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We elucidate the fate of classical symmetries which suffer from Abelian Adler-Bell-Jackiw anomalies.
Instead of being completely destroyed, these symmetries survive as noninvertible topological global
symmetry defects with world volume anyon degrees of freedom that couple to the bulk through a magnetic
1-form global symmetry as in the fractional Hall effect. These noninvertible chiral symmetries imply
selection rules on correlation functions and arise in familiar models of massless quantum electrodynamics
and models of axions (as well as their non-Abelian generalizations). When the associated bulk magnetic
1-form symmetry is broken by the propagation of dynamical magnetic monopoles, the selection rules of the
noninvertible chiral symmetry defects are violated nonperturbatively. This leads to technically natural
exponential hierarchies in axion potentials and fermion masses.
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I. INTRODUCTION

Symmetry in its myriad incarnations is a unifying
principle of quantum field theory. It organizes universality
classes and provides one of the few generally applicable
tools to constrain correlation functions. Over the past few
years, the concept of symmetry has undergone a profound
sequence of generalizations broadening its scope and
applicability. In this paper, we continue these developments
by exhibiting new symmetries in familiar models of
massless quantum electrodynamics and models of axions
(as well as non-Abelian generalizations). We further
explore mechanisms for weakly breaking these novel
symmetries and illustrate that this often leads to technically
natural exponential hierarchies in effective field theory.

A. Expanding paradigm of global symmetry

The core idea behind recent progress is the intrinsic
formulation of internal symmetry in quantum field theory
by topological operators [1]. In this point of view, an
ordinary global symmetry gives rise to a topological
operator of codimension one (equivalently the dimension
of space). These symmetry defects act on local operators
and impose selection rules on correlation functions.
The fact that they are topological, i.e., invariant under

deformations of their support that do not intersect other
operators, encodes in an abstract geometric fashion the fact
that these symmetries are conserved. Meanwhile, the fact
that ordinary symmetries form a group is captured by the
symmetry defect fusion algebra: the operator product of
defects associated to group elements g1 and g2 leads to the
defect associated to g1g2.
From this starting point there are two significant

generalizations that appear in an interlocked manner as
follows.
Higher-form global symmetry [1].—In this generaliza-

tion, the topological defects defining the symmetry are
allowed to have general codimension (qþ 1), correspond-
ing to a so-called q-form global symmetry. Here the
charged objects are extended operators of dimension q.
Most relevant for our discussion is the example q ¼ 1 in
four-dimensional quantum field theory. In this case, the
associated symmetry defects are topological surface oper-
ators. These operators frequently arise in gauge theory and
provide a symmetry-based view of confinement.
A particularly simple example of such a symmetry which

will feature prominently below is the Uð1Þð1Þ magnetic
1-form symmetry of Abelian gauge theory. Denoting the
dynamical field strength by f, this symmetry is generated
by the current �f which is tautologically conserved. The
associated charged line defects are ’t Hooft lines which
physically model infinitely massive magnetic monopoles.
Noninvertible global symmetry.—In this generalization,

the topological defects defining the symmetry are permitted
to have a more general fusion product, beyond that captured
by a group. For instance, the fusion of two such defects
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may involve a sum of other defects, representing a variety
of possible fusion channels. This algebraic structure is
referred to as noninvertible to emphasize that, in contrast to
grouplike symmetries, a typical topological defect need not
admit an inverse under fusion.
A variety of examples of this rich structure have recently

been constructed. In two spacetime dimensions, the fusion
categories of lines are well known from rational conformal
field theory [2–4] and have been investigated in Refs. [5–8]
and applied to constrain the dynamics of gauge theories [9].
In spacetime dimension larger than two such defects have
also recently been constructed by generalizing Kramers-
Wannier duality to higher spacetime dimensions [10–15],
as well as by novel notions of gauging [16]. Their algebraic
properties have also been developed in Refs. [16,17].
The dynamical implications of these generalized sym-

metries are yet to be fully understood. This presents an oppor-
tunity for investigation that sets the context of this work.

B. Noninvertible chiral symmetry defects

Let us now focus on the main class of examples
described below. Our first result, derived in Sec. II, is to
clarify the nature of chiral symmetry in Abelian gauge
theory. In general, a common understanding is that a
classical Uð1Þchiral symmetry with an Adler-Bell-Jackiw
(ABJ) anomaly [18,19] is destroyed quantummechanically.
Instead, as we argue below, in a certain cases the chiral

symmetry is not destroyed, but its nature is changed from
an ordinary invertible symmetry classically to a noninver-
tible symmetry quantum mechanically. One such case is
when the gauge symmetry that causes the ABJ anomaly is
Abelian, which we call an Abelian ABJ anomaly. More
generally, this can also happen when the gauge group has a
nontrivial fundamental group.
In more detail, we construct noninvertible topological

defects Dk which act on local operators as a discrete chiral
symmetry rotation by a kth root of unity. Semiclassically,
these defects may be understood as a composite of the naive
invertible chiral symmetry defect Ck fused with a three-
dimensional topological field theory whose spectrum of
lines is precisely chosen to compensate for the anomaly of
Ck. In the terminology of Ref. [20], the relevant topological
theory is a minimal Abelian topological quantum field
theory (TQFT) AN;p, where the index N specifies that the

theory has Zð1Þ
N 1-form symmetry, and p controls the spins

of the associated Abelian anyons [see Eq. (10) below]. In
equations, we thus write

Dk ≡ Ck ×AN;p

�
f
2π

�
; ð1Þ

where above the appearance of the U(1) field strength f
indicates that the bulk is coupled to the TQFT by gauging
its 1-form symmetry using the magnetic 1-form symmetry
generated by f. This mimics the familiar coupling of the

electromagnetic gauge field in the fractional quantum
Hall effect. [See, e.g., Ref. [21] for further discussion of
coupling a TQFT to a quantum field theory (QFT).]
The existence of the symmetry defects Dk may be

viewed as a nonperturbative intrinsic definition of the
Abelian ABJ anomalous chiral symmetry valid at the
operator level in the associated quantum field theory. As
we discuss in detail in Sec. II E, these symmetry defects
impose selection rules on correlation functions. For local
operator correlation functions in flat space, these are the
naive selection rules of the chiral symmetry. However,
for more general spacetime manifolds, or correlation
functions involving extended operators, the selection rules
are modified, but nevertheless encoded by the algebraic
properties of Dk.
Focusing on specific examples, we exhibit the defectsDk

in massless quantum electrodynamics and axion electro-
dynamics. In particular, the former implies the existence of
novel noninvertible symmetries in the vanishing fermion
mass limit of the standard model. We also exhibit examples
of the symmetry defects Dk in non-Abelian gauge theory,
reviewing the construction of Ref. [12], as well as axion
Yang-Mills theory.
Like all symmetries, the noninvertible chiral symmetry

defects we construct are scale invariant and preserved under
renormalization group flow. We thus anticipate that these
defects will find broad application in investigating the
dynamics of quantum field theories.

C. Symmetry breaking and hierarchies

Exact global symmetries in quantum field theory provide
exact selection rules on correlation functions. However,
symmetry can also be useful when it is broken by small
effects. In that context, the associated degeneracies and
selection rules are weakly violated but are still protected
from large corrections in effective field theory. This is
known as technical naturalness [22].
In Sec. III, we explore the paradigm of weakly broken

noninvertible symmetry. We focus on the discrete chiral
symmetry defects Dk and exhibit an interplay between the
semiclassical physics of magnetic monopoles and techni-
cally natural nonperturbative effects.
The key idea is to utilize the fact that in effective field

theory, the magnetic 1-form symmetries that featured in the
construction of the defects Dk cannot be violated by any
local operator deformation. In the case of the magnetic
1-form symmetry of Abelian gauge theory this is trans-
parent from the fact that the field strength f is closed by the
Bianchi identity. This remains true in the presence of any
perturbative interactions or charged matter. Similarly, the
discrete magnetic 1-form symmetry of non-Abelian gauge
theory cannot be broken by operator deformations or the
addition of charged matter.
From a semiclassical point of view, this means that the

breaking of these 1-form symmetries can only proceed
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through nonperturbative physics or relatedly a change in
the topology of field space. In the case at hand, this is
achieved by considering models where there are dynamical
magnetic monopoles, which can screen the ’t Hooft line
and so violate the 1-form symmetry nonperturbatively.
These corrections due to monopoles may be quantified

by summing over loops of virtual particles. If a monopole
arises from a Higgsing process at a scale v, then the
monopole mass mmon and cutoff Λ are related as

mmon ∼
v
e
; Λ ∼ ev; ð2Þ

where e is a coupling constant. A monopole existing for a
short proper time on the order of Λ−1 then provides a
correction to the Lagrangian controlled by its one-particle
action Smon:

δL ∼ exp ð−SmonÞ ∼ exp
�
−
mmon

Λ

�
∼ exp

�
−

#
e2

�
: ð3Þ

This correction is nonperturbative and small provided the
effective field theory is under technical control, with a small
coupling constant e.
As is suggested by Eq. (3), there is a close connection

between the physics of monopoles described above and the
properties of instantons. As we emphasize in Sec. II,
noninvertible chiral symmetries arise semiclassically when
there are instantons which cannot be realized in R4 but can
be realized in more complicated spacetime topologies or in
the presence of extended operators. From this point of view,
the change in field space topology eluded to above is
precisely what is needed to allow the instanton to be
realized in R4.
Once the 1-form symmetry is violated, the discrete chiral

symmetry defects Dk are no longer topological and hence
their selection rules are also broken. This can be seen, for
instance, from the fusion rules discussed below and derived
in Refs. [11,12,14]. However, since the violation of the
1-form symmetry is nonperturbative, so too is the violation
of the Dk selection rules. Thus, weakly broken 1-form
symmetry yields exponentially small violations in the
selection rules of the noninvertible symmetry defects Dk.
Moreover, these small corrections are technically natural
since they are the leading terms violating Dk.
In this way we construct a variety of technically natural

models with exponential hierarchies in their effective field
theory description. This includes axion models (Abelian or
non-Abelian) with exponentially suppressed potentials or
energy splittings. In this context we make contact with the
recent work of Ref. [23], which examined the interplay
between axion potentials and magnetic monopoles. We also
discuss gauge theories with matter (Abelian or non-
Abelian) with exponentially suppressed fermion masses.
We speculate that this new symmetry-based mechanism

for generating exponential hierarchies may find applications

in model building or in refining our understanding of
naturalness in effective field theory. For recent work utiliz-
ing this mechanism in a model of neutrino masses,
see Ref. [24].

II. NONINVERTIBLE CHIRAL SYMMETRY FROM
ABELIAN ABJ ANOMALIES

In this section, we construct noninvertible symmetry
defects in models with Abelian ABJ-like anomalies.
Specifically, we find a noninvertible defect for each chiral
symmetry rotation by a rational angle. As we discuss
below, these noninvertible symmetry defects also make
precise the fate of the chiral symmetry selection rules on
correlation functions.
Throughout these examples, a key role is played by the

bulk 1-form symmetry whose current couples with the
internal 1-form symmetry of the topological degrees of
freedom on the defect. In the case of Abelian gauge theory
this is the continuous magnetic 1-form symmetry Uð1Þð1Þ
with closed 2-form current f=2π, while in the non-Abelian
gauge theory examples below it is a suitable discrete analog
of this magnetic symmetry.

A. Massless electrodynamics

Let us begin with Abelian gauge theory with massless
charged fermionic matter (i.e., massless QED) and gauge
group U(1). For simplicity we assume that we have Nf
species of massless electrons of unit electric charge, though
our discussion readily generalizes to models with more
complicated matter content; the essential feature is only the
ABJ anomaly.
At the classical level this theory admits a chiral sym-

metry Uð1Þchiral. Denoting the positively (negatively)
charged Weyl fermions as χ�;a

α with a a flavor index,
the chiral symmetry acts as

χaα;þ → eiθχaα;þ; χaα;− → χaα;−: ð4Þ

When quantum effects are considered, it is well known that
this symmetry is violated by the Adler-Bell-Jeckiv anomaly
[18,19]. At a technical level, we may view this as arising
from an anomaly polynomial related to the anomalous
variation in the action by the descent procedure (the five-
dimensional inflow action A5 obeys dA5 ¼ 2πI6):

I6 ¼
Nf

2ð2πÞ3 f ∧ f ∧ F; ð5Þ

where f is the field strength of the dynamical U(1)
gauge field and F is the background field strength of
the putative chiral symmetry. This anomaly polynomial
breaks the classical Uð1Þchiral symmetry down to a ZNf

discrete chiral symmetry which is free of ABJ anomalies.
In modern language, this ZNf

symmetry is generated by
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codimension-one topological operators with standard
grouplike (invertible) fusion rules.
What more can be said about this well-known story? A

clue can be seen via a familiar trick in current algebra.
Denoting by Jμ the anomalous current and �J the Hodge
dual, the anomaly (5) implies:

d � J ¼ Nf

8π2
f ∧ f: ð6Þ

The right-hand side is a globally well-defined closed 4-
form. However, if the spacetime manifold is sufficiently
simple, in particular if it does not have any closed two
cycles, and there are no line operators inserted, then the
form is also exact and is the exterior derivative of the
Chern-Simons 3-form ∝ a ∧ da. Thus, in such a simple
configuration, one is tempted to redefine the current as

�J→? � J −
�
Nf

8π2

�
a ∧ da: ð7Þ

This modified current is not gauge invariant, but in these
simple field configurations certain rational multiples (with
denominator Nf) of the total exponentiated charge integrals
are well defined and conserved. Thus, one is tempted to
declare that the chiral symmetry remains, despite the
anomaly Eq. (6). For instance, this manipulation implies
that the selection rules of the broken chiral symmetry are
valid when considering correlation functions of local
operators in a topologically trivial spacetime.
With a view toward later generalizations, we can also

rephrase this argument in terms of instantons. Equation (6)
implies that the chiral charge is violated by Abelian instan-
tons, but on a topologically trivial spacetime such as R4 (or
more precisely its infrared (IR) regulated version S4), with
only local operator insertions, no such instantons exist.
The preceding discussion begs the question as to what

has become of the chiral symmetry in massless QED (or
other similar models with an Abelian ABJ anomaly). As we
now show, the correct statement which holds on any
spacetime manifold in any configuration of operators is
that there is a noninvertible chiral symmetry in the theory.
Thus, the true effect of the ABJ anomaly is not to destroy
the chiral symmetry, but to change its nature.
It is helpful to consider again the anomaly polynomial

Eq. (5). Let us focus on a discrete chiral rotation by a root of
unity so that the angle inEq. (4) is θ ¼ 2π=k for some integer
k. This is implemented by a codimension-one domain wall
operator Ck located, say, at x ¼ 0, where the chiral back-
ground gauge field A (with field strength F) is taken to be

A ¼ θδðxÞdx: ð8Þ

Applying inflow,we deduce that across this domainwall, the
bulk action differs by an effective θ angle:

S → Sþ 2πiNf

k

Z
x>0

f ∧ f
8π2

: ð9Þ

This equation implies that in a theory where the dynamical
gauge field is a frozen background, the Zk chiral domain
wall Ck has a world volume ’t Hooft anomaly characterized
by the above term by inflow. Once the U(1) is made
dynamical, we then see from Eq. (9) that the bulk action
jumps across Ck and hence this defect does not define a
symmetry of our theory.
The key idea, following Ref. [12], is now to modify the

Zk chiral domain wall Ck by stacking it with a suitable 3D
TQFT which also couples to the bulk gauge field a and
cancels the apparent anomaly in Eq. (9). After this con-
struction an avatar of the discrete chiral domain wall will
remain as a topological defect (symmetry) in the theory, but
at the cost of becoming noninvertible.
In more detail, we consider a TQFT with a 1-form

symmetry Zð1Þ
N with associated background field Bð2Þ. This

means that among the lines characterizing this theory are
Abelian anyons whose fusion algebra forms the group ZN .
These lines have a spin, with s times the generating line
having spin hðsÞ given by

hðsÞ ¼ ps2

2N
mod 1; ð10Þ

where p is coprime to N. Such a topological field theory
carries an anomaly defined by inflow as

Sinflow ¼ −
2πip
2N

Z
PðBð2ÞÞ; ð11Þ

where P is the Pontryagin square operation [25].
As discussed in detail in Ref. [20], any such TQFT can

be written as product of a minimal Abelian TQFT AN;p

together with a decoupled sector that plays no role in the
following. We denote by AN;pðBð2ÞÞ this minimal TQFT
coupled to its 1-form symmetry background Bð2Þ.
We now fix N and p such that p=N ¼ Nf=k and

gcdðp;NÞ ¼ 1. We define a modified chiral symmetry
defect Dk, by stacking Ck with AN;p and coupling to the
bulk by gauging the 1-form symmetry of the TQFT through
the dynamical gauge field f ¼ da. In equations this means

Dk ≡ Ck ×AN;p

�
f
2π

�
: ð12Þ

Thus, the bulk and TQFT are coupled through the fact that
the 1-form symmetry on the defect is identified with the
magnetic 1-form symmetry of the U(1) gauge theory.
The coupling between the bulk and the defect defined by

Eq. (12) takes a more familiar form in the special case
p ¼ 1 where AN;p is an Abelian Chern-Simons theory
Uð1ÞN [20,26]. Denoting the defect dynamical gauge field
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by c, the bulk-defect coupling arises from a mixed Chern-
Simons term:

Sdefect ¼
iN
4π

Z
c ∧ dcþ i

2π

Z
c ∧ f; ð13Þ

which mimics the familiar coupling of the electromagnetic
gauge field in the fractional quantum Hall effect. This point
of view also clarifies the meaning of the gauge noninvariant
current appearing in Eq. (7): the fractional Chern-Simons
term appearing in the current may be understood as the
effective response of the fractional Hall state.
The defect Dk defines the remnant of the Zk chiral

symmetry in our model. Repeating the argument for general
k or powers thereof, we see that a chiral rotation by any
rational angle can be promoted to a general noninvertible
topological defect. In particular, all such operators should be
viewed as a generalized symmetries and imply selection
rules on correlation functions discussed below.
The noninvertible nature of these defects is manifest

simply from the fact that the partition function of AN;p in
general does not have unit modulus (and may even vanish).
For instance, wrapping Dk on a three-sphere and using
jZAN;pðS3Þj ¼ 1=

ffiffiffiffi
N

p
, we obtain the quantum dimension:

DkðS3Þ ¼
1ffiffiffiffi
N

p : ð14Þ

Alternatively, one can also exhibit the noninvertibility of
these defects through their fusion algebra. In particular,
following the derivation in Refs. [11,12,14]. one can
deduce that the fusion of the defect Dk with its orientation
reversal D̄k on a general oriented` three-manifold M is

DkðMÞ × D̄kðMÞ ¼
X

S∈H2ðM;ZNÞ
ηðSÞeð2πip=NÞQðSÞ; ð15Þ

where η ¼ exp½i RSðf=2πNÞ� is the generator of the ZN

subgroup of the magnetic 1-form symmetry, the sum is over
two cycles S ⊂ M, and QðSÞ is the triple self-intersection
number. In particular, the right-hand side of Eq. (15) is an
example of a condensation defect explored in detail in
Refs. [14,27] (see also Refs. [28,29]).
In summary, the existence of the noninvertible topologi-

cal defects Dk is an intrinsic statement about the operator
content of the quantum field theory. Thus, these defects
give a nonperturbative definition of the ABJ anomaly and
its physical consequences.

B. Axion electrodynamics

The noninvertible defectsDk defined above have analogs
in any theory with an ABJ-like anomaly. Let us exhibit
them in a model of axion electrodynamics. We focus on a
minimal model, though our analysis applies to more
general field content.

Thus, consider a theory where, in addition to the
dynamical U(1) gauge field with field strength f, there
is a dynamical periodic scalar field θ (the axion) with

θ ∼ θ þ 2πμ; ð16Þ

with μ the axion decay constant. The action is

S ¼ 1

2

Z
dθ ∧ �dθ þ 1

2e2

Z
f ∧ �f þ iL

8π2μ

Z
θf ∧ f;

ð17Þ

with L ∈ Z a possible discrete coupling constant. Ignoring
the coupling between the θ and the gauge field, the axion
enjoys a continuous shift symmetry with current J where
�J ¼ iμ � dθ. However this current is broken by the
coupling between θ and f [the normalization of the current
J can be verified by noting that the associated charged
operators are expðinθ=μÞ for integer n]:

d � J ¼ L
8π2

f ∧ f: ð18Þ

This equation is directly analogous to the violation of the
chiral symmetry in Abelian gauge theory (6) and breaks the
axion shift symmetry to ZL. However, as in our previous
discussion, we note that the violation of the axion shift
symmetry is only through Abelian instantons, and hence
does not occur in sufficiently simple spacetime topologies
with only local operator insertions. We thus anticipate that
the axion shift symmetry is not broken, but instead is
transformed into a noninvertible topological operator.
We may directly verify this intuition by constructing a

suitable symmetry defect Dk associated to a discrete Zk
rotation of the axion θ → θ þ ð2πμ=kÞ. Letting Ck denote
the naive (broken) discrete Zk shift symmetry defect, we
see that across Ck the action shifts as in Eq. (9), effectively
generating a rational θ angle 2πL=k for the dynamical U(1)
gauge field. Again choosing N and p coprime with
p=N ¼ L=k, we define Dk exactly as in Eq. (12):

Dk ≡ Ck ×AN;p

�
f
2π

�
: ð19Þ

Of course the close analogy between the axion shift
symmetry and the chiral symmetry in Abelian gauge theory
is no accident, as the two can be related by renormalization
group flow. Indeed, in a typical model of axions con-
structed by the Pecci-Quinn mechanism, the UV consists,
for instance, of electrodynamics coupled to a neutral
complex scalar φ and Nf electrically charged fermions
χa� [30,31]. In addition to the kinetic terms the action
contains Yukawa and potential interactions:
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S ⊃
Z

d4xfλφ̄χaþχa− þ λφχ̄aþχ̄a− − VðφÞg: ð20Þ

At the classical level, there is a chiral Peccei-Quinn Uð1ÞPQ
symmetry where the different fields have charges

Field Uð1ÞPQ charge

χaþ þ1

χa− 0
φ þ1

At the quantum level, this Uð1ÞPQ has an ABJ anomaly and,
hence, following the discussion above, gives rise to a
noninvertible discrete chiral symmetry defect Dk.
We now flow to axion electrodynamics by condensing

the scalar with hjφj2i ¼ μ2. This freezes the radial mode of
φ. However, an axion θ remains as a pseudo-Goldstone
mode where

φ ¼ μ expðiθ=μÞ: ð21Þ
The Yukawa couplings give a mass to the fermions, and
decoupling them from the axion requires a chiral Uð1ÞPQ
rotation. The anomaly then generates an axion coupling
between θ and the U(1) gauge fields. Thus, the final action
is that of axion electrodynamics where the coupling L in
Eq. (17) is identified with Nf the number of UV flavors.
This simple flow illustrates the renormalization group

invariance of the existence of the noninvertible symmetry
defects. Indeed, the defectDk constructed from the discrete
chiral symmetry in the UV flows to the noninvertible axion
shift symmetry defect in the IR.
In general, the defect Dk defined in Eq. (19) makes

rigorous the sense in which the axion shift symmetry is still
present in axion electrodynamics. As discussed in more
detail below, this means that at the level of local operator
correlation functions on R4, the selection rules implied by
the discrete axion shift symmetry hold. One important
application of this is to the axion potential. Taking into
account only the standard ZL invertible symmetry, the
axion model admits a possible potential of the form

VðθÞ ¼
X
n∈N

αn cos

�
Lnθ
μ

�
: ð22Þ

However, this potential is forbidden by the noninvertible
defect Dk which shifts θ by a fraction of its period. In other
words, a vanishing potential in axion electrodynamics is
stabilized by the exact noninvertible symmetry generated
by the defects Dk.

C. Non-Abelian gauge theory with matter

A discrete part of the noninvertible symmetry in the
previous sections can also arise in a non-Abelian gauge
theory. This symmetry was discussed in Ref. [12], and here

we recast the argument so that it aligns with the ABJ
anomalous symmetry presented above. We focus on the
simplest example of relevance to later models, though as in
previous sections the essential feature is the anomaly.
Consider, e.g., a QFT with non-Abelian gauge group

PSUðNcÞ ≅ SUðNcÞ=ZNc
, with non-Abelian field strength

w. We take the matter content to beNf Weyl fermions in the
adjoint representation λa, where a is a flavor index. There is
a classical Uð1Þchiral symmetry acting on λa as λa → eiθλa.
In this case the anomaly polynomial is

I6 ¼
2NfNc

2ð2πÞ3 Trðw ∧ wÞ ∧ F; ð23Þ

where Tr is the trace in the fundamental representation and
F is again the background Uð1Þchiral field strength.
The resulting pattern of discrete chiral symmetry

depends on the global form of the gauge group through
the properties of the instanton number. Specifically
(restricting to spin manifolds for simplicity), we have

I ¼ 1

8π2

Z
Trðw ∧ wÞ ∈

�Z SUðNcÞ
1
Nc
Z PSUðNcÞ: ð24Þ

This means the invertible symmetry group is broken down
to Z2NcNf

for the SUðNcÞ theory, and to Z2Nf
for the

PSUðNcÞ theory.
The PSUðNcÞ configuration with fractional I is called a

fractional instanton. Such a configuration is possible
because a PSUðNcÞ gauge connection a has more freedom
than a SUðNcÞ gauge connection. Specifically, this is
encoded in the discrete magnetic flux, defined cohomo-
logically by the second Stiefel -Whitney class of the gauge
bundle w2ðaÞ ∈ H2ðM;ZNc

Þ. The fractional part of the
instanton number I is controlled by w2ðaÞ as [this is an
integer multiple of 1=Nc because, assuming spacetime is a
spin manifold, Pðw2ðaÞÞ is even when Nc is even]:

I ¼ Nc − 1

2Nc
P(w2ðaÞ) mod 1: ð25Þ

This fractional instanton breaks the anomaly-free symmetry
Z2NcNf

of the SUðNcÞ theory further down to Z2Nf
.

However, exactly analogous to our discussion of the ABJ
anomaly for the chiral symmetry of massless QED, frac-
tional instanton configurations do not exist when the
spacetime manifold has a trivial second cohomology group,
H2ðM;ZNc

Þ. The main difference is that, in the Abelian
case, no instantons exist at all on R4, while for PSUðNcÞ
only the fractional instantons are absent on R4. Thus, we
expect that the generator of Z2NcNf

survives as a topologi-
cal defect, but becomes a noninvertible symmetry.
Proceeding as in the previous sections, we can construct

the desired symmetry defect Dk with k ¼ 2NcNf again by
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stacking the Zk domain wall Ck with a minimal Abelian
TQFT as

Dk ¼ Ck ×ANc;1(w2ðaÞ); ð26Þ

where the TQFT couples to the Stiefel-Whitney class w2ðaÞ
instead of the field strength. This is the noninvertible defect
found in Ref. [12].

D. Axion Yang-Mills theory

Just as the noninvertible chiral symmetry defects in
massless QED immediately generalize to noninvertible
symmetries of axion electrodynamics, so too do the non-
invertible symmetries described in the previous section
generalize to noninvertible symmetries of axion Yang-Mills
theory. Here we focus on examples with gauge group
PSUðNcÞ to parallel the above discussion, though it is
straightforward to generalize to other gauge groups.
Thus we consider a QFT, where in addition to the kinetic

terms involving the axion θ and the gauge field strength w,
the action includes the interaction

S ⊃
iL
8π2μ

Z
θTrðw ∧ wÞ: ð27Þ

Here we must carefully keep track of the quantization of the
instanton density expressed in Eq. (24). In particular,
fractional instantons of PSUðNcÞ imply that the correct
periodicity of the axion is

θ ∼ θ þ 2Ncπμ: ð28Þ

As discussed above, the possibility of fractional instan-
tons also leads to discrete noninvertible symmetry defects.
Indeed, the model (27) has a ZL standard invertible
symmetry which acts by shifting θ by 1=L times its full
periodicity. However, there is also a noninvertible topologi-
cal defect Dk with k ¼ NcL constructed as in the previous
section by stacking a discrete axion shift symmetry Ck
domain wall, with the minimal TQFT ANc;1(w2ðaÞ) as
in Eq. (26).
The noninvertible defect Dk contains the invertible

defects by fusion in the sense that ðDkÞNc is the generator
of the invertible ZL symmetry. As in the axion-electrody-
namics case,Dk constrains the axion potential by enforcing
that it is invariant under shifts of by 1=ðNcLÞ of the full
period: θ → θ þ ð2πμ=LÞ. In particular, the potential has
NcL minima leading to NcL degenerate vacua.

E. Selection rules on correlation functions

An ordinary invertible symmetry imposes selection
rules; it ensures that some correlation functions vanish,
or more generally, relates one correlation function to
another. It is thus natural to ask what constraints on

correlation functions are implied by the noninvertible
topological defects Dk defined above.
When we consider correlation functions of local oper-

ators on S4 (regarded as an IR regulated R4), the selection
rule is simple: we just ignore the fact that the defect is
noninvertible and treat it as if it were an ordinary (i.e.,
invertible) chiral symmetry (see also Ref. [32] for related
discussion). To formally derive this result, we insert a small
S3-shaped symmetry defect DkðS3Þ around the north pole
of the ambient S4, then let the defect pass through the whole
spacetime, contracting at the south pole (see Fig. 1). In this
procedure the local operators acted on by the Ck part of Dk,
but do not interact with the TQFT AN;p. [When we insert
the defect DkðS3Þ we have to divide the correlator by a
factor of the quantum dimension (14); however, this factor
cancels when we contract the defect at the antipodal point.]
The selection rules become more interesting when either

the manifold is more complicated or we involve line
operators in the correlator. Let us focus on the latter.
Consider for example a ’t Hooft line operator T of magnetic
charge m inserted along a curve γ in spacetime. In and an
Abelian gauge theory with symmetry Dk defined in
Eq. (12), this operator may be viewed as the worldline
of an infinitely heavy Dirac monopole.
How does the noninvertible symmetry act on T? In this

case the TQFT degrees of freedom of the defect Dk are
essential. Examining Eq. (9), we see that the domain wall
effectively changes the θ term as Eq. (9). This implies that
the line T acquires a fractional electric charge through the
Witten effect. Hence the action on T is

TðγÞ → TðγÞWNf=kðγ;ΣÞ; ð29Þ

where WNf=kðγ;ΣÞ ¼ eiðNf=kÞ
R
Σ
f, with ∂Σ ¼ γ, is an open

1-form symmetry generator. When Nf=k is an integer, the
operatorWNf=kðγ;ΣÞ is a genuine Wilson line operator with
the integer charge, but in general, for fractional Nf=k it
depends on the surface Σ.

FIG. 1. The action of the noninvertible symmetry Dk on the
correlation function on S4 with local operator insertions with
charge q1, q2, and q3. The rotation angle θ of the symmetry is
2π=k. At the last step the defect is contracted at the other side of
the sphere.
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This behavior of the noninvertible symmetry, transform-
ing a genuine line operator to a line attached to a surface,
was also found in Refs. [11,12,14]. It is a direct analog of
Kramers-Wannier duality, which exchanges the local spin
operator and the disorder operator in the two-dimensional
Ising model.
Although we have derived the properties of the defect

action Dk in Abelian QED, the result is model independent
and intrinsically encoded in the interplay between the bulk
1-form symmetry and the TQFT. Thus, in general, the
noninvertible defect Dk acts on a line charged under the
1-form symmetry and transforms it into a nongenuine line
attached to an open 1-form symmetry surface operator. An
example of this action on a correlator involving T and local
operators on S4 is shown in Fig. 2. Note that in the presence
of T insertions, nonzero correlation functions where the
ABJ anomalous charge is classically unbalanced are
compatible with the Dk selection rules.
The noninvertibility of Dk can also be seen in its action

on the Hilbert space of states on a nontrivial spatial
manifold. To be concrete, take the spatial manifold to
be M3 ¼ S2 × S1. The Hilbert space decomposes into
sectors labeled by the 1-form charge: HS2×S1 ¼⊕m Hm,
where m ¼ R

S2ðf=2πÞ. To study the action of Dk on this
Hilbert space, we need the partition function of the TQFT
Ak;1 on this spatial manifold. As the TQFT is coupled with
f through its 1-form symmetry, the magnetic flux m
induces an anyon line along the S1 direction of M3, which
is the mth power of the generating line. However, the
S2 × S1 partition function of Ak;1 with an anyon insertion
along S1 vanishes unless the line is trivial. Therefore, we
deduce

Ak;1½S2 × S1; m� ¼
�
0 m ≠ 0 mod k

1 m ¼ 0 mod k:
ð30Þ

From the definition (12), we have

Dk½S2 × S1� ¼ CkPm;k; ð31Þ

where Pm;k is the projection onto the sectors Hm with
m ¼ 0 mod k. The noninvertibility of Dk is now manifest
from the fact that its action contains a projection operator.
Note also that preservation of this operator means that, on
Hm, the chiral central charge is preserved modulo m if
m ≠ 0, and it is exactly preserved on H0.

III. EXPONENTIAL HIERARCHIES FROM
MAGNETIC MONOPOLES

The previous section constructed noninvertible analogs
of chiral symmetry in gauge theory. Here we consider
models where these symmetries are emergent at long
distances and show that this scenario naturally leads to
exponential hierarchies in the violation of the chiral
symmetry selection rules.
As emphasized in Sec. I, the unifying feature of these

examples is that the breaking of a magnetic 1-form
symmetry proceeds semiclassically through the existence
of magnetic monopoles which may screen the ’t Hooft
lines. This breaking is communicated to the noninvertible
chiral symmetry defects Dk and leads to nonperturbative,
but technically natural, violations of the selection rules.

A. Exponentially suppressed axion potentials

As a first pedagogical example, we consider a model of
axion electrodynamics where the U(1) gauge field arises
from an ultraviolet non-Abelian gauge group by Higgsing.
As is familiar, in this model one finds an exponentially
small axion potential generated by instantons. Following
the analysis of Ref. [23], we recast this nonperturbative
potential as the consequence of quantum loops of dynami-
cal magnetic monopoles. These monopoles break the
magnetic 1-form symmetry of the infrared theory. In this
way we recast the exponentially suppressed axion potential
as a technically natural violation of the noninvertible axion
shift symmetry defects Dk.
For concreteness, we focus on the simplest case of SU(2)

though the discussion readily generalizes. At high energies,
our effective description consists of a non-Abelian gauge
field with field strength w, the axion θ, and a real SU(2)
triplet Higgs field Φ. In addition to the kinetic terms for θ,
w, and Φ, the action contains the interaction terms for the
axion and gauge field, as well as the Higgsing potential,

S ⊃
iLUV

8π2μ

Z
θTrðw ∧ wÞ − 1

g2

Z
d4xVðΦÞ: ð32Þ

We assume the Higgsing potential is chosen such that the
triplet condenses, hjΦj2i ¼ v2 leading at long distances to
axion electrodynamics and a neutral decoupled scalar with
LIR ¼ 2LUV. Henceforth for simplicity, we set LUV → 1.
Let us track the symmetries along this renormalization

group flow. In the IR we have the noninvertible axion shift
symmetry defects Dk. However, in this model these
symmetries are emergent and explicitly broken by the
couplings of the ultraviolet action Eq. (32). A simple way to
understand this is again to look at the divergence of the
semiclassical current J that acts to shift the axion. In the
non-Abelian model (32) we have

FIG. 2. A noninvertible symmetry transforms a line operator T
on a line γ into a line operator attached to a surface operator.
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d � J ¼ 1

8π2
TrðF ∧ FÞ: ð33Þ

Unlike the case of axion electrodynamics, the right-hand
side of this equation is not in general d exact, even in R4,
and hence no modified charge is available. Said differently,
there are nontrivial instantons in S4 which explicitly violate
the axion shift symmetry.
One can also ask more directly why the construction of

the defect Dk fails in the non-Abelian gauge theory. In this
case, as we cross the shift symmetry wall Ck, the bulk
differs by a rational non-Abelian θ angle 2π=k. However,
now we can no longer absorb this anomaly by dressing the
defect by a suitable topological field theory. Indeed, our
coupling to AN;p is through the 1-form symmetry of the
TQFTand the magnetic 1-form symmetry of the bulk gauge
theory. But in the non-Abelian theory this magnetic 1-form
symmetry is explicitly broken.
The preceding comments allow us to investigate the

breaking of the defect Dk from the point of view of the IR
Abelian gauge theory. In this theory, when the ’t Hooft lines
are viewed as rigid defect operators, the magnetic 1-form
symmetry is preserved. However, when there are dynamical
magnetic monopoles, the lines can be screened and the
1-form symmetry is broken. This implies that we can
understand the leading symmetry breaking effects for Dk
from the semiclassical physics of magnetic monopoles. In
other words, the dynamical monopole or dyon worldlines
generated in the vacuum appear as insertions of Wilson–
’t Hooft line operators, where the selection rules discussed
in Sec. II E do not ensure the vanishing of correlation
functions.
Let us focus on the calculation of the effective

axion potential which arises from summing over loops
of monopoles in the Abelian gauge theory. Our treatment
follows that of Ref. [23]. Assuming the interactions
between multiple monopoles are small, the effective
potential VðθÞ can be usefully computed in the worldline
formalism where we sum over closed trajectories of
particles with a unit magnetic charge. This can be viewed
as a dilute monopole gas approximation. Working at a
constant value θ of the axion we then have

Z
d4xVðθÞ ¼ ZðθÞ; ð34Þ

where ZðθÞ is the single particle partition function. In
turn, this partition function may be expressed as an integral
over worldline proper time τ. This results in a standard
expression:

VðθÞ ∼
Z

∞

0

dττα exp

�
−
m2ðθÞ
2

τ

�
; ð35Þ

wheremðθÞ is the mass of the magnetically charged particle
and we have neglected order one coefficients and a power
law term in the integrand. Thus, we see that an effective
potential will arise for the axion θ when the particles
summed in the worldline trajectory have masses that
depend on θ. This may be viewed as an analog of the
Coleman-Weinberg potential [33] generalized to include
loops of solitons. (See also Refs. [34–36] for related
discussion.)
To evaluate Eq. (35) we use the fact that in addition to a

fundamental monopole, there is also a tower of dyons
whose electric charges q depend on the axion through the
Witten effect [37]:

q ¼
�
l −

θ

2πμ

�
; ð36Þ

where l ∈ Z labels the dyon. The energy spectrum of these
dyons and their interactions can usefully be understood by
viewing them as the result of quantizing a worldline
periodic scalar where the axion θ enters as the worldline
θ angle [38]. This results in a familiar energy spectrum for
these modes:

El ∼
�
l −

θ

2πμ

�
2

; ð37Þ

Equations (36) and (37) suggest an ansatz where the θ
dependence of the mass is taken to be

m2
lðθÞ ≈m2

mon þm2
vec

�
l −

θ

2πμ

�
2

; ð38Þ

with the mass of the monopole and W boson respectively
given by

mmon ¼ 4πv=g; mvec ¼ gv: ð39Þ

The effective potential Eq. (35) is then a sum over dyon
species in addition to the integral over proper time.

VðθÞ ∼
X
l∈Z

Z
∞

0

dτ
τα

exp

�
−
τ

2

�
m2

mon þm2
vec

�
l −

θ

2πμ

�
2
��

∼
X
n∈Z

Z
∞

0

dτ
τβ

exp

�
−
m2

monτ

2
−
2π2n2

m2
vecτ

þ inθ
μ

�
; ð40Þ

where above we have used Poisson ressumation. Finally,
evaluating the proper time integral in a saddle point
approximation yields a critical proper time,

τ� ¼
2πn

mmonmvec
; ð41Þ
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and a corresponding potential,

VðθÞ ≈
X
n∈N

cn exp

�
−
2πnmmon

mvec

�
cos

�
nθ
μ

�

≈
X
n∈N

cn exp

�
−
8π2n
g2

�
cos

�
nθ
μ

�
: ð42Þ

Thus, loops of monopoles generate an effective potential
for the axion which is exponentially suppressed.
The result Eq. (42) can also be understood from the

ultraviolet point of view as the familiar axion potential
generated by non-Abelian instantons. Indeed the weight of
each term in the sum (42) is precisely the non-Abelian
instanton action. What the presentation in terms of monop-
oles has accomplished is it has made manifest the link
between 1-form symmetry breaking via dynamical monop-
oles and the exponentially suppressed axion potential. In
particular, since this potential is the leading operator
deformation violating the axion shift symmetry defects
Dk, it is technically natural.

B. Exponentially small axion energy splittings

The preceding example revisited a familiar small axion
potential from the point of view of noninvertible symmetry
and presented a link to monopole physics and 1-form
symmetry breaking. We can now use the same technique to
generate more novel technically natural models with
exponential hierarchies.
As an example, we consider an axion Yang-Mills theory

with infrared gauge group SO(3). In addition to the kinetic
terms involving the axion θ and the gauge field strength w,
the action includes the interaction

S ⊃
i

8π2μIR

Z
θTrðw ∧ wÞ: ð43Þ

Noting that SOð3Þ ≅ PSUð2Þ; the discussion of Sec. II D
applies. Specifically, the full periodicity of the axion is

θ ∼ θ þ 4πμIR; ð44Þ
and there is a noninvertible symmetry defect D2 which acts
to shift the axion by half of its full period θ → θ þ 2πμIR. In
this case, the topological degrees of freedom on the defect
are the semion Chern-Simons theory Uð1Þ2.
The exact axion shift symmetry defect D2 implies exact

selection rules on the axion potential. Specifically, a
general potential compatible with the full periodicity
Eq. (44) takes the form

VðθÞ ¼
X
n∈N

αn cos

�
nθ
2μIR

�
; ð45Þ

where the coefficients αn arise, for instance, from instantons
which need not be suppressed due to strong non-Abelian

dynamics. However, the symmetry defect D2 implies the
selection rule:

αn ¼ 0; if n odd: ð46Þ

This in turn leads to two ground states where hθi ¼ 0 or
hθi ¼ 2πμIR, whose exact degeneracy is protected by the
topological defect D2.
We now embed this model as the long-distance limit of a

flow from a larger gauge group which breaks the 1-form
symmetry in the ultraviolet. Specifically, let the parent
gauge group be SU(3) with field strength W and suppose
there is in addition a complex Higgs fieldΦ transforming in
the 6 of SU(3) (the symmetric product of two fundamental
3’s). In addition to the kinetic terms, the action includes the
interactions:

S ⊃
i

8π2μUV

Z
θTrðW ∧ WÞ − 1

g2

Z
d4xVðΦÞ: ð47Þ

Here μUV is the ultraviolet axion decay constant, in terms of
which the axion has standard periodicity θ ∼ θ þ 2πμUV.
We now assume that the potential is chosen to condense

the Higgs field so that (up to gauge transformations) the
expectation value of the scalar hΦi ¼ vδij (the 3 × 3
identity matrix.). This expectation value Higgses the gauge
group SU(3) down to the subgroup that preserves δij, which
is SO(3). At long distances we thus obtain SO(3) axion
Yang-Mills theory, together with an adjoint scalar field.
We must also keep track of the properties of the instanton

density under this pattern of Higgsing. Crucially, the index
of embedding of SO(3) inside SU(3) is four [39]. This
means that a single instanton of SO(3) has instanton
number four when embedded inside SU(3). In particular,
this implies that the relation between the axion decay
constants is

μUV ¼ 4μIR: ð48Þ

Let us next turn to the axion potential generated by the
flow. Since the 1-form symmetry of the infrared theory is
broken by dynamical monopoles, we anticipate a non-
perturbative violation of the D2 selection rules. Indeed,
assuming that the Higgs scale v is chosen so that at the scale
v the SU(3) theory is weakly coupled, SU(3) instantons will
generate a small change in the axion potential δVðθÞ which
admits an expansion of the form

δVðθÞ ¼
X
n∈N

βnv4 exp

�
−
8π2n
g2ðvÞ

�
cos

�
nθ
μUV

�
: ð49Þ

In particular, using Eq. (48), and comparing to the general
IR expansion Eq. (45), we observe that all Fourier modes
are now present in δVðθÞ [40].
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We conclude that the selection rule (46) is now violated
nonperturbatively, and hence there is an exponentially
suppressed energy splitting between the nearly degenerate
states:

jδVð0Þ − δVð2πμIRÞj ∼ v4 exp

�
−

8π2

g2ðvÞ
�
: ð50Þ

Since this is the leading effect violating the defect D2, this
exponential potential splitting is technically natural.

C. Exponentially suppressed mass terms in QED

The previous examples used the breaking of noninver-
tible symmetries to construct axion potentials with inter-
esting features. Here we apply the same mechanism to
produce a small breaking of the noninvertible chiral
symmetry defect Dk in massless QED. This results in
technically natural models with exponentially suppressed
fermion masses.
As the simplest example, let the ultraviolet be SU(2)

gauge theory with two Weyl fermions χi and ψ i in the
fundamental representation (2) where i ¼ 1, 2 is a doublet
gauge index. (Note that the number of Weyl doublets must
be even for consistency with the Witten anomaly [41].) In
addition, we also include a real adjoint scalar Higgs field
Φij. At short distances, SU(2) instantons completely break
the chiral symmetry rotating the fermions χ and ψ , except
for the fermion parity ð−1ÞF which is contained in the
SU(2) gauge group. Anticipating the discussion to follow,
we also note that this theory does not have any 1-form
symmetry.
We now use a potential VðΦÞ to condense the scalar,

hΦiji ¼ vδij. This Higgses the gauge group down to
SOð2Þ ≅ Uð1Þ. The long-distance theory has two fermions
χþ with charge þ1 and two fermions χ− with charge −1.
If the bare mass term for the fermions vanishes in the

ultraviolet, then at long distances this model will have
emergent noninvertible chiral symmetries acting on the
fermions of the type discussed in Sec. II A. Crucially, these
chiral symmetries forbid a fermion mass term. However,
since the 1-form symmetry is broken at short distances, we
expect that this noninvertible symmetry is broken non-
perturbatively by monopole bubbles, generating an expo-
nentially suppressed mass term. This expectation can be
directly verified using SU(2) instanton calculus. The
’t Hooft vertex coming from the sector of instanton number
one generates a bilinear χψ term. At long distances this
gives a mass correction suppressed by the instanton
factor ∼e−8π2=g2ðvÞ.
Thus, this simple example generates a nonperturbative

violation of the noninvertible chiral symmetry selection
rules. However, it is unsatisfactory, and not technically
natural, since there is no mechanism prohibiting a bare
fermion mass term in the ultraviolet.

To remedy this, and construct a technically natural
model with exponentially light fermion masses, we con-
sider a slight generalization of the model above. We now
take the ultraviolet to be SU(2) gauge theory with 2Nf
Weyl fermions and also make the adjoint scalar Φij

complex. We denote the first of the fermions doublets as
χ, and the rest of the doublets as ψS, with flavor index
S ¼ 1;…; 2Nf − 1. We aim to flow at long distances to
QED with one light electron χþ and positron χ−.
To achieve this in a technically natural way, we impose

on the ultraviolet model the following (invertible, ABJ-
anomaly-free) symmetry:

χ → ζχ; ψS → ζ̃ζψS; Φ → ðζ̃ζÞ−2Φ; ð51Þ

where ζ2Nf ¼ 1 and ζ̃2Nf−1 ¼ 1 are roots of unity.
This transformation generates a Z2Nfð2Nf−1Þ invertible sym-
metry. This symmetry prohibits the bare mass for the
fermions and the Yukawa coupling between ϕ and χ.
However, it allows a Yukawa interaction of the form:

ySTϕijψ
S;iψT;j; ð52Þ

where yST is a symmetric matrix of couplings.
We again Higgs to U(1) by giving an expectation

value hΦiji ¼ vδij. The Yukawa term (52) implies that
the 2Nf − 1 SU(2) fundamental fermions ψS get a mass
vyST and only one electron-positron pair χ ¼ ðχþ; χ−Þ
remains light. Again, the mass term for χ is protected at
long distances only by the noninvertible chiral symmetry
which is broken by dynamical monopoles.
Following our previous examples, we thus expect that

SU(2) instantons give an exponentially suppressed mass to
χ. To see this directly consider the ’t Hooft vertex of the
SU(2) theory:

1

v3Nf−4
exp

�
−

8π2

g2ðvÞ
��

χ
Y
S

ψS

�
: ð53Þ

Contracting two of these ’t Hooft vertices with the
Yukawa interactions, we obtain an effective two-instanton
interaction:

y2Nf−1

v2Nf−2
exp

�
−
16π2

g2ðvÞ
�
χ2ðΦ†Þ2Nf−1; ð54Þ

which is neutral under the Z2NfðNf−1Þ symmetry. Here, the
expression (54) is to be understood as a sum of all possible
gauge contractions, and y represents a typical value of
elements in the symmetric Yukawa matrix yST defined in
Eq. (52). Note also that when Nf ≥ 2, this interaction term
is irrelevant so that its bare value is naturally suppressed by
a further UV (e.g., Planck) scale.
We now determine the effect of the interaction (54) at

long distances by evaluatingΦ at its expectation value vδij.
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This produces an effective mass term generated by two
SU(2) instantons:

vy2Nf−1 exp

�
−
16π2

g2ðvÞ
�
χ2: ð55Þ

An alternative way to see this two-instanton contribution is
to retain the massive fermions ψS in the IR theory. Then the
one-instanton ’t Hooft vertex, when contracted with the
Yukawa, gives a tiny fermion mixing term:

vy2Nf−2 exp

�
−

8π2

g2ðvÞ
�
χψS; ð56Þ

which in turn gives a tiny nonzero value to the lighter mass
eigenvalue via the seesaw mechanism.
As with our models of axions, this is a technically natural

suppression of the mass term, protected by the weakly
broken noninvertible chiral symmetry.

D. Exponentially suppressed mass terms in QCD

In the previous example the long-distance theory was
Abelian gauge theory with a noninvertible chiral symmetry
which is defined for all rational angles. Here we present a
variant of the above model where the infrared theory is a
non-Abelian gauge theory whose noninvertible chiral
symmetry protecting the fermion masses is broken by an
ultraviolet instanton.
The short-distance model is a SUðNcÞ gauge theory,

which we Higgs down to SOðNcÞ. As matter content
we take Nf fundamental and antifundamental Weyl fer-
mions and two complex scalarsΦ1,Φ2 in the representation
with two symmetric fundamental gauge indices. As before,
we separate one of the fundamental fermions χ from the
rest of the fundamental fermions ψS, S ¼ 1;…; Nf − 1,
and we indicate all of the antifundamental fermions as
ψ̄S0 , S0 ¼ 1;…; Nf.
On this ultraviolet model, we impose an invertible

Z2NfðNf−1Þ symmetry acting as

χ → ζχ; ψS → ζ̃ζψS; ψ̄S0 → ðζ̃ζÞψ̄S0 ;

Φ1 → ðζ̃ζÞ2Φ1; Φ2 → ðζ̃ζÞ−2Φ; ð57Þ

where ζ2Nf ¼ 1 and ζ̃2ðNf−1Þ ¼ 1 are roots of unity gen-
erating the symmetry action. This symmetry allows the
Yukawa interactions ySTðΦ1Þ†ψSψS and y0S0T 0Φ2ψ̄

S0 ψ̄T 0
.

By giving an expectation value to the Higgs fields

hΦīj̄
1;2i¼v1;2δī j̄, the theory is Higgsed down to a SOðNcÞ

gauge theory. There is a single light Weyl fermion χ in
the vector representation of SOðNcÞ, while the other
fermions acquire a mass directly from the Yukawa inter-
actions. (For simplicity, below we do not distinguish the

separate expectation values v1 and v2, indicating both of
their scales as v.)
Note that when Nc ¼ 3, this pattern of Higgsing is the

same as that investigated in Sec. III B and also discussed in
Ref. [12]. In particular, in infrared SOðNcÞ gauge theory the
discrete chiral symmetry χ → iχ is noninvertible and
forbids a mass term for χ. This holds for a general Nc.
In the parent SUðNcÞ theory, dynamical monopoles

break the 1-form symmetry leading to a nonperturbative
violation of the noninvertible chiral symmetry selection
rules. This results in a technically natural mass term for χ
suppressed by an ultraviolet instanton factor.
To see this directly, we again examine the SUðNcÞ

’t Hooft vertex:

1

v3Nf−4
exp

�
−

8π2

g2ðvÞ
�
χ
YNf−1

S¼1

ψS
YNf

S0¼1

ψ̄S0 : ð58Þ

As before, we can contract two such vertices and the
Yukawa couplings to arrive at the effective interaction:

y2Nf−1

v2Nf−2
exp

�
−
16π2

g2ðvÞ
�
χ2ΦNf−1

1 ðΦ†
2ÞNf : ð59Þ

Evaluating at the expectation value of the Higgs fields, this
turns into an exponentially suppressed mass term for the
SOðNcÞ vector fermion χ:

vy2Nf−1 exp
�
−
16π2

g2ðvÞ
�
χ2: ð60Þ

This tiny mass is protected by the noninvertible chiral
symmetry.
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