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We identify infinitely many noninvertible generalized global symmetries in QED and QCD for the real
world in the massless limit. In QED, while there is no conserved Noether current for the Uð1ÞA axial
symmetry because of the Adler-Bell-Jackiw anomaly, for every rational angle 2πp=N, we construct a
conserved and gauge-invariant topological symmetry operator. Intuitively, it is a composition of the axial
rotation and a fractional quantum Hall state coupled to the electromagnetic U(1) gauge field. These
conserved symmetry operators do not obey a group multiplication law, but a noninvertible fusion algebra.
They act invertibly on all local operators as axial rotations, but noninvertibly on the ’t Hooft lines. We
further generalize our construction to QCD, and show that the coupling π0F ∧ F in the effective pion
Lagrangian is necessary to match these noninvertible symmetries in the UV. Therefore, the conventional
argument for the neutral pion decay using the ABJ anomaly is now rephrased as a matching condition of a
generalized global symmetry.
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Introduction.—Global symmetry is one of the few
intrinsic characteristics of a quantum system that is
invariantly matched across all different descriptions and
dualities. The most familiar example of a global symmetry
is a U(1) global symmetry with a conserved Noether
current jμðxÞ. Thanks to the conservation equation
∂
μjμ ¼ 0, the charge Q ¼ R

d3xj0 is conserved under time
evolution, and so is the symmetry operatorUϑ ¼ expðiϑQÞ
labeled by a U(1) group element ϑ ∈ ½0; 2πÞ. In relativistic
quantum field theory (QFT), time is on footing equal to any
other direction in spacetime. We can therefore define the
symmetry operator on a general closed three-manifoldM in
the 3þ 1-dimensional spacetime

UϑðMÞ ¼ exp

�
iϑ

I
M
⋆j
�
; ð1Þ

where ⋆ is the Hodge dual of a differential form. In this
relativistic setting, the conservation under time evolution is
upgraded to the statement that UϑðMÞ is a topological
operator that depends on the choice of the three-manifold
M only topologically [1]. In the case of a U(1) symmetry,
the topological nature simply follows from the divergence
theorem.

Given a quantum system with a global symmetry, one
can attempt to gauge the symmetry to obtain a different
system. The obstruction to gauging the said global sym-
metry is sometimes referred to as the ’t Hooft anomaly of a
global symmetry. In contrast, the Adler-Bell-Jackiw (ABJ)
anomaly [2,3] (see Ref. [4] for a review) is the statement
that a classical global symmetry fails to persist at the
quantum level. The ABJ anomaly has many important
phenomenological consequences, including the determina-
tion of the neutral pion decay coupling π0F ∧ F in the
effective pion Lagrangian. However, if the punchline of
the ABJ anomaly is the absence of a global symmetry, why
does it imply anything nontrivial in the IR effective
Lagrangian? More generally, is it meaningful to discuss
the ABJ anomaly in a QFT without a Lagrangian descrip-
tion in terms of a fermion path integral? In this Letter, for
ABJ anomalies where all the participating symmetries are
U(1), we will reinterpret them in terms of certain gener-
alized global symmetries.
We start with the ABJ anomaly of the axial Uð1ÞA

symmetry in the 3þ 1D massless QED. While there is no
gauge-invariant Noether current, for every rational angle
α ¼ 2πp=N, we can dress the naive Uð1ÞA operator with a
fractional quantum Hall state to construct a conserved and
gauge-invariant topological symmetry operator, denoted
by Dp=NðMÞ, which can be supported on any closed,
oriented three-manifold M. Interestingly, the topological
operator Dp=N does not obey a group multiplication law
and does not have an inverse operator. In particular, it is not
a unitary operator. Can we still think of it as a global
symmetry?
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This question echoes with the recent developments
of a novel kind of generalized global symmetries. (See
Refs. [5,6] for reviews.) While every ordinary global
symmetry is associated with a topological symmetry
operator [such as (1)], the converse is not true. Building
on the earlier work of Refs. [7–12] in two spacetime
dimensions, it has been advocated in Refs. [13–15] that
these more general topological operators should be viewed
as generalized global symmetries [16–24]. Since they do
not have an inverse, they are commonly referred to as
noninvertible symmetries. In the past year, noninvertible
symmetries have also been constructed in many familiar
continuum and lattice gauge theories in higher spacetime
dimensions [25–32].
From this modern viewpoint, the new topological oper-

ators Dp=N in QED are some of the first examples of
noninvertible symmetries realized in nature. They give an
invariant characterization of the ABJ anomaly in terms of
the existence of a generalized global symmetry, rather than
the absence thereof.
We further extend our analysis to QCD of the first

generation in the massless limit. Below the electroweak
scale, QCD has a U(1) symmetry suffering from the ABJ
anomaly with the electromagnetic gauge symmetry, which
we now interpret as an infinite, discrete, noninvertible
symmetry. We demonstrate that the coupling π0F ∧ F in
the IR pion Lagrangian is necessary to match the non-
invertible symmetry in the QCD Lagrangian. Therefore, we
have reinterpreted the conventional argument for the
neutral pion decay using the ABJ anomaly as a matching
condition for a noninvertible global symmetry.
This Letter is accompanied by Supplemental Material

[33], in which we provide more detailed derivations as well
as alternative constructions, including Refs. [34–51].
ABJ anomaly and the fractional quantum Hall state.—

Consider QED of a unit charge, massless Dirac fermion Ψ.
The Euclidean Lagrangian is

LQED½Ψ; Ψ̄; A� ¼
1

4e2
FμνFμν þ iΨ̄ð∂μ − iAμÞγμΨ; ð2Þ

where Aμ is the dynamical (compact) U(1) one-form gauge
field. We normalize the gauge field such that the fluxH
Σ F ∈ 2πZ is properly quantized for any closed two-
manifold Σ.
Classically, there is a Uð1ÞA axial global symmetry that

acts on the fermion as

Ψ → eiαγ5=2Ψ: ð3Þ

The normalization in the exponent is chosen in such a way
that the periodicity of the axial rotation angle α is 2π. This
is because the α ¼ 2π axial rotation acts on the fermion as
Ψ → eiπγ5Ψ ¼ ð−1ÞΨ, which is part of the U(1) gauge
symmetry and is therefore a trivial transformation.

Quantum mechanically, the Uð1ÞA axial symmetry is
broken by the ABJ anomaly [2,3]. Let the axial current be

jAμ ¼ Ψ̄γ5γμΨ: ð4Þ

Its conservation equation is violated by the dynamical
gauge field, i.e., ∂μjAμ ¼ ð1=16π2ÞϵμνρσFμνFρσ. In terms of
differential forms, we have

d⋆jA ¼ 1

4π2
F ∧ F: ð5Þ

One can still attempt to define a Uð1ÞA operator

UαðMÞ ¼ exp

�
iα
2

I
M
⋆jA

�
; ð6Þ

where M is a closed, oriented three-dimensional submani-
fold in spacetime on which the operator is supported. When
M is the whole space at a fixed time, the ABJ anomaly (5)
implies that this naive Uð1ÞA symmetry operator is not
conserved under time evolution. In a relativistic QFT such
as QED, (5) further implies that UαðMÞ is generally not
topological.
Consider instead the combination

⋆ĵA ≡ ⋆jA −
1

4π2
A ∧ dA ð7Þ

as a new current, which now formally satisfies the con-
servation equation d⋆ĵA ¼ d⋆jA − ð1=4π2ÞF ∧ F ¼ 0. In
components, we have ĵAμ ≡ jAμ − ð1=4π2ÞϵμνρσAν

∂
ρAσ .

However, this new current is not gauge invariant. It appears
that there is no way to restore the Uð1ÞA symmetry.
Nonetheless, let us naively proceed and define a gauge

noninvariant symmetry operator as

ÛαðMÞ ¼ exp

�
iα
2

I
M

�
⋆jA −

1

4π2
A ∧ dA

��
: ð8Þ

Since the Chern-Simons level of A ∧ dA in (8) is not
quantized, the exponent is not invariant under large gauge
transformations when M is a general compact three-
manifold in spacetime. The operator ÛαðMÞ would have
been topological, but it is generally not well defined since it
is not gauge invariant.
Interestingly, there is a simple modification of (8) for

rational angles α ∈ 2πQ. Let us start with the simplest case
where α ¼ 2π=N for some integerN. In this case, the gauge
noninvariant term in Û2π=NðMÞ is

−
i

4πN

I
M
A ∧ dA: ð9Þ
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Roughly speaking, this is the action for the fractional
quantum Hall state in 2þ 1d at filling fraction ν ¼ 1=N.
[In that context, A is regarded as a classical U(1) back-
ground gauge field, whereas in the current context A is a
dynamical gauge field in the bulk.] However, this action on
M is not well defined due to the fractional Chern-Simons
level. Fortunately, there is a well-known solution to this
inaccuracy in the condensed matter physics literature. (See,
for example, Ref. [52] for a review.) Instead of (9), the
precise gauge-invariant action for the fractional quantum
Hall state is

i
I
M

�
N
4π

a ∧ daþ 1

2π
a ∧ dA

�
; ð10Þ

where a is a dynamical U(1) gauge field onM. It is a Uð1ÞN
Chern-Simons theory of a coupled to A. Integrating out a
naively gives us a ¼ −A=N, which upon substitution
returns (9). However, this is not a rigorous equation since
−A=N is not a properly quantized U(1) gauge field. It is
therefore more precise to take (10) as the action for the
fractional quantum Hall state.
Motivated by this discussion of the fractional quantum

Hall state, we define a new operator D1=N in QED by
replacing (9) in Û2π=NðMÞ with (10):

D1
N
ðMÞ ¼ exp

�
i
I
M

�
2π

2N
⋆jAþ N

4π
a∧ daþ 1

2π
a∧ dA

��
;

ð11Þ

where a is a dynamical one-form gauge field that only lives
on the three-manifoldM. [Here and throughout we omit the
path integral over a in the expression for D1=NðMÞ.] This
new operator can be viewed as dressing the naive axial
symmetry operator U2π=NðMÞ by a fractional quantum Hall
state onM coupled to the bulk dynamical gauge field A. We
emphasize that since a only lives on the support of the
operator D1=N, it can be viewed as an auxiliary field which
does not change the physics of the bulk QED; in particular,
there is no additional asymptotic state introduced by a.

The operator D1=N is distinguished from the previous
trials in that it satisfies all the following properties: (i) it acts
as an axial rotation on fermions with α ¼ 2π=N in (3), (ii) it
is gauge invariant since the Chern-Simons levels are
properly quantized, and (iii) it is topological, and in
particular conserved under time evolution.
Wewill give a rigorous proof on the topological nature of

(11) in the Supplemental Material [33]. For now, we can
understand it heuristically from the relation between (9)
and (10), and the anomalous conservation equation (5).
Since D1=N is a topological operator, it should be viewed

as a generalized global symmetry in the spirit of
Refs. [1,13,15]. Interestingly, it is not a usual grouplike
symmetry. That is, this operator does not follow the group
multiplication law under parallel fusions. Indeed, we have

D1
N
ðMÞ ×D†

1
N
ðMÞ ¼ exp

�
i
I
M

�
N
4π

a ∧ da −
N
4π

ā ∧ dā

þ 1

2π
ða − āÞ ∧ dA

��
; ð12Þ

where ā only lives on the support ofD†
1=NðMÞ. In particular,

D1=N is not a unitary operator, and it does not have an
inverse operator ðD1=NÞ−1 such that D1=N × ðD1=NÞ−1 ¼
ðD1=NÞ−1 ×D1=N ¼ 1. For this reason, D1=N is a non-
invertible symmetry.
How do we generalize this construction to any rational

angle α ¼ 2πp=N where p andN are two coprime integers?
A natural generalization of the Uð1ÞN Chern-Simons theory
is the minimalZN topological quantum field theory (TQFT)
AN;p [53] (see also Refs. [54–56]). The defining feature of

AN;p is that it is the minimal TQFT with a Zð1Þ
N one-form

global symmetry with its ’t Hooft anomaly labeled by p.
See the Supplemental Material [33] for a review of the
minimal ZN TQFT. When p ¼ 1, we have AN;1 ¼ Uð1ÞN .
Let AN;p½B� denote the Lagrangian of the ZN minimal

TQFT coupled to a ZN background two-form gauge field B

for the Zð1Þ
N one-form global symmetry. The natural

generalization of the Lagrangian of (10) is AN;p½dA=N�,
where we activate the two-form background gauge field by
the electromagnetic one-form gauge field A, properly
normalized. With all these preparations, the new topologi-
cal operator Dp=N associated with the axial rotation 2πp=N
is defined as

Dp=NðMÞ ¼ exp

�I
M

�
2πip
2N

⋆jA þAN;p½dA=N�
��

: ð13Þ

Since AN;pþN ¼ AN;p, we have DpþN=N ¼ Dp=N , and
therefore the noninvertible symmetry is labeled by an
element p=N ∈ Q=Z.
We can replace AN;p½B� in (13) by any 2þ 1d TQFT

T ½B� [e.g., p copies of Uð1ÞN] with a Zð1Þ
N one-form

TABLE I. The noninvertible symmetry operator Dp=N is both
conserved (topological) and gauge invariant, but it does not obey
a group multiplication law under parallel fusion. In contrast, the
operator Ûα is not gauge invariant, andUα is not conserved due to
the ABJ anomaly. (Since Uα is not topological, its fusion is
subject to short-distance singularities, and it is not meaningful to
discuss its invertibility.).

UαðMÞ ÛαðMÞ Dp=NðMÞ
Conserved (Topological) No Yes Yes
Gauge invariant Yes No Yes
Invertible N=A Yes No
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symmetry and anomaly p. This defines another topological
operatorDT . It was shown in Ref. [53] that any such TQFT
T ½B� is factorized as T ½B� ¼ AN;p½B� ⊗ T 0, where T 0 is a
decoupled TQFT. It follows that DT is a composite
operator of Dp=N and a decoupled 2þ 1d TQFT T 0, i.e.,
DT ¼ Dp=N × T 0. In this sense,Dp=N defined in (13) is the
minimal topological operator.
To summarize, in massless QED, for every rational

angle α ¼ 2πp=N, there is a gauge-invariant and con-
served topological symmetry operator Dp=N that acts on
the fermions as axial rotations. However, there is no gauge-
invariant Noether current or charge. Indeed, the expo-
nents of (11) and (13), which would have been the
conserved charges, are not gauge invariant because of
the Chern-Simons terms. Rather, their exponentiations are
gauge-invariant symmetry operators. Therefore, the non-
invertible symmetries from Dp=N are discrete, rather than
continuous. We conclude that the continuous, invertible
axial Uð1ÞA symmetry is broken by the ABJ anomaly to
a discrete, noninvertible symmetry. See Table I for the
summary.
Let us discuss the action of the noninvertible symmetry.

From the first term in (13), we see that Dp=N acts invertibly
on the fermions as axial rotations. It leads to selection
rules on scattering amplitudes, which explain the familiar
helicity conservation of electrons and positrons from a
global symmetry principle. In contrast, in the Supplemental
Material [33], we show that it acts noninvertibly on the ’t
Hooft lines via the Witten effect [57].
Finally, we comment on the noninvertible symmetry

Dp=N and Ûα in (8) on noncompact space such as R3. (See,
for example, Ref. [58] for recent discussions.) In this case,
the operator ÛαðR3Þ is actually gauge invariant because
there is no nontrivial gauge transformation on R3 or S3

since π3½Uð1Þ� ¼ 0. In fact, onR3, we can integrate out a in
(13) and equate Dp=NðR3Þ ¼ Û2πp=NðR3Þ. However,
ÛαðMÞ is not gauge invariant on a more general compact
three-manifold M. In contrast, our noninvertible symmetry
Dp=NðMÞ (13) is gauge invariant and conserved (topologi-
cal) for any compact three-manifold M, but it is only
defined for rational angles α ¼ 2πp=N.
QCD and the pion decay.—Let us take the UV theory to

be the QCD Lagrangian of the massless up and down
quarks at an energy scale far above the pion scale, but
below the electroweak scale so the SUð2Þ × Uð1Þ gauge
symmetry has been Higgsed to the electromagnetic Uð1ÞEM
gauge symmetry. Let u, d be the Dirac fermions for the up
and down quarks, respectively. The Uð1ÞEM charges of the
u and d are þ2=3 and −1=3, respectively. We will suppress
the SU(3) color indices. Classically, the QCD Lagrangian
has a global symmetry. [The subscript 3 is to distinguish
this symmetry from the other axial symmetry that acts
as ðudÞ → exp ½iðα=2Þγ5�ðudÞ, which suffers from an ABJ
anomaly with the SU(3) gauge symmetry.]

Uð1ÞA3∶
�
u

d

�
→ exp ðiβγ5σ3Þ

�
u

d

�
¼

�
exp ðiβγ5Þu
exp ð−iβγ5Þd

�
;

ð14Þ

where β ∼ β þ 2π. The axial current is conventionally
normalized as

jA3μ ¼ 1

2
ūγ5γμu −

1

2
d̄γ5γμd: ð15Þ

It suffers from the ABJ anomaly with the electromagnetic
Uð1ÞEM gauge symmetry:

d⋆jA3 ¼ 1

8π2
F ∧ F: ð16Þ

The naive, gauge noninvariant symmetry operator is
expf2iβHM ½⋆jA3−ð1=8π2ÞA∧dA�g. Note that for β ¼ π,
the −ði=4πÞA ∧ dA term is actually properly quantized,
and it generates an invertible Z2 symmetry.
For a more generic rational angle β, say, β ¼ π=N, we

can apply the same construction in QED to define a gauge-
invariant and conserved topological operator:

D1
N
ðMÞ ¼ exp

�
i
I
M

�
2π

N
⋆jA3 þ N

4π
a ∧ daþ 1

2π
a ∧ dA

��
:

ð17Þ

How are these infinitely many noninvertible symmetries in
QCD captured by the low-energy pion Lagrangian? In the
pion Lagrangian, the axial current becomes

jA3μ ¼ −fπ∂μπ0 þ � � � ; ð18Þ

which shifts the neutral pion by π0 → π0 − 2βfπ. Here
fπ ∼ 92.4 MeV is the pion decay constant. Since the neutral
pion field is compact with periodicity π0 ∼ π0 þ 2πfπ, the
β ¼ π transformation, which generates a Z2 global sym-
metry in QCD, now acts trivially in the IR pion Lagrangian.
The relevant terms in the pion Lagrangian in Euclidean

signature are

LIR¼
1

2
dπ0 ∧⋆dπ0þ 1

2e2
F∧⋆Fþ igπ0F∧Fþ�� � : ð19Þ

Here g is a coefficient we will fix by the noninvertible
symmetry.
To proceed, we insert D1=N as a defect at x ¼ 0 in the IR

pion effective theory. In other words,M is chosen to be the
three-manifold defined as x ¼ 0 in Euclidean spacetime.
For this to be a consistent defect, we need to investigate the
equations of motion. Because of the first term in (17), the
pion field is discontinuous across the defect:
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π0jx¼0þ ¼ π0jx¼0− −
2π

N
fπ: ð20Þ

The equation of motion for the gauge field a on M gives

Ndaþ F ¼ 0: ð21Þ

On the other hand, the equation of motion for the bulk
gauge field A includes a boundary contribution on the
defect x ¼ 0:

2igðπ0jx¼0þ − π0jx¼0−ÞF ¼ i
2π

da: ð22Þ

Combining with (20) and (21), we find

g ¼ 1

8π2fπ
: ð23Þ

Hence, the π0F ∧ F term in the pion Lagrangian (19) is
necessary to match the noninvertible symmetry in the UV
QCD Lagrangian.
Let us compare our reasoning with the usual derivation

in the literature. The π0F ∧ F term in the effective pion
Lagrangian is conventionally argued using the ABJ
anomaly. Since the fine structure constant is small, one
can effectively treat the Uð1ÞEM gauge field as a background
gauge field, and interpret the ABJ anomaly as an ’t Hooft
anomaly between Uð1ÞA3 and Uð1ÞEM. The ’t Hooft
anomaly matching condition then determines the π0F ∧ F
coupling. This term can also be derived from the Wess-
Zumino term in the chiral Lagrangian when coupled to the
electromagnetic gauge field [59]. In this Letter, we provide
an alternative derivation of the neutral pion decay from a
matching condition for the noninvertible global symmetries
for any finite and nonzero fine structure constant.
Conclusion and outlook.—In the past few years, there

have been a lot of exciting developments on generalized
global symmetries in high energy physics and condensed
matter physics. In this Letter, we identify some of the first
examples of noninvertible global symmetries in nature.
In QED, the continuous, invertible classical Uð1ÞA

symmetry turns into a discrete, noninvertible global sym-
metry generated by the topological operators Dp=N , each
labeled by a rational number p=N ∈ Q=Z. The noninver-
tible symmetry operatorDp=N is a composition of the naive
axial rotation with a rational angle α ¼ 2πp=N, together
with a ν ¼ p=N fractional quantum Hall state.
We similarly construct these noninvertible symmetries in

QCD of the first generation in the massless limit and below
the electroweak scale. The coupling π0F ∧ F in the IR pion
Lagrangian is necessary to match these noninvertible
symmetries in the QCD Lagrangian. Therefore, the neutral
pion decay π0 → γγ is a direct consequence of the non-
invertible global symmetries.

Our noninvertible global symmetries are only exact
when the fermions are massless. Said differently, electrons
and quarks are naturally massless in QED and QCD,
respectively, because of the noninvertible global symmetry.
There are several future directions: (i) What is the full

noninvertible fusion algebra of Dp=N and the condensation
operator? (ii) How do we understand the spontaneous
symmetry breaking of noninvertible symmetries? Even
though the noninvertible symmetry is discrete, it has
infinitely many elements each labeled by a rational number,
which is dense in U(1). Is it possible to interpret π0 as a
Goldstone boson for this discrete but infinite noninvertible
global symmetry? It is intriguing to speculate that this
might be the reason why π0 can be so light as a Goldstone
boson, but also admits the nonderivative coupling
π0F ∧ F. (iii) It would be interesting to extend our
construction to nonabelian gauge groups. However, for
simply connected nonabelian gauge groups, there is no
magnetic one-form symmetry, and our construction does
not generalize to these cases straightforwardly. (iv) If we
interpret the pion field π0 of (19) as an axion, we
immediately conclude that there are infinitely many non-
invertible symmetries Dp=N in the axion-Maxwell theory.
(The higher group structure of axion gauge theory has been
explored in Refs. [60–64].) See Ref. [65] for applications of
noninvertible symmetries on axion physics. (v) In Ref. [28],
it was shown that the higher gauging of a higher-form
symmetry leads to a noninvertible symmetry, generated by
the condensation operators. Using this construction, in
addition to the symmetries discussed here, there are many
other noninvertible symmetries from the higher gauging of

higher-form symmetries (e.g., Zð1Þ
6 ) in the standard model.

We leave these condensation operators for future inves-
tigations. (vi) The axial Uð1ÞA global symmetry of a free
massless Dirac fermion has a mixed gravitational anomaly.
It would be interesting to understand if there is a similar
gravitational anomaly for our noninvertible symmetry. See
Ref. [30] for a discussion on the mixed gravitational
anomaly for noninvertible global symmetries in other
models. Relatedly, one is free to dress a properly quantized
2þ 1d gravitational Chern-Simons term on Dp=N . Such a
topological counterterm has interesting consequences for
lower dimensional topological defects (see, for example,
Refs. [15,28,66]). We leave the investigations of these
effects for the future. (We thank the referee for this point.)
Strictly speaking, our noninvertible symmetries only

exist in QCD below the electroweak scale, but not in the
full standard model. It would be exciting to explore other
possible noninvertible global symmetries in the standard
model and their dynamical applications.
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