causes it
to ring and elongate, which delays the time where the peak
CCE occurs, and, thus, introduces ToF error. This observation
indicates that the ideal combination of ( fc, 1 f ) values should
be selected such that the start or end frequency of the linear
chirp does not coincide with a wall thickness resonance
frequency.

The results shown in Fig. 4 indicate that broadband exci-
tation of fluid-filled cylindrical shells reduces the amplitude
of the guided waves due to increased dispersion. Additionally,
from Fig. 5 we observe that an excitation signal with center
frequency close to a thickness resonance in the cylindrical
shell wall ( fc ≈ cl/h) and a bandwidth approximately equal
to the center frequency results in the best combination of
small ToF error and increased SNR and resolution. We note
that different cylindrical shell dimensions and/or material

properties will affect the guided wave dispersion curves. Thus,
prior knowledge of the cylindrical shell is required to identify
a desirable center frequency and bandwidth. Additionally,
increasing frequency increases the attenuation within the bulk
wave, which may reduce the efficacy of the technique within
highly attenuating fluids. Increasing the chirp time results
in longer periods of ringing due to resonance within the
cylindrical shell walls, and it increases the overlap between
the guided and bulk waves. This increases the FWHM, which
reduces the measurement resolution. Alternatively, reducing
the duration T will increase the bandwidth of the signal.
From Fig. 5(g), we observe that if the start or end frequency
of the chirp coincides with a wall thickness resonance, the
CCE peak will be delayed in time, which introduces error
in the ToF measurement. In this article, we select a linear
chirp excitation to enable adjusting the center frequency and
bandwidth independent of the chirp duration. There is a wide
array of alternative signal types such as exponential chirps,
Gaussian bursts, etc. with broad frequency bandwidth that are
currently being explored as a means of overcoming guided
wave interference when performing acoustic measurements in
a fluid-filled cylindrical shell.

V. CONCLUSION

We present a technique for performing noninvasive acoustic
ToF measurements of a fluid within a cylindrical shell, which
is challenging due to the interference between the bulk wave
propagating through the fluid and the guided waves propa-
gating around the cylindrical shell walls. We employ a linear
chirp excitation and CC to exploit the dispersion phenomenon
of the guided waves, wherein waves with different frequencies
arrive at different times. As a result, the guided waves become
distorted as different frequency components arrive early or
late, while the bulk wave remains unperturbed. We characterize
the measurement technique as a function of the excitation
center frequency and bandwidth. At low center frequencies,
we observe a phenomenon where the bulk wave splits into
one component that propagates along the transmitter centerline
and two components that propagate away from the centerline
until they reenter the cylinder walls and propagate to the
receiver as guided waves. This results in a large degree of
interference, inhibiting the bulk wave arrival measurement.
Alternatively, we observe that using center frequency equal
to a thickness resonance in the cylindrical shell wall and a
bandwidth approximately equal to the center frequency results
in negligible ToF error, high signal-to-noise-ratio, and good
measurement resolution. As a result, this technique offers a
simple noninvasive technique for measuring the sound speed
of a fluid within a closed cylindrical shell or pipe. This
ability finds application in a wide range of fields including
industrial process control, biomedical monitoring, and material
characterization.
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