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Noninvasive Electroencephalogram 
Based Control of a Robotic Arm for 
Reach and Grasp Tasks
Jianjun Meng1, Shuying Zhang1, Angeliki Bekyo2, Jaron Olsoe1, Bryan Baxter1 & Bin He1,2

Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and 

external devices. Prior research using non-invasive BCI to control virtual objects, such as computer 

cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has 

demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-

and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a 
group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high 
accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential 

low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through 
modulation of their brain rhythms within the span of only a few training sessions and maintained the 

ability to control the robotic arm over multiple months. Our results demonstrate the viability of human 

operation of prosthetic limbs using non-invasive BCI technology.

Individuals who su�er from severe neuromuscular disorders or damage to the motor system, including muscular 
dystrophy, brain stem stroke, and spinal cord injuries, frequently lose the ability to freely move and control their 
muscles. However, most of these individuals retain the ability to produce motor function-related neural activities 
similar to healthy subjects, as the brain areas orchestrating movement o�en retain function despite some loss 
of peripheral motor control. Brain-computer interfaces (BCIs) are a class of emerging technology that aim to 
directly bridge the brain and the outside world1. One of the ultimate goals for BCIs is to enable the anthropo-
morphic movement of a highly dexterous prosthetic limb, or exoskeleton as an assistive device, by deciphering a 
patient’s brain activity in real time. A major challenge for emulating brain-to-limb control is building a complex 
and robust interface to coordinate the high number of degrees-of-freedom (DOF) needed to achieve anthropo-
morphic control. �is challenge is ampli�ed when using non-invasive measurements to replace the delicate con-
trol between the brain and body. Over the past few decades, BCI technologies have been developed using several 
di�erent input signals. BCIs using intra-cortically implanted electrode arrays can measure the activity of tens to 
hundreds of neurons in movement-related cortical areas. �ese arrays cover several square millimeters, have a 
high signal-to-noise ratio (SNR), and have facilitated promising research results for the control of robotic arms 
or patient’s own arm through neuromuscular electrical stimulation2–8. However, these invasive approaches face 
the risk of post-surgery complications and infections, and the challenge of maintaining stable chronic recordings, 
which might limit broad use in the patient populations9. For noninvasive EEG, no surgery is needed and little 
time is required to place the scalp electrodes. Noninvasive EEG based BCI could potentially serve the needs of a 
large population10.

Control of a robotic arm with non-invasive BCI certainly provides a desirable alternative, but prior to this 
study it has not been shown that such non-invasive systems could achieve pro�cient multi-dimensional control 
of a robotic arm to reach and grasp an object in three-dimensional (3D) space. �e concept of machine control 
via non-invasive EEG has been proposed in previous research, and explored in successful o�ine analyses or 
online cases including control of a virtual object11–13, real objects such as wheelchair, quadcopter14,15, and various 
other rehabilitation and assistive devices16,17. To the best of our knowledge, few research groups have attempted 
control of a prosthetic or a robotic arm using scalp EEG based BCIs. A variety of control signals, including sen-
sorimotor rhythms18, steady state visual evoked potentials19,20, hybrid systems21, real movement or attempted 
movement22,23, have been used for these initial studies to control the robotic or prosthetic arm. Such previous 
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e�orts have primarily constrained the BCI control system to be discrete in one dimension or a plane without 
exploring the full possibility of controls in three-dimensional space. In the present study, we examine the pos-
sibility of using non-invasive motor imagination based BCI for control of a robotic arm to complete reach and 
automatic grasp tasks in three dimensions, with the following question in mind: is non-invasive BCI capable of 
providing su�cient precision and e�ciency to control a robotic arm in a 3D environment to complete meaning-
ful reach-and-grasp and complex tasks?

To address the above question, we designed a series of experiments with progressively increasing task di�-
culty, and recruited a group of healthy human subjects to use non-invasive BCI to control a robotic arm for per-
forming complex reach-and-grasp tasks. �e reach-and-grasp task was divided into two stages: �rst, the subject 
was to guide the cursor/robotic arm within a two-dimensional (2D) plane to a region above a target object within 
3D space and hover over it; second, if the subject selected the correct object s/he was then to guide the robotic 
arm down in the third dimension to grasp the object. �is two-step sequential experimental design e�ectively 
reduced the number of DOF that the BCI needed to interpret, while still allowing participants to grasp an object 
in 3D space. �is simpli�es the process of grasping an object in 3D space by performing reach-and-grasp tasks 
sequentially, with a tradeo� of slightly increasing the time required to perform the complete task. 13 healthy 
subjects demonstrated the capability of learning to modulate their brain rhythms to control a robotic arm using 
our non-invasive system with two-stage control. Subjects e�ciently learned to manipulate a robotic arm to grasp 
and move objects randomly located in a restricted 3D space, and maintained their control ability over multiple 
sessions across 2–3 months.

Results
Brain-control tasks. 13 healthy human subjects were recruited to perform a series of experimental tasks 
across 8–15 sessions with increasing task di�culty according to Fig. 1a. Each session consisted of 10–12 runs with 
break time in between; each run was 5–10 minutes long and varied among individuals and task levels. �ere were 
a total of �ve chronological stages across the 15 sessions: virtual cursor only, four-target grasp, �ve-target grasp, 
random-target grasp and shelf-target grasp (see Fig. 1c for visualization). �e subjects were instructed to imagine 
movement of their le� hand, right hand, both hands, or relaxation of both hands to control the le�, right, up and 
down (forward or backward) cursor and robotic arm movement, respectively (Fig. 1b). �rough the instructed 
imagination they learned to modulate their sensorimotor rhythm amplitude in the upper mu (10–14 Hz) fre-
quency band. �e power of mu rhythm was then linearly mapped to control the velocity of cursor and robotic 
arm movement (Methods). Subjects were instructed to perform kinesthetic motor imagination in the �rst person 
perspective24.

Training performance of virtual cursor control. In each session there was at least one run of 
one-dimensional (1D) le�-right (LR) cursor control, and each subject participated in up to 15 sessions. �e 
average percent valid correct (PVC) of all the subjects for 1D LR cursor movement control across all sessions is 
displayed as the red line in Fig. 2. �e PVC is de�ned as the ratio of the correct target hit versus all of the valid 
outcomes. �us, invalid outcomes corresponding to those trials when neither the correct nor an incorrect target 
was hit are excluded in the calculation of PVC. At the �rst session, the average PVC for LR was 78.4 ±  7.0% and 
rose to 90.2 ±  3.1% at the second session. At later sessions near the end of training, the average PVC exceeds 95% 
for 1D LR control.

For each subject, there were two to four runs of 2D cursor control task (le�-right or up-down) in each session. 
Subjects could intentionally control a virtual cursor displayed on the monitor to move freely in a restricted square 
area for this task. �e average PVC for 2D cursor control of all subjects across all sessions is displayed as the green 
line in Fig. 2. �e number of subjects in each session is shown in the green bar plot below. Subjects were required 
to demonstrate pro�ciency in 1D LR cursor control prior to progressing to 2D cursor control. �erefore there 
were several sessions at the beginning of training in which subjects did not perform the 2D virtual cursor control 
task. �e average PVC was 77.0 ±  9.3% at the �rst session, dropped slightly to 67.5 ±  6.0% at the second session, 
and then increased mainly across the remainder of the training. �e drop in performance a�er the �rst 2D ses-
sion is most likely due to an increase in the number of subjects from the �rst to the second session. �e average 
PVC increases above 85% a�er seven sessions of practice. �eoretically, chance level performance is 25% for 2D 
cursor control and 50% for 1D LR cursor control. Overall, there is an upward trend for both 1D LR and 2D cursor 
control across time at the group level.

Event related de/synchrozination maps of 2D virtual cursor control. Figure 3 shows the group-level 
event related desychronization (ERD)/event related synchronization (ERS) maps averaged across all subjects and 
all sessions for the 2D cursor control task. �e subplots display activity from the C3 and C4 electrodes, located 
over the le� and right motor cortex, respectively. Clear contralateral ERD was evident during the right and le� 
target trials when the target appeared and the subject performed the unilateral hand motor imagination (Fig. 3 
le� target and right target). �is ERD was also accompanied by a statistically signi�cant ipsilateral ERS when 
the cursor began to move. Bilateral ERD was apparent when the subject performed the bilateral hand motor 
imagination for the up target (Fig. 3 up target), and bilateral ERS was apparent when the subject relaxed for the 
down target (Fig. 3 down target). Whereas the ERD was apparent both when the target was presented and when 
the cursor was being moved by the subject, the ERS was usually only signi�cant a�er the cursor began to move.

Event related de/synchrozination maps of robotic control. Figure 4 shows the similar group-level 
ERD/ERS maps averaged across all subjects and all sessions (four-target grasp task). In general, the plots display 
similar contralateral ERD for the unilateral hand motor imagination (Fig. 4 le� target and right target), and 
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Figure 1. Experiment setup and task progression. (a) Overview of experimental sessions for each participant. 
�ere were �ve stages of experiments with increasing level of di�culty, where each stage included two to four 
sessions of the same experimental paradigm. (b) Motor imagery tasks were used to drive two dimensional virtual 
cursor or robotic arm movement. �e imagination of le� hand, right hand, both hands, and relaxation corresponds 
to the respective le�, right, up, and down movement of the robotic arm and virtual cursor. (c) Overview of tasks 
for experiment stages two through �ve. Experiment stage two (four-target grasp): Grasping one of the four �xed 
targets. Experiment stage three (�ve-target grasp): Grasping one of the �ve �xed targets. Experiment stage four 
(random-target grasp): Grasping a randomly located target. Experiment stage �ve (shelf-target grasp): Moving one 
target from the table onto the shelf. (d) Trial structure of a single trial task. First, there is a short period of inter-
trial interval between two separate trials. A�er that, the target is displayed on the screen for three seconds during 
the prefeedback period and is followed by a moving pink cursor and robotic arm in the respective workspaces 
during the feedback period. If the robotic arm remained within the prede�ned radius above the designated block 
for 2 seconds, the hover period would be complete and the task would progress to the step of grasping in the 
reach-and-grasp sequence (otherwise the step is timeout a�er 12 seconds and a new trial begins). At this point, the 
computer would recognize that the robotic arm was meant to stop and grasp the target. �e robotic arm would 
open the �ngers and be prepared to �nish the grasping sequence during the next trial (step) if the subject controls 
the robotic arm to move towards the block correctly.

Figure 2. Overall learning process of virtual cursor control. Learning processes (PVC) of 1D LR and 2D 
cursor movement for all subjects across all sessions. Average PVC for LR and 2D are highlighted by the red and 
green lines, respectively. �e standard errors of the mean (SEM) are indicated by the shaded regions alongside 
the two lines. Since not all subjects participated in all 15 sessions, the number of subjects included in each 1D 
LR and 2D session which are arranged chronologically are indicated, respectively, by the red and green bar plots 
in the lower part of the �gure.
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bilateral ERD and ERS for the bilateral hand motor imagination and relaxation tasks (Fig. 4 up target and down 
target), respectively. Note that there was no strong ipisilateral ERS for the unilateral hand motor imagination task. 
Additionally, the bilateral ERS was also not as strong as the virtual cursor control counterpart.

Performance for grasping of fixed four and five targets task. Figure 5 displays the results for the 
second and third stage of BCI training, where the subjects were instructed to perform a grasping task with a 
robotic arm. In these stages, virtual targets and the virtual cursor movement accompanied the robotic arm move-
ment on the computer screen. In addition to the �ve stages of experiments, 6 of the 13 subjects were able to 
participate in another three sessions of experiments for controlling the robotic arm in the absence of the vir-
tual cursor. Note that it took two steps for the subjects to pick up the correct block within two separate trials. 
�ese two steps included a �rst step in which the robotic arm had to hover over the center of the speci�ed block 
for 2 seconds, and a subsequent step in which the robotic arm had to move downward to grasp the block (see 
Supplementary Figures 2 and 3 for segments of EEG signals and scalp topographies associated with movement 
trajectories for examples of grasping four di�erent blocks).

�e average PVC values across all subjects and all sessions for the four-target and �ve-target grasp tasks are 
shown in Fig. 5a. �e average PVC for the four-target grasp task increased from 77.8 ±  18.1% in the �rst session 
to 82.8 ±  16.3% in the second session, resulting in an average of 80.3% ±  17.0% for the two sessions (Fig. 5a, dark 
green bar in the column of four targets). �e average PVC across the six of the participants for the four-target 
grasp task sessions in the absence of the virtual cursor was 90.1% ±  7.7% (Fig. 5a, gray bar in the column of four 
targets). �e same six subjects’ average PVC for the four-target grasp task with the virtual cursor across sessions 

Figure 3. Event related desychronization (ERD)/event related synchronization (ERS) maps of 2D virtual 
cursor movement. ERD/ERS maps of le�, right, up and down target trials for electrodes C3 and C4. In each 
subplot the horizontal axis indicates the time (seconds); the vertical solid black line denotes when the target 
appeared, and the vertical solid blue line indicates when cursor control began. �e period between the black 
dashed line and the black solid line shows the baseline period that was used to calculate the ERD/ERS. Only 
signi�cant changes of ERD/ERS activity quanti�ed by a bootstrap resampling method (see method) were shown 
here. �e 8–26 Hz frequency band is indicated in the vertical axis. �e red rectangle centered at 12 Hz (3 Hz 
bin width) highlights the mu band rhythmic activity starting from the appearance of the target and ending at 
3.5 seconds a�er the cursor began to move. �e target appeared at − 3 seconds and the virtual cursor control 
began at 0 seconds. �e baseline was selected as − 4.5 seconds to − 3 seconds during which the screen was black 
and the subject was instructed to remain in an idle state.
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was 89.9% ±  8.9% and is separately displayed as a light green bar in Fig. 5a. A Wilcoxon signed-rank test was 
applied to compare the performance of the six participants with and without the virtual cursor. �ere was no 
signi�cant di�erence (p >  0.05) between the two conditions when controlling the robotic arm in the four-target 
grasp task.

Similarly, the average PVC across all participants for the �ve-target grasp task increased from 74.5 ±  17.3% in 
the �rst session to 84.9 ±  6.6% in the third session and resulted in an average of 77.9% ±  14.7% across the three 
sessions (Fig. 5a, dark green bar in the column of �ve targets). �e average PVC of those six participants for the 
�ve-target grasp task in the absence of the virtual cursor across sessions is 79.0% ±  8.3% (Fig. 5a, gray bar in the 
column of �ve targets). �e same six subjects’ average PVC for the �ve-target grasp task with the virtual cursor 
across sessions is 85.1% ±  8.0% and is also separately shown as the light green bar in the column of �ve targets. 
�e results of a Wilcoxon signed-rank test (p =  0.031) for PVC indicates that there is a signi�cant di�erence 
between the two conditions when controlling the robotic arm in the �ve-target grasp task.

�e maximum number of targets that could be grasped in each run was 13, which is highlighted with a 
green horizontal line in Fig. 5b. �e average number and standard deviation (SD) of targets grasped by all sub-
jects in each run across sessions is 8.0 ±  2.7 and 8.4 ±  2.1, respectively, for the four-target and �ve-target grasp 
tasks. For the subset of six subjects, the results of a Wilcoxon signed-rank test for the average number of targets 
grasped indicates no signi�cant di�erence between conditions with and without the virtual cursor for both the 
four-target (p >  0.05) and �ve-target (p >  0.05) grasp tasks. For all subjects, it took on average 5.5 ±  0.8 s and 
5.0 ±  0.6 s (Fig. 5c) to complete the individual steps (trials) required to complete the reach-and-grasp sequence 
in the four-target and �ve-target grasp tasks, respectively. Similarly, the results of Wilcoxon signed-rank tests for 
the average duration of step completion indicates no signi�cant di�erence between experiments with and with-
out the virtual cursor for both the four-target (p >  0.05) and �ve-target (p >  0.05) grasp tasks. On average, it took 
27.1 ±  3.7 s to grasp one block; this time included the inter-trial intervals, prefeedback periods, feedback periods 
and postfeedback periods in the reach-and-grasp sequence.

Figure 4. Event related desychronization (ERD)/event related synchronization (ERS) maps of the �xed 
four target grasping task. ERD/ERS maps of moving towards the le�, right, up and down targets for electrodes 
C3 and C4. �e target appeared at − 2.5 seconds and the robotic arm began to move at 0 seconds. �e baseline 
was selected as − 4 seconds to − 2.5 seconds during which the robotic arm was stationary, the screen was black, 
and the subject was instructed to remain in an idle state.
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Grasping performance of randomly located targets on a plane. Figure 6 illustrates the results of the 
fourth stage of robotic arm control. �e target block in this stage was randomly placed in the square workspace 
instead of at �xed positions, as was done in the four-target and �ve-target grasp tasks. In this stage, subjects had 
to control the robotic arm to hover above the target block for 2 seconds. �eoretically, a maximum of 10 blocks 
could be grasped in each run (shown as the black bar in Fig. 6a). �e average number of blocks grasped by partic-
ipants per run was 7.4 ±  1.3, shown as the white bar in Fig. 6a. �e number of target blocks grasped varied across 
subjects and runs depending on the subjects’ ability. Some subjects dropped out of the study before participating 
in this stage, resulting in a total of ten subjects for this stage. It took subjects on average 6.4 ±  0.7 seconds to �nish 
each single-trial step in the grasping sequence (Fig. 6b), and took 30.5 ±  4.1 s on average to grasp one block for 
this paradigm. Subjects’ EEG control was compared with the ideal completion time, de�ned as the shortest time it 
would take the robotic arm to complete each single-trial step in the grasping sequence with no path redundancy. 
Experimental design including the hover period as well as physical limitations of the robotic arm resulted in a 
minimum time of 5 seconds (black bar in Fig. 6b).

�e movement trajectories of the robotic arm for the random-target grasp task are shown in Fig. 7a for 6 
di�erent subjects. Di�erent colors are used to discriminate di�erent targets in the four distinct quadrants. Some 
of the trajectories were fairly direct to the hover area (the circle) while others might move in and out of the hover 
area multiple times before �nally moving into the area for the required 2 seconds. �e group-level distribution of 
successful grasping for the randomly located blocks is shown in Fig. 7b (see Supplementary Figure 4 for four indi-
vidual cases of target distribution and successfully grasped blocks). Here, the successful grasping rate was de�ned 
as the ratio between the number of successfully grasped blocks and the sum of successful grasping and abort 
trials. �e top le� and bottom right portions of the workspace (greyed region) were inaccessible due to singularity 
problems of the arm. �e marginal distributions reveal how o�en the target was placed in that area. �e target 
was equally distributed among the four quadrants of the workspace and was quasi-uniformly distributed among 

Figure 5. Grasping performance of the four-target and �ve-target grasp tasks in the presence and absence of 
the accompanying cursor movement. (a) Group average PVC and one standard deviation for the four-target and 
�ve-target grasp tasks. �e le�most bar for each task indicates the PVC of the original 13 subjects. �e right two 
bars compare the PVC of the subset of six subjects who participated in additional sessions both with and without 
the cursor present. (b) Average number of blocks grasped in each run of the four-target and �ve-target grasp 
tasks for all subjects and all sessions, as well as the subset of six subjects. �e green line shows the ideal maximum 
number of blocks (13 blocks) that can be grasped in each run. (c) Average single-trial time-to-hit target for all 
subjects and all sessions, as well as the subset of six subjects. �e feedback duration when the robotic arm moved to 
complete the individual steps of the reach-and-grasp sequence was denoted as the single-trial time-to-hit.

Figure 6. Grasping performance of randomly located targets. (a) Average number of targets grasped per run 
for all subjects and all sessions versus the ideal number of targets that could be grasped per run (10 targets).  
(b) Average single-trial time-to-hit of EEG robotic arm control compared to the ideal time-to-hit of the robotic 
arm control.
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the whole area, excluding the regions unreachable by the robotic arm. �e plot in Fig. 7b shows that the successful 
grasping rate is higher than 62.2% across the accessible workspace except for some areas near the bottom center 
areas (light blue areas). For those regions, the median success rate is 53.1% and the minimum is 47.2%. �is indi-
cates that subjects could not move to the bottom center area as e�ciently as other areas, although they could still 
successfully control the arm to grasp the targets located in that area. Figure 7c shows the interpolated topography 
of successful grasping averaged across all subjects and all sessions of the random target task.

Performance of moving targets from table to shelf. In the ��h stage, subjects were required to move 
one of the three blocks from the table to a speci�ed location on a shelf (refer to Brain-control tasks). In order to 
move a block successfully the participants had to �nish each of the four sequential steps correctly, otherwise they 
had to start from the beginning of the sequence. Eight participants remained enrolled in the study for this stage. 
On average, the subjects could pick up 4.6 ±  0.9 blocks in each run in which the maximum number is 6. It took 
an average of 6.0 ±  0.5 seconds to �nish each step (orange bar in Fig. 8a,b) and took 63.8 ±  5.1 seconds on average 
to move one block from the table onto the shelf. For those six subjects who participated in both the shelf-target 
grasp and fast-shelf-target grasp tasks, the performance under the two conditions is compared in Fig. 8a,b (light 
pink bar in the middle and green bar on the right side, respectively). In terms of the average blocks grasped in 
each run, performance was similar (5.1 ±  0.6 for normal speed vs 5.1 ±  0.5 for fast speed). However, it took on 
average 4.3 ±  0.7 seconds to �nish each step in the fast-shelf-target grasp task compared to 6.0 ±  0.6 seconds for 
the shelf-grasp target task. Due to the faster speed of experiments in the fast-shelf-target grasp task (shorter 
intertrial interval, prefeedback periods, feedback periods and postfeedback periods at the same time), it took 
40.6 ±  5.8 seconds on average (reduced about 36% of time compared to the previous normal speed one) to move 
one block from the table onto the shelf.

�e distribution of PVC for moving targets from a table onto the shelf is displayed in Fig. 8c. �e blocks on the 
x-y plane (table plane) show six possible positions at which the target might be placed, and the blocks on the x-z 
plane (shelf layers) show six possible positions at which the target might be moved to complete the task sequence. 

Figure 7. Example trajectories and the distribution of successful grasping trials for randomly located 
targets. (a) 24 example trajectories from six di�erent subjects (four each) for grasping random targets located 
in the four quadrants. �e circles indicate the hover area for the randomly placed targets. (b) �e distribution 
of successful and unsuccessful grasping within the workspace. �e histograms above and to the right of the plot 
indicate how o�en the target was placed in that area of the workspace. (c) Topography of successful grasping 
rate within the workspace.
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�e color of the blocks shows the PVC of reaching to and then grasping/releasing the target. In general, the PVC 
of reaching and grasping/releasing for each location is higher than 71%. �e lowest accuracy is located in the 
lower le� corner (71%). �e center portion of the plot shows the highest PVC on average (above 87%).

Empirical chance level of virtual cursor task. We performed six sessions of resting state experiments 
to test the empirical chance level of the four and �ve virtual target experiments, respectively. Four subjects par-
ticipated in the experiment and all subject data were pooled together for analysis. Each subject sat in front of a 
computer monitor and listened to relaxing and calming piano music. �ey were instructed to focus on the music, 
be relaxed, and stare at a center square on the screen. At the same time, the 2D virtual cursor task was running in 
the background but was only visible to the operator, hidden from the subject’s �eld of view. �e average empirical 
chance level for the four and �ve target experiments were 25.3% (347 abort trials among 750 trials) and 22.5% 
(162 abort trials among 625 trials) respectively, which are close to the theoretical values of 25% and 20% for 
typical four/�ve target experimental paradigms without hovering time. �e empirical numbers of target hit in 
each run by random chance were 1.8 ±  0.4 and 2.2 ±  0.5 for four and �ve virtual target experiments, respectively. 
Across all sessions from all participants, performance was signi�cantly higher than expected by chance alone (see 
the green line for 2D cursor movement in Fig. 2).

Discussion
Several challenges and opportunities exist for extending the �eld of BCI from virtual object control to physical 
devices and e�ectors in BCI research. To achieve such an extension, it is vital to study how human subjects 
interact with these physical devices through BCI control. Currently, BCIs driven by invasive technology have 

Figure 8. Grasping performance of the shelf-target grasp stage. (a) Average number of targets grasped 
in each run for the original 8 subjects (orange bar) and the subset of 6 subjects who participated in three 
extra sessions. �ese extra three sessions involved controlling the robotic arm with the initial normal speed 
(shelf-target grasp) and an increased speed of movement (fast-shelf-target grasp). �e green line shows the 
ideal number of blocks (6 blocks) that can be reached in a single run. (b) Average single-trial time-to-hit and 
standard deviation for all of the original 8 subjects and the 6 subjects who participated in both the shelf-target 
grasp and fast-shelf-target graps tasks. (Examples of robotic hand trajectories during the feedback period are 
shown as blue, yellow, red and green lines in Supplementary Figure 5). (c) Distribution of PVC for moving 
targets from a table onto a shelf. Average PVC of reach-and-grasp for the blocks on the table (x-y plane) and 
average PVC of reach-and-release for the blocks onto the shelf (x-z plane) are shown.
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demonstrated control of prosthetic arms with high DOF to accomplish daily activities in a laboratory setting. 
�ese approaches utilize spike activity and local �eld potential signals from tens to hundreds of neurons in a 
local cortical area and decode these signals to control the position, orientation, velocity and/or force, among 
other parameters, of the prosthetic device by linear or nonlinear methods for neuronal ensembles2–8,25–28. Such 
invasive BCI technology is promising for mimicking the natural movement of the hand in paralyzed patients 
and can achieve relatively complex actions needed for daily life, such as reaching, grasping, and moving a water 
bottle towards the mouth. On the other hand, invasive BCIs are limited by the risks associated with surgical pro-
cedures and chronic implantation of electrodes in cortical areas, which highlights the need for the development 
of non-invasive BCI technology to meet the needs of di�erent population groups. In this study, we demonstrate 
to accomplish reach-and-grasp/reach-and-release tasks in 3D space using a noninvasive EEG-based BCI by com-
bination of two sequential low dimensional controls. A group of healthy human subjects participated in a series 
of longitudinal non-invasive EEG based BCI experiments. Each subject began with virtual cursor control and 
progressed to robotic arm control, with increasing complexity and dimensionality added over time. �roughout 
the experiments, we observed that most subjects exhibited improved performance over time in controlling both 
the virtual cursor and the robotic arm. While we used motor imagery paradigm and decoded the subject’s inten-
tion under the ERD/ERS framework as we used in our previous study to control a quadcopter15, the present study 
represents an entirely new investigation for human subjects to control a robotic arm for reaching, grasping and 
moving using noninvasive EEG signals. Recent work18 has explored the combination of motor imagination and 
other cognitive activities like alphabetical or numerical exercises to drive a robotic arm to complete reach task in 
a plane. Our work extends and explores the full possibility of reach and grasp of objects in a three-dimensional 
space, and furthermore more complex tasks close to the activities of daily living (ADL) like moving an object 
from table onto the shelf was designed and examined in multiple sessions. A successful trial consisted of touch-
ing the target, whether this was intentional or by chance, whereas our study design required subjects to hold the 
arm/cursor over the target to signal their intention. �e current study has demonstrated that subjects are able 
to control a robotic arm to reach and grasp (with shared control) and move objects located in a constrained 3D 
space using a noninvasive BCI. �e time scale of completing these intricate tasks was 20–60 seconds; with the 
exact duration depending on the complexity of the task and the performance of the subject. When moving objects 
from a table to a shelf with faster speed settings of robotic arm, we found that subjects could operate the arm 
with increased speed and shorter response time without sacri�cing performance. To focus on subject learning 
and interactions with the BCI system, we employed a decoding method with minimal customization for each 
subject. In the future, optimization of the decoding algorithm for individual users and utilization of signals from 
source space through cortical imaging rather than from raw EEG signals29,30 could be of use for enhanced levels 
of robotic arm control and might reduce the time required to �nish tasks. In addition, use of a high-speed robotic 
arm (which was not available in the present study) may also enhance the robotic arm control and further reduce 
the time required to �nish the tasks.

Sequential low dimensional control vs. fluid 3D control. In the current study, the combination of 
two sequential low dimensional control was utilized to realize the same function of �uid 3D control in 3D space. 
�ere are multiple ways to achieve reach-and-grasp in 3D space where the most e�cient one is the direct 3D 
continuous control like human ourselves which our current approach does not belong to. To reach an object in 
3D space, there could be a couple of combinations of sequential low dimensional control. One is the combination 
of three one dimensional sequential control which is the least e�cient one while the other is the combination 
of a two dimensional control together with another sequential one dimensional control which is our case. �is 
strategy aims to fully leverage the pro�ciency of two dimensional control for BCI subjects and encourage them to 
be fully engaged into the task due to the di�culty of the task. While at the same time a one dimensional control 
is designed for them in order to release the highly concentrated mental workload across all the time, to obtain 
higher accuracy and to enable lasting high performance duration (less frustration). Fluid 3D space continuous 
control of a robotic arm with high accuracy by noninvasive EEG requires at least three independent control 
signals (three pairs of motor strategies), which has not been shown yet. Previous research shows the promising 
capability of controlling a virtual cursor in 3D space31, however, the eight targets in the experiment was located in 
the corner of the virtual workspace and whether an target located at the random location of 3D workspace could 
be acquired with similar e�ciency needs further investigation. Our sequential design is to balance the speed 
and accuracy to motivate subjects to engage into the experiments constantly. �is sequential steps experimental 
design enabled the subjects, for the �rst time, to achieve reach and grasp in 3D space.

ERD/ERS of virtual cursor control vs. robotic arm control. �e event-related activity involved in 
virtual cursor control and robotic arm control showed high degrees of similarity. However, there was no strong 
ipisilateral ERS for unilateral hand motor imagination (right and le� target) during the robotic arm control, and 
the bilateral ERS for the relax task (down target) during the robotic arm control was not as strong as its virtual 
cursor counterpart. �is may be due to an inherently stronger resting state signal during robotic arm control, 
or a weaker ERS during the robotic arm control. �ere was no signi�cant di�erence between the resting state 
signal for the 2D virtual cursor control and the robotic arm control, although we did observe a robust decrease 
of mu power at C3 and increase of power at C4 across tasks (Supplementary Table 1). �is variation of resting 
state power, which was decreased for the robotic arm control compared to the virtual cursor control, may re�ect 
the learning of BCI control and the modulation of subjects’ brain rhythms with increased task complexity. �us, 
this eliminated the possibility of explaining the observed phenomena through an increased resting state signal 
for robotic arm control compared to virtual cursor control. We therefore speculate that the ERS decreased for the 
robotic arm control, which may seem to be counter-intuitive. We suppose that there might be smaller variation 
of ERD/ERS even though the ERS became smaller. �us, the subjects still improve their brain rhythm control in 
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general. �e results in Supplementary Table 2 show that there is little di�erence in ERD between virtual cursor 
control and robotic arm control for the four di�erent imagination tasks. However, it does display a signi�cant 
di�erence in the ERS between virtual cursor control and robotic arm control across the di�erent tasks.

Previous studies have shown a distributed cortical adaptation during learning of a BCI task where the modu-
lated activity of a wide network decreases and focuses on a smaller network modulation when the user develops 
pro�ciency with BCI control32. Speci�cally, it has been previously shown that participants learned to increase 
the di�erence in frequency-speci�c power at the controlling electrode in up targets relative to down targets. �is 
is not in accordance with ERS decreased for the robotic arm control and no di�erence in ERD was observed 
between virtual cursor control and robotic arm control when the users developed pro�ciency in the present study. 
First, results from the aforementioned study came from a relatively short learning period (two to three sessions 
over one to three days), while our �ndings revealed a relatively long-term learning curve for rhythmic modula-
tion of cortical activity. Second, the previous study used the high-gamma band for modulation of the BCI control 
signal which is di�erent from our upper mu rhythm control. �ese authors32 stated that mu-beta (12–30 Hz) band 
was also strongly task modulated but without the same changes of increase the di�erence in frequency-speci�c 
power at the controlling electrode, furthermore no conclusion could be obtained because of mu-beta rhythm was 
not the control signal in their study. �e current mu band modulation during the mutiple sessions revealed that 
the mu-band ERD could be a stable control signal for the robotic arm control.

Task design with hover period. We added the hover time as an additional level of control, such that the 
subject would need to con�rm their intent to grasp an object. In this study, the subjects learned how to modulate 
their brain rhythm to reduce the speed of the cursor when the cursor approaches to and moves into the hover area 
in order to keep the cursor/robotic arm within the hover area. �ey could try more than once if the cursor/robotic 
arm shoot out of the hover area within two seconds. �is hover period is not widely used with non-invasive BCIs 
but is commonly used with invasive BCIs25. �e hover time is consistent with our daily experience of connecting 
with the environment. When we scan our surroundings for objects to interact with, passing through an available 
area or over a speci�c object does not necessarily mean we want to interact with it. When we stop and remain in a 
speci�c location for a certain amount of time, this usually indicates the intent to select this object. With this hold 
period, subjects have to learn how to control the cursor or the arm in a stable fashion for a certain amount of time. 
�is training paradigm does increase the complexity of the task, as reported by participants’ verbal feedback, but 
it decreased the number of false positives in target selection that can o�en occur by chance and may increase the 
level of control of the subjects during the long-term learning period, which could be con�rmed by further testing.

Performance in the presence and absence of virtual cursor. �e statistical analysis for the grasping 
of �xed targets in the presence or absence of the virtual cursor revealed that there was no di�erence between the 
two conditions, with the exception of the PVC for the �ve-target grasp task. �ere could be multiple reasons for 
this. Ideally the movement of the robotic arm should exactly comply with the movement of the cursor. �is was 
true in most cases, but there was an occasional delay in the movement of the robotic arm if the brain rhythm gen-
erated a relatively large acceleration. Physical limitations restricted the robotic arm to lagging behind the control 
signal if the speed of the control signal exceeded the maximum speed limit of the robotic arm. Compared to the 
top-down view of the with-cursor tasks (the cursor represents the movement of the robotic arm), the perspective 
of the participant in the without-cursor tasks may have introduced some visual distortion regarding the position 
of the �ngertips of the robotic arm and center of the blocks. For these reasons, subjects may have exerted more 
e�ort during the robotic arm paradigm compared to during the virtual cursor paradigm. �is interpretation was 
corroborated by subjects’ verbal reporting. �is could also explain why there was a marginal di�erence in PVC for 
the grasping of �ve targets (when the task became more di�cult this e�ect was more apparent).

The sustainability and variability of performance in long term. �e high accuracies achieved by 
most of the subjects in the later sessions demonstrate that the ability to control one’s own brain rhythms by 
motor imagination can persist for long time periods (on a time scale of two to four months in our study). For 
each individual, the performance can vary day by day due to many factors, such as the daily mental status of each 
subject, slight alterations in electrode positions, the time of day during which subjects attend the experimental 
session, among other reasons33. However, despite these potential variations, subject performance remained high 
throughout the duration of the study. Unlike invasive BCIs, which can directly drive a prosthetic arm by decoding 
the neuronal activity in the motor cortex or posterior parietal cortex2–3,26–28, the non-invasive EEG based BCI 
utilized in this study translates the sensorimotor rhythms34 detected from bilateral motor areas to the activity of 
a single robotic arm. �is is not intuitive to the subjects at the beginning of the experiments, but in later sessions 
subjects verbally report that control becomes more intuitive. During the learning of controlling a robotic arm 
across multiple sessions, subjects improved their ability to self-modulate speci�c brain rhythms in a focal motor 
area detected at a macroscopic scalp level which has implications for the design of noninvasive assistive and 
rehabilitation devices35.

During our experiments, multi-modal visual feedback was provided to the subjects that included activity on 
the computer monitor, the movement of the robotic arm and even the activity of the operator. Compared to other 
more controlled BCI paradigms, this complex environment is more similar to daily life. Importantly, our study 
revealed that these realistic environmental factors were not obstructive of subjects’ ability to learn and perform 
the BCI tasks. Subjects were able to control a robotic arm to complete reach-and-grasp tasks in three dimensions 
with up to over 80% accuracy for four or �ve-target grasp tasks. Looking towards the future, we plan to further 
develop and optimize technologies for non-invasive BCI control of prosthetic limbs in �uid 3D continuous con-
trol with high accuracy and increased speed. Ultimately, the goal of such systems will be to provide subject control 
of external prostheses in a non-invasive, naturalistic manner for aiding motor rehabilitation and control.
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Methods
Experimental Setup. Subjects. 18 healthy human subjects were recruited for the present study. Five of 
them dropped within the �rst three sessions due to their scheduling con�icts; the remaining 13 subjects (seven 
women; mean age, 27.3 y; range, 18–54) participated in 8–15 experiment sessions within an average of 81 ±  34 
days. Each session took place on a di�erent day, with one day to one week between sessions except for a few 
extreme cases. �e length of duration was mainly due to scheduling need instead of the duration to learn the 
BCI skills. Data for these 13 subjects were analyzed for this study. All procedures and protocols were approved 
by the Institutional Review Board of the University of Minnesota. Informed consents were obtained from all of 
the subjects before they participated in the experiment. One of the subjects was le� handed and all others were 
right handed. Eligibility and screening form is used to recruit healthy subjects within the age of 18–64 without 
traumatic brain injury or brain lesion and without any history of neurological de�cit or neurodegenerative dis-
order in this study. �e exclusion criteria were established before any subject was recruited to participate in the 
experiment. �is study is registered with ClinicalTrials.gov, NCT02069938 (additional information about the 
clinical trial is available at https://clinicaltrials.gov/ct2/show/NCT02069938). All methods and research activities 
were performed in accordance with the guidelines and regulations.

Data Acquisition. EEG data were recorded by a 64-channel Neuroscan cap with SynAmps RT headbox and 
SynAmps RT ampli�er (Neuroscan Inc, Charlotte, NC). �e reference electrode was located on the vertex and the 
ground electrode was on the forehead. During the recording, the participants were seated in a comfortable chair 
and rested their hands on armrests. Each subject sat in front of a computer monitor at a distance of 90 cm. �e 
robotic arm was mounted 50 cm to the right of the subject. All electrode impedances were maintained below 5 kΩ .  
�e EEG signals were sampled at a rate of 1,000 Hz and bandpass-�ltered in the range of 0.5–200 Hz. A notch 
�lter of 60 Hz was applied to the raw EEG signals. A JACO arm (Kinova Robotics, Montreal, Canada), a seven 
DOF human-like robotic arm with three �ngers, served as the BCI actuator and means of visual feedback for the 
subjects during the experiments. A Microso� Kinect Motion Sensor was used to locate and send the position of 
a target to the computer. For the session of stage �ve, blocks were moved from table in front of the subjects to a 
three layer shelf of 5 inches ×  19 inches ×  19 inches.

Task design for Brain-control Task. In the �rst stage, virtual cursor only, subjects were asked to complete 
only virtual cursor tasks for initial learning purposes. �ere were one to four sessions in this stage, depending 
on each subject’s performance. Each session consisted of four or �ve runs of one dimensional (1D) le� vs. right 
cursor movement (1D,LR), four or �ve runs of 1D up vs. down (1D,UD) and four runs of two dimensional (2D) 
voluntary cursor movement in a plane if their 1D performance of (1D,LR) and (1D,UD) exceeded 80% accuracy 
on average in three consecutive runs for one session. Each run contained 25 trials of motor imagery tasks. �e 
exact number of sessions and runs depended on the subject’s individual ability and availability. �e subjects were 
instructed to imagine their le� hand moving, their right hand moving, both hands moving or both hand relaxing 
to control le�, right, up and down cursor movement, respectively (Fig. 1b).

In the second stage, four-target grasp, the subjects performed robotic arm control while a cursor was simul-
taneously moving on a computer monitor. Four foam blocks (size 4.5 cm ×  5 cm ×  10 cm) were placed in �xed 
positions on a �at table corresponding to the four target positions on the monitor. �e hand of the robotic arm 
was controlled in end-e�ector velocity space. We de�ned a square workspace (size 32 cm ×  32 cm) on the table 
to restrict where the blocks could be placed. �e arm was also con�ned within this boundary to avoid collisions 
with the tabletop and participant. Each participant was required to complete two sessions of the four-target grasp 
on separate days. �ere were three runs of the 1D, LR control task, followed by three runs of the 1D,UD target 
grasping task and four runs of the four-target grasp task in each session. For the robotic arm to grasp an object on 
the table, a two-step task sequence of reach-and-grasp was employed to facilitate the participants’ ability to reach 
and grasp a block in 3D space. In the �rst step, a target object location was indicated to the subject on the monitor 
display. At this point, the subject would attempt to move the robotic arm within a horizontal plane to approach 
the center of the block at 17 cm above the block by performing the same 2D motor imagination tasks as for virtual 
cursor control. During the movement of the robotic arm, there was simultaneous cursor movement on the mon-
itor. �is was to represent the robotic arm’s hand position on the screen to make it clear that the physical target 
was approached and reached successfully; that is, the virtual cursor hit the target and changed colors from pink to 
yellow if the arm moved to the indicated block. A “hover area” was de�ned by a virtual cylindrical region centered 
above the target block with a radius of 3 cm. If the robotic arm maintained its position within the hover area for 
2 seconds the trial was considered a successful hit and the task progressed to the second step of the sequence. In 
this step the subject was presented with a 1D UD robotic arm task to reach and grasp the block. Similar to the �rst 
step, if the arm was lowered down to the target and remained there within 2 cm of the center of the block for 2 sec-
onds, the hand of the robotic arm would automatically grasp the target. Each subject participated in two sessions 
of this paradigm. �e operators stood by and monitored the participant. �e operators also placed or replaced the 
blocks as needed. �e physical workspace containing the blocks was an area of 32 cm from le� to right, 45 cm in 
depth, and 32 cm from front to back. �e �ngertips of the robotic arm returned to the center of the workspace at 
the beginning of each run.

In the third stage, �ve-target grasp, an additional block was placed in the center of the workspace, and was 
surrounded by the other four targets. �is stage included the same reach-and-grasp sequence as stage 2. �is stage 
was repeated for three sessions for each subject. Sessions were composed of one run of the 1D,LR cursor control 
task and one run of the 1D,UD cursor control task, followed by two runs of the 2D cursor control task and six 
runs of the �ve-target grasp task which is similar to four-target grasp task but with �ve blocks to grasp.

https://clinicaltrials.gov/ct2/show/NCT02069938
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In the fourth stage, random-target grasp, the block was randomly placed in the pre-defined workspace 
by the operator. The participant was instructed to pick up the randomly positioned block using the same 
reach-and-grasp sequence as stages 2 and 3. �e position of the randomly placed block was equally distributed 
among the four quadrants of the square workspace. �e order of quadrant selection for block placement was 
randomly assigned. Once the subject successfully completed the reach-and-grasp task for the block, it would then 
be placed at another random location by the operator. If hovering in any place other than the target region for 
2 seconds it would not proceed to the next step until reaching the maximum feedback duration (12 s) of the trial. 
For this stage, each subject was required to perform three sessions on separate days and sessions contained one 
run of both the 1D,LR and 1D,UD cursor control task, followed by three runs of the 2D cursor control task and 
�ve runs of the random-target grasp task.

In the ��h stage, shelf-target grasp, three blocks were placed on the table with �xed positions. �ose posi-
tions were changed in each run. �e participant was instructed to pick up the identi�ed block and place it at a 
designated position within a three-layered shelf. �e robotic arm started movement from the center of the cubic 
workspace and �rst move across the horizontal plane parallel to the table to select the block which was to be 
grasped. A�er the arm hovered above the speci�ed block within the hover area for 2 seconds, the arm locked on 
the target and was then to move downward to grasp the target in the next step. �ese two steps were similar to the 
previous reach-and-grasp sequence. If the robotic arm grasped the target successfully it returned to the center, 
otherwise a new block location was selected and the procedure repeated until the subject successfully grasped 
a block from the table. When the subject successfully grasped a block on the table, the robotic arm moved back 
to the center and prepared for the vertical movement across the vertical plane parallel to the shelf. If the subject 
hovered over the speci�ed position of the shelf for 2 seconds, the subject would be able to move forward and 
drop the block in the following step. �is procedure also repeated until the subject successfully chose a posi-
tion on the shelf and moved forward to drop the block at the speci�c position of the shelf. �ese two steps were 
named reach-and-release. In order to move a block successfully, the participants had to �nish each of the four 
sequential steps correctly; otherwise they had to start from the beginning of the sequence of reach-and-grasp or 
reach-and-release. If the subject successfully placed a block onto the shelf, the empty space was �lled with a new 
block (Paradigm ➎ in Fig. 1c). �e positions for the targets in each run were �xed but varied across runs (see 
Supplementary Figure 6 for details). �is paradigm was repeated during three sessions on separate days. Sessions 
contained one run of both 1D,LR and 1D,UD cursor control tasks, followed by three runs of the 2D cursor control 
task and �ve runs of the shelf-target grasp task.

Besides these �ve experiment stages, six of the subjects performed four extra sessions of the shelf-target task 
with decreased time periods between the di�erent steps of the sequence. �is additional stage was termed the 
fast-shelf-target task. �e robotic arm was set to move with a constant speed of 8 cm/s for all of experiments 
in the above �ve stages. To test whether the subjects could operate the robotic arm with a higher speed by BCI 
control, the robotic arm was allowed to move with a maximum speed of 20 cm/s in the additional session of 
fast-shelf-target grasp task. In the fast-shelf-target grasp task session, the same task as in the shelf-target grasp task 
was repeated with a di�erent parameter setting, where the prefeedback, feedback, postfeedback, and inter-trial 
interval duration were all decreased to about two thirds of the previous settings.

Finally, to further test the applicability of moving a block solely by the robotic arm in the absence of a cursor 
on the monitor, we repeated the four-target and �ve-target grasp tasks by removing the visual feedback of cursor 
movement from the subjects’ view. �e subjects only received feedback from the movement of the robotic arm. 
�ese six subjects performed three sessions of the four-target and �ve-target grasp tasks in absence of the virtual 
cursor. Each of these sessions contained four runs of the four-target and two runs of �ve-target grasp tasks.

For each trial, there was an inter-trial interval that consisted of a black screen. �is was followed by a “pre-
feedback” period indicating which target/block should be picked up, identi�ed by a rectangular yellow bar on the 
monitor. A�er this was the “feedback” period in which the robotic arm moved according to the subject’s motor 
imagination toward the center of the speci�ed block. �e block was selected if the robotic arm remained in the 
hover area for 2 seconds (1 second for the fast-shelf-target grasp task). �ere was a maximum feedback duration 
(12 s) to let each trial end properly if the subject could neither hit or miss. Finally, if the target was selected, 
the hand of the robotic arm automatically opened or closed its �ngers during the “postfeedback” period and 
was prepared for the next step’s grasping or releasing (Fig. 1d). During the fast-shelf-target task, the aforemen-
tioned segments of each trial were shortened to increase the speed of task progression and overall grasp sequence 
completion.

Software and algorithm. BCI200036 was used to control the movement of a virtual cursor and also to dis-
play the targets that indicated where the cursor should be moved to and which block should be selected. A custom 
C+ +  based program was used to control the movement of the robotic arm to track the position of the cursor. 
We acquired 62 channels of EEG signals; EEG channels C3 and C4 and surrounding channels over le� and right 
motor cortex are utilized for online control. EEG activity from the controlling channels were spatially �ltered by a 
small Laplacian �lter37 and then fed into an autoregressive (AR) model to extract the power spectra features. �e 
power activity in the upper mu frequency band over the le� and right hemispheres were linearly mapped to the 
velocity of the virtual cursor or position of the robotic arm.

Statistical analysis. Nonparametric statistical test, i.e. Wilcoxon signed-rank test is applied throughout the 
analysis of the results. Because the sample size in this study is relatively small, nonparametric statistical test is 
more appropriate. All of the signi�cance tests are two sided and reported with the signi�cance level of α =  0.05.

Brain rhythm online calculation. �e subjects learned to modulate their sensorimotor rhythm amplitude 
in the upper mu (10–14 Hz) frequency band over the le� and right sensorimotor cortex to move the cursor and 
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the robotic arm in one or two dimensions. An autoregressive (AR) model, as shown in Eq. (1), was used to esti-
mate the amplitudes of sensorimotor rhythm:
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where yt is the estimated signal at time t, wi is the weight coe�cient and   is the error of estimation. In the current 
study we applied the 16th order AR model with a window length of 400 ms to calculate the online amplitude of mu 
rhythmic activity. �e weight coe�cients of which were estimated by the least-squares criteria.

ERD/ERS quantification. �e event related desynchronization (ERD) and event related synchronization 
(ERS) are brain oscillatory activity in diverse frequency bands. In this study we focus on the mu rhythmic activ-
ity which is modulated during participants’ motor imagination. �e mu brain oscillatory activity during the 
experiment was externally paced by the appearance and disappearance of targets, or in other words, was time 
locked to the trial events. �ere are several methods to calculate the ERD/ERS time courses. In this paper, we 
used a bootstrap-based method38 to show a time-frequency map with signi�cant changes of ERD or ERS for 
speci�c electrodes. In general, the calculation of ERD/ERS is performed by bandpass �ltering the EEG signals, 
segmenting individual trials, detrending the trials, squaring the samples and subsequently averaging over trials 
and sample points. �e procedures can be expressed as the following steps:
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where N is the total number of trials, xij is the jth sample of the ith trial of the bandpass �ltered EEG signals and 

x j is the mean of the j th sample averaged over all trials. R is the average power in the reference period [r0, r0 +  K], 
r0 is the starting time point of the reference period and K is the number of samples in the baseline reference 
period.

�e above calculation provides the ERD/ERS values for each time point and each frequency bin of interest. In 
order to show those signi�cant changes of ERD/ERS activity, we utilized the bootstrap resampling technique. �is 
procedure is realized in the Biosig toolbox39.

Data availability. All relevant data within the paper which are de-identi�ed is available online at http://
dx.doi.org/10.5061/dryad.nh109.
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