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major health risk that 

in�uences quality of 

life. A smartphone-

centric body sensor 

network can help 

measure pulse 

transit time and 

continuously monitor 

blood pressure.

the World Health Organization found that 

one-third of adults have high blood pressure 

(BP) and that the cause of roughly half of 

all deaths is stroke and heart disease (www.

who.int/mediacentre/news/releases/2012/

world_health_statistics_20120516/en). 

BP is the amount of force applied on the 

walls of the arteries when blood is forced 

throughout the body, making it one of the 

most interesting hemodynamic parameters 

for assessing cardiovascular status. BP var-

ies continuously due to different factors such 

as physical activities, medication, and emo-

tions.2 Noninvasive measurements such as 

cuff-based methods provide discrete values 

of BP, but they’re limited to certain clinical 

or home-based scenarios. Moving beyond 

the use of external machines requires an 

alternative approach that’s similarly con-

tinuous and noninvasive. Pulse transit time 

(PTT) is how long it takes a pulse wave to 

travel from one arterial site to another,3 and 

several studies have shown it to have an in-

verse linear correlation with BP. An acute 

rise in BP causes an increase in vascular 

tone, hence the arterial wall becomes stiffer, 

causing a shorter PTT.3

Despite a strong correlation between PTT 

and BP, state-of-the-art methods using the 

former to infer the latter are still imprecise. 

A crucial reason is that the relationship be-

tween BP and PTT can change dynamically 

I
t’s well known that chronic hypertension has a strong impact on people’s 

health and daily lives. Data from the Framingham Heart Study suggests 

that even though most individuals are normotensive at age 55, the chance for 

them to eventually become hypertensive is 90 percent.1 In 2012, a report from 
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R
esearchers have proved the validity of using a non-
invasive method to measure blood pressure (BP) in 
various studies. Current noninvasive methods can be 

classi�ed into two categories: intermittent and continuous 
measurement.

Intermittent measurement based on the cuff method 
uses two traditional techniques: auscultation and oscil-
lometry. According to Matthew Ward and Jeremy Lang-
ton,1 these systems include three key components: an 
in�atable cuff, a method to determine the point of sys-
tolic and diastolic pressure, and a method to measure 
those pressures. Most of us are familiar with how this 
works: the cuff is placed around the upper arm and in-
�ated. When the pressure point is reached, blood �ow is 
prevented by the arterial wall. For auscultation, a mer-
cury sphygmomanometer measures cuff pressure, and a 
stethoscope can determine the sounds over the brachial 
artery distal to an upper arm cuff.2 Oscillometry measures 
BP by detecting oscillations in the cuff pressure during 
cuff de�ation, with values estimated by using an indirect 
empirical method. However, this method is easily in�u-
enced by motion.2

Continuous BP measurement methods include the 
volume-clamp, tonometry-based, and pulse transit time 
(PTT)-based methods. The volume-clamp method3 mea-
sures �nger arterial pressure through a �nger cuff and an 
in�atable bladder in combination with an infrared ple-
thysmograph. Plethysmograph (a volume-measuring de-
vice) consists of an infrared light source and detector: the 
infrared light is absorbed by the blood, and the pulsation 
of arterial diameter during a heartbeat causes a pulsation 
in the light detector signal. Although this method typi-
cally generates good measurement results, ambulatory 
characteristics make it unsuitable to be used reliably and 
comfortably.2

Another noninvasive continuous BP measurement 
method is based on tonometry systems, in which an ar-
ray of sensors is pressed against the skin over an artery. 
Although appealing because of its capability of provid-
ing accurate recording of arterial waveforms, applanation 
tonometry suffers two main limitations: the tonometer’s 
placement over the artery is highly critical (the difference 
between correct and incorrect placement is within fractions 
of millimeters), and the need for continuous precise sensor 
positioning means that it’s highly sensitive to motion (sub-
jects are required to remain absolutely still while measure-
ments are performed).

The PTT or pulse wave velocity (PWV) has been shown 
to be the most useful and convenient indirect parameter 
to measure BP both continuously and noninvasively.4,5 
To model the relationship between BP and PTT, Federico 
Cattivelli and Harinath Garudadri6 constructed a linear 
relation to estimate BP. Considering that BP is highly 
correlated with instantaneous heart rate (HR), accord-
ingly, Mico Wong and colleagues7 added HR to this lin-
ear relation in their work. Heiko Gesche and colleagues8 
calculated PWV using the ratio between height and 
PTT, modeling the relation between BP and PWV with a 

correction constant that yields accurate results for esti-
mating systolic BP. Many devices have been developed 
to measure PTT—for example, Daniel Wagner and col-
leagues9 developed a PTT measurement platform with 
a single-channel ECG board and a pulse oximeter board. 
Petr Zurek and colleagues10 designed a system that mea-
sures different biosignals, including electrocardiogram 
(ECG) and plethysmogram (PPG) signals, and then sends 
them to ampli�ers and analog-to-digital convertors con-
nected to a PC. The signals are processed in Matlab to 
calculate PTT. Stefan Hey and colleagues11 designed a 
modular hardware setup that monitors certain physiolog-
ical parameters in a long-term, noninvasive way, with the 
signals collected and saved to a notebook or PC. How-
ever, none of these systems are suitable for pervasive BP 
monitoring.
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due to other factors—for example, 

the correlation changes signi�cantly 

before and after exercise.4 A PTT cal-

culation from an electrocardiogram 

(ECG) or plethysmogram (PPG) in-

cludes the pre-ejection period (PEP), 

making it longer than the true PTT5 

and indicating serious limitations for 

BP estimation from using only PTT. 

On the other hand, heart rate (HR) 

changes do have an in�uence on PTT 

changes.6

In this article, we propose a method 

that uses a body sensor network for 

continuous BP monitoring. BP values 

are calculated based on PTT that also 

consider barore�ex, which re�ects 

the relationship between BP and HR. 

We evaluated our method with 300 

sets of data from six subjects, and ex-

perimental results show that our pro-

posed method can estimate the BP 

value in real time with a good pre-

cision more accurately than a state-

of-the-art continuous BP monitoring 

method that uses only PTT. (See the 

related sidebar for others’ work in 

this area.) 

System Overview
Body sensor networks (BSNs) are 

widely used in medical health moni-

toring: they can be applied in a wear-

able device or used in a garment7 to 

perform health monitoring �exibly 

and comfortably.

Our proposed BSN system esti-

mates BP based on PTT, which is cal-

culated from ECG and PPG signals. 

As Figure 1 shows, the BSN consists 

of three parts: wristband, HR belt, 

and smartphone. The wristband is 

worn as a wrist accessory to collect 

PPG signals, and the HR belt is worn 

at the chest to collect ECG signals. 

The wristband and the HR belt com-

municate with the smartphone via 

Bluetooth. As ECG and PPG signals 

are continuously collected and trans-

mitted, an application on the smart-

phone can estimate PTT and BP. The 

user’s BP is displayed on the smart-

phone or uploaded to servers.

Because PTT is calculated via ECG 

and PPG signals collected on differ-

ent devices, synchronization between 

these two signal sources is important 

to achieve precision. ECG and PPG 

signals are transmitted to and pro-

cessed on the smartphone; Figure 2 

shows the smartphone’s analysis �ow.

Our system has great advantages 

in �exibility: BP is monitored with-

out disturbing the subject’s daily 

life. Monitoring continues no matter 

whether the subject is sitting at home 

or exercising outdoors.

Hardware Platform
Figure 3 shows the system architec-

ture. The system consists of seven 

major components: two MSP430 mi-

croprocessor boards, two Bluetooth 

modules, an ECG module, a PPG 

module, and an analog-to-digital 

(A/D) converter. Subsystem 1 collects 

the ECG signal using an ECG mod-

ule, and subsystem 2 collects the PPG 

signal from one �nger. Each subsys-

tem is controlled by a MSP430 micro-

processor widely used in low-power 

electronics products. The sensor and 

Bluetooth modules are connected to 

MSP430 via its general I/O interfaces. 

Heart rate belt

Smartphone

Wristband

Figure 1. The system in use. The wristband is worn to collect plethysmogram (PPG) 

signals, and the heart rate (HR) belt is worn at the chest to collect electrocardiogram 

(ECG) signals. The wristband and the HR belt communicate with the smartphone via 

Bluetooth.

Figure 2. Analysis flow overview. ECG and PPG signals are transmitted to and 

processed on the smartphone.
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The ECG module uses the AD8232 

single-lead ECG front end, and the 

PPG module is based on the SC0073 

piezoelectric pressure sensor. The sig-

nals collected by the ECG and PPG 

sensors are digitized at 250 Hz by 

A/D converters. Figure 4 shows the 

two subsystems’ hardware prototype.

The two subsystems are synchro-

nized via their Bluetooth modules 

by transmitting a timestamp to each 

other; this process repeats after a 

�xed period. The sampled data are 

converted into digital signals and up-

loaded to the smartphone via Blue-

tooth. Figure 5 shows the collected 

ECG and PPG signals.

Signal Processing Chain  
for BP Estimation
To properly introduce our system, we 

must �rst look at its algorithm and 

software design.

Synchronization Protocol

A master-slave protocol synchronizes 

the clocks between the ECG and PPG 

subsystems. The ECG subsystem acts 

as the master, transmitting synchro-

nization messages via Bluetooth to 

the PPG subsystem. The PPG sub-

system receives the message and an-

swers immediately. Finally, the ECG 

subsystem estimates the timing offset 

between the two subsystems. Figure 6 

shows the procedure.

The connection between the two 

Bluetooth modules is established 

when the system starts to run. Af-

ter a certain amount of time, the sys-

tem is stable and the synchronization 

procedure starts. First, the master 

device records its timestamp as T1 

and transmits it to the slave device. 

As soon as the slave receives it, the 

slave stores its own timestamp as 

T2 and sends back its timestamp to 

the master. The returned timestamp 

is recorded as T3. When the master 

receives the message, it records its 

Figure 3. Hardware system. The system consists of seven major components: two 

MSP430 microprocessor boards, two Bluetooth modules, an ECG module, a PPG 

module, and an analog-to-digital (A/D) converter.

Figure 4. Our prototype hardware platform: (a) ECG subsystem and (b) PPG 

subsystem. Subsystem 1 collects the ECG signal using an ECG module, and 

subsystem 2 collects the PPG signal from one finger. Each subsystem is controlled by 

an MSP430 microprocessor widely used in low-power electronics products.

Subsystem 1 Subsystem 2

ECG module PPG module
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timestamp as T4. In�uenced by ex-

ternal factors, the single chip’s sys-

tem clock may generate tiny changes 

leading to the offset between the two 

subsystems’ changes after a period 

of time, causing the synchronization 

procedure to repeat with a �xed time 

interval.

The system assumes that the time-

stamp’s transmission time between 

the two subsystems is a �xed value 

TR. The sum of the offset d of the 

two subsystems and the transmission 

time TR is given by

TR + d = T2 − T1.  (1)

The offset of the two subsystems 

subtracting the transmission time is 

given by

TR − d = T4 − T3.  (2)

Therefore, the offset between the two 

devices is calculated by

δ =
− + −( ) ( )

.
T T T T2 1 3 4

2
 (3)

After calculating the offset d in 

Equation 3, the next step is to align 

the two signals’ waveforms. If d is 

larger than zero, it means the ECG 

signal is lagging behind the PPG sig-

nal. Otherwise, the ECG signal is 

ahead of it. Algorithm 1 shows the 

procedure to align the two wave-

forms, where d is counted as the num-

ber of sampling periods.

We observe a maximum drift of 1 

millisecond between the two clocks 

per second, so the synchronization 

procedure is invoked periodically to 

resolve this drift. There’s a tradeoff 

between the processing capacity and 

energy consumption on one hand and 

clock synchronization precision on 

the other when setting the synchroni-

zation period. In all our experiments, 

we set the synchronization period to 

1 second, for which the additional en-

ergy consumption and occupied pro-

cessing capacity can be ignored.

The crystal oscillator of the MPS430 

processor used in our system can ex-

hibit frequency drift over tempera-

ture. The crystals’ standard operation 

temperature is 25oC, and the drift is 

about 80 parts per million (PPM) at 

Figure 6. Synchronization between ECG and PPG modules. The ECG subsystem acts 

as the master, transmitting synchronization messages via Bluetooth to the PPG 

subsystem. The PPG subsystem receives the message and answers immediately.

Figure 5. ECG and PPG signals. The two subsystems are synchronized via their 

Bluetooth modules by transmitting a timestamp to each other; this process repeats 

after a fixed period. The sampled data are converted into digital signals and 

uploaded to the smartphone via Bluetooth.
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–20oC and 10 PPM at 40oC. For this 

article, we conducted all experiments 

in an environment with a stable tem-

perature of about 25oC; drift due to 

temperature change wasn’t considered 

in the software design. To apply our 

system to realistic living environments 

with different temperatures, software 

can improve measurement results by 

correcting measured values, which we 

leave as future work.

Another factor affecting clock off-

set d estimation is the nondeterminis-

tic and nonuniform delay introduced 

by Bluetooth wireless communica-

tion. We performed experiments to 

evaluate Bluetooth communication 

delay variance—speci�cally, we let 

one MPS430 processor send mes-

sages periodically (every 20 millisec-

onds) to the other MPS430 processor, 

on which the receiving timestamps 

are recorded. We observed that vari-

ance in the separation of received 

timestamps was very small (smaller 

than 0.1 millisecond), and the effect 

on sampling precision was limited in 

our prototype system.

PTT and HR Calculation

To estimate PTT and HR, we use the 

ECG R-wave and PPG peak as fea-

ture points. Speci�cally, we use the 

method described elsewhere (www.

librow.com/cases/case-2) to detect 

ECG and PPG peaks, which includes 

two steps:

•	To remove the baseline drift and 

balance the baseline, we apply a 

fast Fourier transform to the orig-

inal ECG signals, and the wave-

form is restored through inverse 

transformation.

•	To identify peaks, we apply a win-

dow function to the waveform, 

leading to the discovery of one 

window’s maximum value. A pre-

defined threshold removes any 

meaningless points.

Figure 7 shows the result of peak 

detection for ECG signals. Note 

that the thresholds in our system are 

�xed; adaptive thresholds might be 

useful to improve detection quality 

in realistic environments, which we 

leave as future work.

Using the same method applied to 

the ECG signal, we can detect PPG 

signal peaks:

HR
W

n

t

= ×
60

, (4)

where n is the number of PPG sig-

nal peaks within a time window of 

length Wt (in seconds).

PTT is usually determined by the 

ECG R-wave and the pulse wave’s 

arrival determined by the PPG’s 

peak value, as Figure 8 shows. 

The ECG’s R-wave represents each 

heartbeat’s start time, but there’s 

a delay between the start time and 

blood ejection from the heart when 

intracardiac force exceeds the force 

out of the heart. This delay—the 

pre-ejection period (PEP)—makes 

the measured PTT greater than the 

true PTT (denoted by tPTT). So 

the measured PTT consists of two 

parts:

PTT = PEP + tPTT. (5)

The difference between PTT and 

tPTT is an important reason why ex-

isting methods are so imprecise in es-

timating BP via PTT measurements.

Figure 7. Determination of peak ECG signal. Pulse transit time (PTT) is usually 

determined by the ECG R-wave and the pulse wave’s arrival determined by the 

PPG’s peak value.

Algorithm 1. Aligning the two waveforms to synchronize the two subsystems.

Require: timestamps T1, T2, and T3; ECG and PPG signals. 

Ensure: synchronous ECG and PPG signals 

Calculate the offset δ of the two signals in Equation 3.. 

 Add δ  data 0 toward the start of the ECG signal. 

 Delete |δ| data from the start of the ECG signal. 
 

end if 

If δ then ê

Else

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

0.2

0.4

0.6

0.8

1

1.2



44  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

B O D Y  S E N S O R  N E T W O R K S

BP Estimation with Baroreflex

The barore�ex mechanism regu-

lates BP changes, so we developed a 

PTT-based model that considers this 

mechanism.

Barore�ex. The arterial barore�ex, a 

basic mechanism for the short-term 

regulation of BP, plays an impor-

tant role in maintaining BP at nearly 

constant levels. The regulatory pro-

cess is based on neuroregulation: 

arterial baroreceptors provide the 

central nervous system with continu-

ous information on BP, with changes 

sensed by stretch receptors in the 

walls of the carotid sinuses and aor-

tic arch. When systemic arterial pres-

sure rises, the arterial baroreceptors 

are activated, leading to a phenom-

enon where the discharging of vagal 

cardioinhibitory neurons increases 

and the discharging of sympathetic 

neurons decreases.

These phenomena result in brady-

cardia, decreased cardiac  contractility, 

decreased peripheral vascular resis-

tance, and venous return. Conversely, 

decreased systemic arterial pressure 

leads to deactivation of barorecep-

tors, which enhances the sympathetic 

activity and inhibits the vagal. These 

result in tachycardia, increased car-

diac contractility, increased vascular 

resistance, and venous return. Experi-

ments also show that an impairment 

of barore�ex mechanisms can re�ect 

cardiovascular diseases—for example, 

a reduction in HR barore�ex control 

has been reported in hypertension, 

coronary artery disease myocardial 

infarction, and heart failure.8

PTT-based barore�ex model. Accord-

ing to the principle of energy conver-

sion, the work from force can convert 

into a wave’s kinetic energy and grav-

itational potential energy when a 

pulse wave travels from the heart to 

the �ngertip. Other researchers9 cal-

culated BP by using the following 

formula:

BP
A

PTT
B= +

2
, (6)

where A is related to the subject’s 

height,

A height= × ×( . )
.

,0 6
1 4

2 ρ
 (7)

and r = 1,035 kg/m3 is the average 

blood density.

The model in Equation 6 assumes 

an ideal condition, in which the ar-

tery is a rigid pipe when laminar 

blood �ows from the heart chamber 

to the �ngertip, thus the PEP is in-

cluded in the PTT, making it longer 

than the tPTT we discussed earlier.

The effect of arterial barore�ex is 

to adjust the short-term regulation of 

BP and prevent wide �uctuations. HR 

plays a main role here, and the baro-

re�ex can re�ect the relationship be-

tween BP and HR: to adjust BP to a 

stable state, HR decreases when BP 

increases, and vice versa. Because 

of the rapidity of vagal response, BP 

has been shown to have a propor-

tional relationship with respect to 

Figure 8. PTT determined by the ECG and PPG.

ECG

PTT

PPG

Table 1. Subject information.

Subjects Height (cm) Amount of data Age

Subject1 176 50 24

Subject2 170 50 23

Subject3 165 50 25

Subject4 160 50 24

Subject5 170 50 24

Subject6 163 50 22
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R-R  interval, which is inverse to HR. 

Barore�ex sensitivity is de�ned as the 

ratio between the change in the R-R 

interval and the change in BP.8 Con-

sidering arterial barore�ex, we pro-

pose a new formula for BP estimation 

consisting of a PTT part introduced 

in Equation 6 and a new part re�ect-

ing HR’s in�uence:

BP
A

PTT

C

HR
D= + +

2 2
, (8)

where A is still calculated according 

to Equation 7, and other parameters 

are estimated by least square �tting.8

The function consists of two vari-

ables, PTT and HR, which make the 

formula expressing a 3D model and 

HR is an additional item to adjust the 

BP estimation. Note that our model 

is different from one presented else-

where10 that assumes a proportional 

relation between HR and BP. That 

model is based on the observation 

that, for example, after doing exer-

cise, a subject’s HR and BP both in-

crease. However, a closer look into 

the barore�ex mechanism shows that 

an inverse relation between HR and 

BP should be used to correctly ad-

just the BP estimation and re�ect the 

barore�ex mechanism in the (domi-

nating) proportional relation between 

PTT and BP.

Experimental Results
We veri�ed our new BP model in 

Equation 8 with 300 groups of data 

from six healthy subjects collected 

under indoor conditions. We divided 

the data for each subject into two 

parts: part 1 (30 percent) to construct 

the models and part 2 (70 percent) 

for evaluation. Table 1 shows the in-

formation for every subject, and the 

measurement process was as follows:

•	The subjects were asked to re-

lax for several minutes in a sitting 

position, and then the ECG and 

PPG signals were recorded for 1 

minute with the hardware system 

Figure 9. BP values measured by sphygmomanometer (BPcuff) and BP calculated from the PTT (BPcal) of six subjects. BPcal 

tracks BPcuff with good precision. 
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presented earlier. We used the nu-

merical average of the calculated 

BP values using Equation 8 within 

1 minute for BP estimation, de-

noted by BPcal. We also measured 

each subject’s BP with the sphyg-

momanometer on the same hand, 

the result of which is denoted by 

BPcuff.

•	 Subjects were then asked to do ex-

ercises for several minutes, after 

which another group of data was 

collected immediately using the 

method just described.

•	We repeated the process 25 times 

for every subject. 

Evaluating Accuracy

The processing procedure for ev-

ery subject was as follows. We 

first  estimated the parameter us-

ing the least square method and 

established the BP function with 

different parameters for different 

subjects. Then, based on the func-

tion for each subject, we estimated 

BP (BPcal) using PTT and HR ac-

cording to Equation 8 and com-

pared it with BP measured by a 

sphygmomanometer (BPcuff). Note 

that we trained the model for each 

subject individually: we tested the 

models on the same data on which 

they were evaluated, and we didn’t 

consider real-time model adjust-

ment or recalibration.

Figure 9 shows the BPcuff and 

BPcal values for different subjects, 

where we can see that BPcal tracks 

BPcuff with good precision. Figure 10 

shows the scatter plot of BPcal versus 

BPcuff; the straight line represents 

the diagonal, which means that BP-

cuff equals BPcal. The distance be-

tween the points and the diagonal 

represents the absolute error of BPcal 

against BPcuff. Figure 11 shows the 

histogram of the relative error, where 

most of the data are less than 6 per-

cent and only a few are more than 12 

percent.

Table 2 summarizes the maximal 

absolute error, minimal absolute er-

ror, and average absolute error by 

using our method in Equation 8 and 

in Equation 6.9 Our method can 

improve the precision by about 10 

percent.

Evaluating Robustness

Figure 12 shows the Bland-Altman 

plot of the BP data to compare the rel-

ative error of our model and that of 

Fung’s team.9 The mean represents the 

Figure 10. Scatter plots of BP measured by a sphygmomanometer (BPcuff) and 

BP calculated from PTT (BPcal). The straight line represents the diagonal, which 

means that BPcuff equals BPcal. The distance between the points and the diagonal 

represents the absolute error of BPcal against BPcuff.

Figure 11. Histogram of the relative error. Most of the data are less than 6 percent 

and only a few are more than 12 percent.
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average of all differences calculated 

by (BPcuff – BPcal)/BPcuff. We can see 

that 12 of all pairs of data are located 

beyond the agreement limits (mean 

+/2 SD) in Figure 12a (our model) 

and 14 in Figure 12b (Fung’s model), 

where SD is the standard deviation 

of the (BPcuff – BPcal)/BPcuff value 

over all data samples. Our proposed 

method’s SD is 0.4884; it’s 0.7486 for 

Fung’s method. This result shows that 

the data using our model are more 

concentrated and the error is limited 

to +/0.0934. Our proposed method’s 

SD is 6.492; it’s 7.156 for Fung’s 

method. Figure 13 shows the number 

of data exceeding different thresholds 

of the |BPcuff – BPcal| value.

W e can improve our meth-

od’s precision by recalibrat-

ing it. Note that each subject’s data 

were collected on different days. BP 

characteristics can slightly vary on 

different days, so daily recalibration 

could greatly improve estimation ac-

curacy. Recalibration might also be 

required based on normal and high 

BP values. Therefore, an important 

aspect for future work is to design, 

implement, and evaluate our sys-

tem’s recalibration mechanisms. 

Moreover, we’ll expand access to 

our system, inviting participants 

with different health conditions—

for example, those suffering hyper-

tenstion or stiff arteries. 
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Figure 13. Data under different error thresholds. 


