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Nonline-of-Sight Error Mitigation in Mobile Location
Li Cong, Student Member, IEEE and Weihua Zhuang, Senior Member, IEEE

Abstract—The location of mobile terminals has received consid-
erable attention in the recent years. The performance of mobile lo-
cation systems is limited by errors primarily caused by nonline-of-
sight (NLOS) propagation conditions. We investigate the NLOS
error identification and correction techniques for mobile user loca-
tion in wireless cellular systems. Based on how much a priori knowl-
edge of the NLOS error is available, two NLOS mitigation algo-
rithms are proposed. Simulation results demonstrate that with the
prior information database, the location estimate can be obtained
with good accuracy even in severe NLOS propagation conditions.

Index Terms—Angle of arrival (AOA), mobile location, non-
line-of-sight (NLOS) propagation, time difference of arrival
(TDOA), wideband code-division multiple-access (CDMA) cel-
lular systems.

I. INTRODUCTION

MOBILE location has received considerable attention
in the recent years. Generally, two different location

schemes have been extensively investigated [1]–[3]: one is a
time-based scheme, to measure the time of arrival (TOA) or
time difference of arrival (TDOA) of incoming signals; the
other is to measure the angle of arrival (AOA), which involves
the use of an antenna array. Because TOA/TDOA and AOA
approaches have their own advantages and limitations, a hybrid
TDOA/AOA mobile location scheme is proposed in [4] and [5]
for the future wideband code-division multiple access (CDMA)
cellular systems. To achieve high location accuracy and mini-
mize the increased cost on mobile station (MS) receivers, the
location scheme combines the TDOA measurements from the
forward link pilot signals with the AOA measurement at the
home base station (BS) from the reverse link pilot signal.

The major error sources in the mobile location include
Gaussian measurement noise and nonline-of-sight (NLOS)
propagation error, the latter being the dominant factor [2]. A
field test shows that the average NLOS range error can be as
large as 0.589 km in an IS-95 CDMA system [6], which is
much greater than the average Gaussian measurement noise. To
protect location estimates from NLOS error corruption, NLOS
error mitigation techniques have been investigated extensively
in the literature [6]–[15]. Most of these techniques assume that
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NLOS corrupted measurements only consist of a small portion
of the total measurements. Since NLOS corrupted measure-
ments are inconsistent with line-of-sight (LOS) expectations,
they can be treated as outliers. Similar to the global positioning
system (GPS) failure detection algorithm in [16], measurement
errors are first assumed to be Gaussian noise only, then the least
square residuals are examined to determine if NLOS errors are
present [8], [9], [12]. Unfortunately, this approach fails to work
when multiple NLOS BSs are present, as the outliers tend to
bias the final estimate precision to reduce the residuals. This
behavior motivates the use of deletion diagnostics in which
the effects of eliminating various BSs from the total set are
computed and ranked, as in [9] and [12]. Other approaches
include using the well-established robust estimation theory,
such as the Huber Window [17], to form an estimator which is
insensitive to small numbers of outliers.

All the above-mentioned algorithms in the literature only work
well with a large size of samples and a small number of outliers.
However, in apractical cellular system, two problems arise: 1) the
number of available BSs is always limited and 2) multiple NLOS
BSs are likely to occur. It has been shown that even by increasing
the correlation time or enforcing an idle period to reduce interfer-
ence, typically only 3–6 BSs can be heard by the MS at any time
[18]. Among those BSs, one cannot assume that the majority are
LOSBSs. This isbecause in macrocells, the propagation between
an MS and its home BS is usually modeled as NLOS when the MS
isfarawayfromtheBS.HomeBScanonlybeviewedasLOSifwe
focus our attention on large NLOS bias and neglect small NLOS
errors caused by local scatterers around the MS. All other neigh-
boringBSscanbeNLOSsince theyare fartherawayfromtheMS.
Inmicrocells, although theMSis typically modeledasbeingLOS
with its home BS, one cannot expect the MS to be LOS with other
surrounding BSs. Thus, we can only reasonably assume that the
home BS is LOS BS and that all other BSs can be NLOS BS in
the worst case. Several approaches are proposed in [2], [13], and
[14] toreduceestimationerrorsforTOAwhenthemajorityofBSs
are NLOS. Based on the fact that NLOS error always appears as a
positive bias in TOA measurements, a constrained optimization
is used to reduce the NLOS bias [2], [14].

Generally, the distributions of NLOS errors are location
dependent. When the MS is stationary or slowly moving,
the NLOS error can be assumed to be static. That gives rise
to nonparametric approaches based on empirical data from
various locations. For example, pattern recognition algorithms
[19]–[21] have been proposed to improve the handoff perfor-
mance. Based on the statistical pattern of the received signal
strength, the system can determine if a user has arrived at or
near a certain location and if a handoff is necessary. Due to the
signal strength attenuation caused by multipath effect and shad-
owing, this can only be used for rough estimation of the MS
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location. To obtain a more accurate location estimate and to en-
sure one-to-one correspondence of the pattern and the location,
other characteristics of the signal have to be exploited. In [22],
a database of delay measurements at fixed locations is used. It
requires survey samples of field measurements taken at known
locations to generate approximate conditional density functions
of user location given a delay measurement. A mapping method
utilizing location database and a ray launch simulation tool
is proposed in [11] to improve GPS positioning accuracy for
the NLOS situation. These approaches give significantly better
location accuracy at the cost of setting up and maintaining an
empirical database. The data can come from field measure-
ments conducted during the cellular system planning and/or
computer-aided prediction based on digital terrain and land
cover information [23], [24]. A field trial conducted in New
York City [25] suggests that it takes 500 human hours of work
to build up an accurate mapping database covering 50 km
of metropolitan area, and the estimated cost is $1000 per cell
(of radius 1 km). Therefore, it is not impractical to set up the
empirical database which includes the NLOS information at all
possible MS locations.

In this paper, we continue to investigate the NLOS error miti-
gation problem in TDOA and TDOA/AOA location schemes.
Our results can be extended to a TOA scheme as well. De-
pending on how much a priori information is available, two ap-
proaches are proposed: an NLOS state estimation (NSE) algo-
rithm can be used if some prior information on NLOS errors is
available from the empirical database; in the case where we do
not have any knowledge about NLOS, an improved residual al-
gorithm can be applied to detect a small number of NLOS BSs.
Simulation results demonstrate that location accuracy improve-
ment is possible even in severe NLOS propagation conditions.

The paper is organized as follows. The system model is given
in Section II. Section III describes the proposed NLOS mitiga-
tion algorithms. The performance of the proposed NLOS miti-
gation techniques is studied via simulation and presented in Sec-
tion IV. Final conclusions are drawn in Section V.

II. SYSTEM MODEL

The system model under consideration is a wideband CDMA
cellular system. We focus on the case of macrocells and two-di-
mensional (2-D) mobile location. The BS serving the target MS
(to be located), denoted by , is called the home BS for the
MS. All neighboring BSs can get involved in an MS location
process, provided the signal-to-interference-plus-noise ratio
(SINR) of the signal from each BS is above a certain threshold
at the MS. At all times, the MS keeps monitoring the forward
pilot channel signal levels received from the neighboring BSs
and reports to the network those that cross a given set of
thresholds. The cross correlators at the MS receiver are capable
of measuring the TDOA between the signal from the home BS
and that from any other BS.

Adaptive antenna arrays have been proposed for radio trans-
mission in third-generation cellular communication systems to
facilitate the initial acquisition, time tracking, Rake-receiver co-
herent reference recovery, and power-control measurements for

the MS. If an adaptive antenna array is available at the BS site,
the home BS can dedicate a spot beam to a single MS under
its jurisdiction by dynamically changing the direction of the an-
tenna pattern as the MS moves to provide the arriving azimuth
angle of the signal from the MS. This AOA measurement can be
used together with TDOA measurements for improved location
accuracy.

It is assumed that at any time the MS to be located can receive
forward-link pilot signals from its home BS and at least one
neighboring BS. Upon receiving the location service request,
two types of measurements are carried out for location purposes
[4], [5].

1) TDOA measurements at the MS receiver:
The MS receiver can measure the time arrival differ-
ence between the pilot signals of a nonhome BS and the
home BS by a pseudo-random (PN) code tracking loop
which cross correlates the pilot signal from the non-
home BS with the pilot signal from the home BS. The
pilot signal from each of the neighboring BSs can be
used in the MS location, provided that the SINR of the
received signal at the MS is above a certain threshold.
The TDOA measurements can be obtained with an ac-
curacy better than a half-chip duration if wireless prop-
agation channel impairments are not severe [26]. How-
ever, for nonhome BSs, fading, and delay spread due
to multipath propagation can introduce large errors to
TDOA measurements.

2) AOA measurements at the home BS:
With an adaptive antenna array, the home BS steers its
antenna spot beam to track the dedicated reverse-link
pilot signal from the MS for improved reception. This
provides the arriving azimuth angle (with respect to
a specified reference direction) of the signal from the
MS. In a macrocell environment, the AOA measure-
ments can be obtained with an accuracy of a few de-
grees [3].

The forward-link TDOA measurements are forwarded to the
home BS via the wireless channel, where both the forward-link
TDOA and reverse-link AOA measurements are combined to-
gether. Based on the NLOS situation, some measurements will
be chosen to give a location estimate of the MS.

A BS is said to be LOS BS if there exists a direct path from the
BS to the MS. Since we are mainly interested in NLOS errors
that cause a large deviation to the MS location estimate, it is rea-
sonable to neglect NLOS errors resulting from local scatterers
near the MS, as those errors are relatively small. Therefore, in
the rest of this paper, an NLOS BS means that there does not
exist a direct path from that particular BS to the MS, and the
signal has to travel an extra distance of several hundred meters
to reach the MS via reflection.

It is possible that the home BS does not have LOS propaga-
tion with the MS, therefore adding bias to all the TDOA mea-
surements and to the AOA measurement. In Section III-C, we
present a residual algorithm which can detect the NLOS home
BS situation. The NLOS bias can then be reduced by referencing
the TDOA with an LOS nonhome BS and discarding the home
BS’s AOA measurement.
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Fig. 1. Hybrid TDOA/AOA location.

The generalized location estimation problem in matrix form
is given by

(1)

where denotes the measurement ma-
trix, is the number of equations, is the true location of the
MS, is a function of and is usually nonlinear, is the zero
mean Gaussian noise vector, and is the NLOS error vector.
Let denote the minimum number of BSs needed for location
estimation. We have for TDOA location and
for hybrid TDOA/AOA location. When there are BSs
available for location, the redundant BSs will provide an
degree of freedom in determining the NLOS BSs. As illustrated
in Fig. 1, the hybrid TDOA/AOA location equations [5] that in-
corporate the measurement noise and NLOS error are given by

(2)

where is the speed of light, is the measured TDOA between
the th BS and is the distance from the MS to the th
BS, is the distance between the MS and , and are
the TDOA measurement noise and NLOS error, respectively,

is the AOA measurement noise, and are the
coordinates of the MS and home BS, respectively. We assume
that and are independent Gaussian random variables with
zero mean and variances and , respectively. If has an
LOS path to the MS, then ; otherwise, is a positive
random variable with mean and variance . We fur-
ther assume that , which is consistent with field test
results [6]. Note that the number of BSs is in TDOA location
and in TDOA/AOA location.

III. NLOS ERROR MITIGATION ALGORITHMS

Depending on how much a priori information we have about
NLOS error prior probabilities and distributions, three cases can
be distinguished.

1) The exact distribution of the random NLOS error for
each BS at the MS location is known. This is an easy
but unrealistic case. We use this, however, as a starting
point for the design of NLOS error mitigation algo-
rithm, which is then extended to more realistic situa-
tions, for example, by replacing unknown NLOS errors
by estimated values or values measured a priori.

2) Limited prior information of the NLOS errors is avail-
able. For example, at the MS location the probability of
eachBSbeingNLOSandthemeanoftheNLOSerrorare
known for theMS location. This type of information can
come from a database of field measurements or a com-
putersimulationutilizingraytracingtechniquesanddig-
ital terrain plus land cover information.

3) No information of the NLOS error is available. This
situation is obviously the most interesting case from a
practical point of view, but also the most difficult one
in the design of NLOS error mitigation algorithms.

A. Ideal Case: With Known NLOS Statistics

Let denote the prior probability of being LOS
at the MS location, and . The location
equation for becomes

(3)

(4)

As mentioned earlier, usually the measurement noise and
are modeled as zero-mean Gaussian random variables with

variance and , respectively. Theoretically, if we know the
exact distribution of NLOS errors , we can have the optimum
maximum likelihood (ML) detection of the NLOS BSs. The ML
estimator aims at maximizing the joint conditional probability
density function (pdf) of the measurement matrix

(5)

where is the joint pdf of measurement errors .
Under the assumption that NLOS errors and Gaussian measure-
ment noise are independent random variables, we have

(6)

where is the pdf of the Gaussian measurement
noise, and is the pdf of the NLOS error plus noise
and is usually unknown. Numerical methods can be used to find
the location which maximizes the conditional pdf given in (6).
This ML estimator actually combines the NLOS BS identifica-
tion and NLOS error correction into one single step and is able
to achieve the optimum result when the empirical NLOS error
distributions are accurate.

Given a set of TDOA measurements, a three–dimensional
(3-D) plot of the conditional pdf in (6) over the home BS
coverage area usually reveals multiple peaks (local maxima), as
shown in Fig. 2, each corresponding to a possible NLOS/LOS
BS scenario, and the magnitude of the peak corresponding to
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Fig. 2. Joint conditional pdf of the TDOA estimator (four BSs).

Fig. 3. Joint conditional pdf of the TDOA/AOA estimator (four BSs).

the relative likelihood of such scenario. The location corre-
sponding to the highest peak (global maxima) is the output of
the location estimator. Fig. 3 shows the same conditional pdf

for TDOA/AOA location. The additional AOA information
helps to suppress some peaks so there is less ambiguity as to
where the true MS location is.
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Because making a wrong NLOS/LOS BS scenario decision
can introduce a significant root mean square (rms) location error
(as large as several hundred meters), we propose a soft-decision
location estimator to further reduce the location error. Instead
of giving a hard location estimate, the soft-decision robust esti-
mator outputs several possible MS location estimates and their
relative likelihoods. As the MS continues to carry out new mea-
surements, the time history data will help to reduce the ambi-
guity of the MS location, since the movement of the MS in a
short period of time is limited to a small region.

To make a soft decision, we need to separate the NLOS BS(s)
identification and correction into two steps. For each , a
hypothesis test can be employed to determine its NLOS status.
First, consider a simple case where only one NLOS BS is present.
We use the maximum a posteriori probability (MAP) criterion
to make a decision based on the actual measurement in order
to minimize the average false NLOS identification rate. The
posterior probability is given by

The decision rule is then

(7)

Therefore, making a decision about requires the knowledge
of prior probability of and the conditional probability

, which in turn requires the knowledge
of the true MS location. The intermediate MS location estimate
using all BSs except can be used to approximate the true
MS location.

Now let us consider the case of multiple NLOS BSs in TDOA
and TDOA/AOA location. In the worst case, all of these BSs
are NLOS BSs. Let denote the system
state, where if is NLOS, and zero otherwise. There
are altogether possible states and the task of NLOS BS de-
tection is to correctly determine the right system state. Let
denote the special state that all BSs are LOS. To optimally de-
termine the NLOS state, we propose the following NLOS state
estimation (NSE) algorithm.

1) For each of the possible states , obtain a location
estimate using the known NLOS information.

2) Using to approximate the true MS location and cal-
culate the weighted a posteriori probability for each
possible state

(8)

where is a weight assigned to state
, and .

3) Calculate the ratio for each of the
NLOS states.

4) For a hard decision, the state which has the largest ratio
is selected, and the corresponding ML estimate is the
output location. For a soft decision, those states whose
ratio is above a certain threshold are selected, and

the magnitude of the ratio corresponds to the relative
likelihood of that NLOS state.

If the prior probabilities are un-
known, the weight in (8) can be used to control the false
alarm rate and detection probability. For example, a heavier
weight for LOS state provides a cushion for false alarm,
but also reduces the NLOS detection probability. The optimal
values of the weights depend on the desired detection proba-
bility and false alarm rate, and of course how severe the NLOS
situation is. Since minimum rms location error is the final goal,
a cost/reward function can be formulated which includes the
penalty of a false alarm and the reward of a correct detection in
terms of rms errors. The optimal values of the weights are the
values that minimize the cost function.

In summary, if we have an empirical database available from
field measurements which provides the information of
and the stochastic model of , we can derive
and then apply the NSE algorithm. The algorithm can work for
both TDOA and TDOA/AOA location systems, under the as-
sumptions that the NLOS errors, the TDOA, and AOA measure-
ment errors are all independent.

B. With Limited a Priori Information

In reality, modeling the NLOS error is a difficult task, as the
NLOS error is location dependent, influenced mainly by terrains
and buildings. A much more realistic assumption is that for each
BS we know (the mean of the NLOS error) and
(the prior probability that is an NLOS BS) for different
locations.

To approximate , we treat the NLOS
error as a constant bias superimposed on the zero
mean Gaussian noise . Then

(9)

The NSE algorithm can then be used again to provide a hard or
soft decision. One difference is that in Step 1) before we make
an estimate for each state, NLOS errors are compensated by
subtracting the NLOS bias from the measurements of if

.
An even more interesting case is that we know nothing about

the NLOS error except its bound of magnitude. For example, the
NLOS error for , if present, is greater than 300 m. To obtain
a suboptimal solution in this case, algorithms designed under the
generalized likelihood ratio (GLR) [27] can be used. For each
state, the ML estimator estimates not only the MS location , but
also the values of NLOS errors . Then,
can be approximated by using to replace in (9). How-
ever, that imposes a limit on the total number of NLOS BSs, as
the equations will be underdetermined when more than
NLOS BSs are present. For example, in TDOA location, four
available BSs can only determine one NLOS BS when we apply
the NLOS identification algorithm. With the additional AOA in-
formation, two NLOS BSs can be identified.

In the case when the empirical value of is not avail-
able, a blind estimator can be used which arbitrarily sets the
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value of . When , this blind ML estimator
becomes the conventional LOS ML estimator. cor-
responds to a very aggressive estimator which treats every BS
as NLOS BS. The value of can be selected based on the
SINR and/or desired robustness to the NLOS error.

C. Worst Case: No Knowledge of the NLOS Error

In the worst case, we do not have any knowledge about the
NLOS error. If a limited number of BSs is available, and the
majority are NLOS, little can be done to reduce NLOS errors.
Therefore, to derive NLOS mitigation algorithms in the worst
case, we have to assume that only a small subset of the total
available BSs are NLOS BSs. It is worth mentioning that more
NLOS BSs does not necessarily mean a larger bias in the final
MS location estimate. NLOS BSs tend to bias the final estimate
in such a way that the estimated location moves away from those
BSs, so more NLOS BSs increase the chance of those NLOS
errors cancelling each other. Taking the case of for ex-
ample, a large estimation error usually happens when one or two
NLOS BSs are present.

We further assume that the home BS is LOS BS. Later, we
will discuss the case of the home BS being NLOS. Based on
the assumptions, we can make use of analytical redundancy re-
lationships for NLOS error mitigation. The first step is to iden-
tify NLOS BSs among all the available BSs. Since nothing is
known about NLOS errors, we have to treat NLOS corrupted
measurements as outliers and rely solely on our knowledge of
Gaussian measurement noise to detect NLOS BSs. Let de-
note the number of NLOS BSs. Once the value of is known,
two scenarios can follow: 1) if there are sufficient BSs (i.e.,

) to make a location estimate after the NLOS
BSs being identified and removed, we can obtain an improved
MS location estimate using only the LOS BSs and 2)
otherwise, we can only issue a warning that the output MS loca-
tion estimate is not reliable due to NLOS errors or resort to some
robust estimators (if they exist) that are insensitive to NLOS er-
rors.

Two popular approaches are used in the outlier detection
theory: one is to use the residual ranking and the other is based
on the “ edit rule.” The latter is based on the fact that for
the Gaussian noise, the probability of observing a measure-
ment further than three standard deviations from the mean is
approximately 0.3%. The approach requires the knowledge of
the Gaussian measurement noise variance, which is usually
satisfied in practice.

Residual ranking can work very well when we have a large
number of BSs and one of them is NLOS BS. A residual
weighting algorithm was first proposed in [9] for the TOA
location scheme. It divides all available BSs into subsets and
weights the location estimate from each subset according to
their residuals to obtain the final estimate. Similar approaches
for AOA and TDOA have been proposed in [8] and [12], re-
spectively. For a given measurement
and a reference location , the residual in [8], [9], and [12]
can be generalized as . If , the residual
reflects the magnitude of the NLOS error, since . By
trying different combinations of candidate BSs and ranking

the residuals, the NLOS BSs can be identified with a certain
probability.

The residual algorithms have several limitations. First, it does
not make use of the variance of Gaussian noise . Signals from
different BSs usually have different SINRs, thus different noise
variance . The residual should be weighted according to
so that the BS with a larger noise component will have less con-
tribution in the overall residual. Second, the NLOS error is
always positive. If for , it is less likely
that is NLOS BS, as compared with where

. However, the square operation in the residual re-
moves the sign of . Finally, as the residual is in a sum-
mation form, it can only indicate how likely a group of
candidate BSs contains NLOS BSs, but not which one(s). We
have to rely on the residual ranking of all possible combinations
to determine the NLOS BSs. Therefore, the previously proposed
residual algorithms do not perform well when the number of
candidate BSs is small.

In the following, we propose a new residual algorithm, which
combines the two approaches in the outlier detection. Since we
have no knowledge of the NLOS error, we have to rely on the
conditional probability

(10)

For a measured value and a reference location , the corre-
sponding conditional cumulative density function (cdf) provides
a measure of how likely the random Gaussian noise will make
the TDOA measurement smaller than and is given by

(11)

We define the new residual to be this cdf. Hence, the higher
the new residual, the more likely the BS is biased by NLOS
error(s). This new residual is asymmetric, giving more weight
on the positive (i.e., ) side; it also takes the
Gaussian noise variance into account. Therefore, by directly
ranking the residuals for each candidate BS, or comparing them
with a given threshold, we can overcome the limitations of the
previous residual algorithms.

On the contrary, a very small residual of indicates a high
probability of being LOS BS, provided that the reference
location is close to the true value. This can be used in the special
case when the home BS (i.e., ) is NLOS BS. We can then use

as the new home BS, making all the TDOA measurements
using as the reference BS instead. In this way, the NLOS
errors remain positive in TDOA.

The new residual algorithm works for both TDOA and
TDOA/AOA in the same manner. Similar to every residual
algorithm, the approximation of the true MS location, , plays
an important role. Ideally, we should use the true location of
the MS, but it is not achievable and can only be used as a
performance benchmark. We can use measurement data from
all the BSs to determine an overall location estimate and use
it as the approximated MS location. Under the assumption that
the AOA measurement at the home BS is independent of TDOA
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Fig. 4. Asymmetric pdf for robust estimation.

measurements [12], the AOA measurement can help to improve
the accuracy of the reference location and therefore improve
the performance of the proposed identification algorithm. In
Section IV, we shall see that the additional AOA measurement
in the hybrid TDOA/AOA location helps to obtain a more
accurate MS location approximation and thus better NLOS
identification accuracy.

The newly proposed algorithm of identifying NLOS BSs
using TDOA or TDOA/AOA measurements has the following
steps.

1) Use the TDOA measurements from all the non-
home BSs and, if the hybrid scheme, the AOA from
the home BS as well, to obtain an initial MS location
estimate .

2) Calculate the new residual in (11) for each of the
nonhome BS.

3) If any of the residuals is above a threshold , issue
a warning that NLOS BSs are present and rank the

residuals. If we know the number of NLOS
BSs, , pick up the BSs with the largest residuals;
otherwise, compare the residual with the threshold ,
and those BSs with residuals larger than the threshold
will be deemed as NLOS BSs.

When we have a fairly large number of BSs (for example,
), a deletion diagnostics scheme can be used to improve

the accuracy of . For each subset of the BSs (size 3 and up), cal-
culate the reference location using measurements from all BSs
in the subset and obtain the residual for each BS in the subset.
Find the largest subset which satisfies the threshold for each of

the residuals. If that subset can be found, use that subset’s output
as a reference location and calculate the residuals; if
that subset does not exist, the location estimate using all mea-
surements will be used to calculate the residual, as described in
Step 1).

The choice of the threshold affects both the detection prob-
ability and false alarm probability. Both probabilities decrease
when increases. For a given false alarm probability
should be a function of .

After successfully identifying the NLOS BSs, the next step is
to remove the location bias caused by the NLOS errors. Without
any knowledge of the NLOS errors, ideally we should remove
those NLOS BSs from the set and use only LOS BSs for the lo-
cation estimate. However, if the number of remaining LOS BSs
is not enough for location estimation, we will have to use mea-
surements from NLOS BSs as well. A simple approach can be
used: use an asymmetric pdf to model the effect of NLOS
and noise, as shown in Fig. 4, to make the estimator less sensitive
to the positive NLOS errors. The variance increase at the right
side (i.e., ) is called a tuning constant; larger values of it
produce more resistance to the NLOS errors, but at the expense
of lower efficiency when NLOS errors are not present. There-
fore, the tuning constant should be chosen to give a reasonably
high efficiency in the LOS case and still offer protection against
NLOS errors.

The residual approach works well when we have a large
number of available BSs, among which only a small number of
BSs are NLOS BSs. When multiple NLOS BSs are present, at
least some knowledge of NLOS statistics will be required for
NLOS error mitigation.
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Fig. 5. Seven-cell system layout.

IV. SIMULATION RESULTS

This section presents simulation results to demonstrate the
performance of the proposed residual algorithm and the NSE
algorithm. We assume that the standard deviation of the TDOA
measurement noises km and the mean NLOS bias

km for , typical values confirmed
by field tests [6]. For the 2-D array BS layout, we consider a
center hexagonal cell (where the home BS resides) with six ad-
jacent hexagonal cells of the same size, as shown in Fig. 5. The
cell radius is 5 km and the MS location is uniformly distributed
in the center cell. Each simulation is performed by 5000 inde-
pendent runs.

For macrocells, there are usually multiple NLOS BSs. In the
worst case, the majority or all of the BSs are NLOS. Our simu-
lation results show that five or six out of seven BSs being NLOS
is usually not as devastating as when three or four out of seven
BSs are NLOS. The reason is that more NLOS BSs increases
the chance of NLOS bias cancelling each other. As a result, we
present the simulation results mainly for a medium size of the
NLOS BS set.

A. NLOS BS Identification Using Residual

To study the performance of the proposed residual algorithm,
we randomly select a certain number of BSs as NLOS BSs and
introduce a positive bias to their measurements. Assuming no
knowledge of the NLOS errors, the newly proposed residual is
calculated for each nonhome BS using a reference MS location
and then compared to the threshold . If the largest residual is
found to be above the threshold, a warning is issued indicating
that NLOS BSs are present. We can further rank the residuals
to identify those NLOS BSs. A false alarm occurs when the
warning is issued but no NLOS BS is present. A miss detection
occurs when the algorithm fails to issue the warning in the case
of an NLOS situation. The rates of successfully identifying all
or part of the NLOS BSs are also obtained via simulation.

We first consider the case of TDOA-only location. It is clear
that using the true location as the reference location consis-
tently achieves the best performance, regardless of the MS/BSs
geometric layout. In a practical situation, we can use all the
available TDOA measurements from all the BSs to obtain an
approximation of the true MS location. Table I compares the

TABLE I
NLOS BS IDENTIFICATION RATE FOR TDOA ONLY LOCATION USING

ESTIMATED MS LOCATION

TABLE II
NLOS BS IDENTIFICATION RATE FOR TDOA/AOA LOCATION USING

ESTIMATED MS LOCATION

NLOS BS’s identification rates in different scenarios, using the
approximated location and the proposed residual ranking algo-
rithm with the number of NLOS BSs being known. It is observed
that the proposed algorithm works well when we have a large
number of BSs and only a small portion of these BSs are NLOS.
For example, in the case of seven BSs and one NLOS BS, the
algorithm can successfully identify the NLOS BS with a proba-
bility of 0.813. When the number of NLOS BSs increases, how-
ever, the probability of detecting all of them decreases. It is also
clear that when the number of total available BSs is small, the
detection rate suffers. In the case of two NLOS BSs out of four
BSs, the algorithm can only identify those two BSs with a prob-
ability of 0.346.

By using the additional AOA information, we can further
improve the NLOS BS identification performance. This is
achieved by using the AOA information together with the
TDOA measurements to get an improved true MS location
approximation. When the AOA measurement is accurate, the
improved reference location improves the detection rates sig-
nificantly. In Table II, the detection rates for different numbers
of BSs and NLOS BSs are compared, with degree.
Taking the case of three NLOS BSs, for example, it is clear that
the additional AOA information greatly improves the detection
accuracy. With the AOA measurement, the algorithm also
performs more consistently when the total number of BSs is
small and depends less on the MS/BSs geometric layout. The
same case of four BSs and two NLOS BSs in Table II yields a
correct detection rate of 0.601.

If the number of NLOS BSs is unknown, we should use the
threshold for the residual values to determine NLOS BSs.
There is a tradeoff between the missed detection rate and the
false alarm rate when choosing the value of , as shown in
Figs. 6 and 7. A smaller reduces the missed detection rate
but increases the false alarm rate at the same time. The value of
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Fig. 6. Comparison of false alarm rates.

Fig. 7. Comparison of missed detection rates.

can be chosen according to the desired false alarm and detec-
tion probabilities as well as the total number of BSs. It is also
observed that for a certain , the additional AOA measurement
slightly increases the false alarm rate but reduces the missed de-
tection rate significantly, especially for a small number of BSs.

B. NSE Algorithm Performance

We now study the TDOA location accuracy using empirical
data of the NLOS error prior probability and mean value. A total

of four BSs ( , and ) are included and the mean
NLOSerror kmforall theNLOSBSs.Thestandard
deviation of the TDOA measurement is 0.07 km. We compare the
hard-decision rms location errors in three scenarios: 1) using the
NLOS mean and prior probability to correct the NLOS error; 2)
using only the NLOS error mean to correct the NLOS error; and
3) using TDOA measurements from all available BSs with no
NLOS correction. Note that in the second scenario, the weight
assigned to the state of all BSs being LOS can be used to control
the false alarm rate. We let for all other system state .
Assigning a larger weight of will reduce the false alarm rate,
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Fig. 8. Comparison of location accuracy for different NLOS situations. (a) One NLOS BS (BS ) with probability 0.5. (b) Maximum of three NLOS BSs
(BS ;BS , and BS ), each with probability 0.5.

at the cost of an increased miss detection rate. On the other hand,
a smaller weight of will improve the location accuracy in the
case of a heavy NLOS situation.

Let us first consider a light NLOS situation. Among the four
BSs, is the only BS which can be NLOS with probability
0.5. The NSE algorithm performance is shown in Fig. 8(a),
where the -axis coordinate represents the probability of the rms
location error smaller than the -axis coordinate. It is observed
that applying the NLOS correction with prior probability infor-
mation gives the best performance. However, the NLOS correc-

tion algorithm using only the NLOS error mean performs worse
than no NLOS correction at all, due to a large number of false
alarms in this light NLOS propagation environment. A large
reduces the location error significantly.

When the NLOS situation gets worse, for example, multiple
NLOS BSs are present, the NLOS correction scheme using
NLOS error means and prior probabilities still gives the best
performance; however, the performance gain over no NLOS
correction becomes smaller, as shown in Fig. 8(b), where three
of the four BSs are NLOS with probability 0.5. In this situation,
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Fig. 9. Comparison of location accuracy for different NLOS situations. (a) Maximum of three NLOS BSs (BS ;BS , and BS ), each with probability 0.1. (b)
Maximum of three NLOS BSs (BS ;BS , and BS ), each with probability 0.9.

even without NLOS prior probabilities information, NLOS
correction using mean only starts to outperform the no NLOS
correction case.

The NLOS error prior probability plays an important role
in the NLOS mitigation. In Fig. 9(a), three of the four BSs
are NLOS with probability 0.1. Since the prior probability is
small, the NLOS correction using mean values actually per-
forms worse than that using all measurements without NLOS
correction. That is because the NLOS correction based on the
mean NLOS error without the prior probability tends to assume

that NLOS and LOS situations happen equally likely. We can
assign a proper value to the weight to alleviate this problem.
Fig. 9(b) illustrates the opposite situation, when three of the four
BSs are NLOS with probability 0.9. In this case, the NLOS cor-
rection without the prior probability gives much better location
estimate as compared with the no NLOS correction scheme. In
all cases, NLOS correction using the mean and the prior proba-
bility information always performs the best.

Fig. 10 shows the decrease of rms location error as the number
of BSs increases. It can be observed that as the number of avail-
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Fig. 10. Comparison of location accuracy, where each BS (except home BS) is NLOS with probability 0.5.

Fig. 11. Location accuracy using four BSs (BS ;BS ;BS , and BS ), each nonhome BS being NLOS with probability 0.9.

able BSs increases, the performance gain of the proposed NLOS
mitigation scheme increases significantly.

It is also observed during the simulation that if the prior in-
formation about the NLOS errors is not accurate (for example,
the known NLOS mean deviates from the true value slightly),
the NLOS mitigation algorithm can still provide performance
improvement. We consider a four-BS case and deliberately add
Gaussian noise to the NLOS prior probability and NLOS mean.
The standard deviation of the noise on the NLOS mean is 0.1
km, and standard deviation of the noise on the NLOS prior prob-
ability is 0.1. Fig. 11 shows the impact of using inaccurate prior

information on the location accuracy for the case of four BSs
with a maximum of three NLOS BSs ( , and ), each
with probability 0.9 (the NLOS prior probability is denoted by
vector [0, 0.9, 0.9, 0.9]). Table III summaries the NSE algo-
rithm performance when NLOS prior information is not accu-
rate. From the results we can see that even using inaccurate prior
probability and/or inaccurate mean, the NSE algorithm still pro-
vides better accuracy as compared to the case of no NLOS cor-
rection at all. The only exception is when all three neighboring
BSs are NLOS with probability 0.5 and inaccurate NLOS prior
probabilities are used.
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TABLE III
RMS LOCATION ERROR IN km USING INACCURATE PRIOR INFORMATION, FOUR BSS

Fig. 12. Comparison of the performances of different NLOS mitigation algorithms for a five-BS case. (a) Maximum of four NLOS BSs (BS ;BS ;BS , and
BS ), each with probability 0.5. (b) Maximum of four NLOS BSs (BS ;BS ;BS , and BS ), each with probability 0.9.

Fig. 12 compares the performance of the proposed NSE algo-
rithm with the residual weighting scheme in [9]. When applied
to TDOA and TDOA/AOA location, the residual weighting al-

gorithm requires at least five BSs. That is because the algorithm
divides all available BSs into subsets and weights the location
estimate from each subset according to their residuals. By the
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definition of the residual in [9], a subset of size 4 and up is re-
quired. So in Fig. 12(a), we consider the case of and
we assume that four of the nonhome BSs can be NLOS with
probability 0.5. It is observed that both the NSE algorithm and
the residual weighting algorithm can mitigate the NLOS error,
and the NSE algorithm outperforms the residual weighting algo-
rithm. Fig. 12(b) corresponds to a severe NLOS situation where
the four nonhome BSs can be NLOS with probability 0.9. In
this case, the residual weighting algorithm does not provide
much performance gain. The NSE algorithm, on the other hand,
greatly improves location accuracy, even when imperfect prior
information is in use.

V. CONCLUSION

This paper studies the NLOS error mitigation techniques for
time-based location systems. Based on the knowledge of NLOS
error statistics, two different NLOS mitigation algorithms are
proposed. A new residual algorithm is used for NLOS BS identi-
fication. The algorithm requires only the knowledge of Gaussian
noise statistics. It can effectively identify a small number of
NLOS BSs. Utilizing an accurate empirical database, the pro-
posed ML location estimator can achieve the best location ac-
curacy, even in the case where most BSs are NLOS BSs. Sim-
ulation results demonstrate that an accurate location estimate is
possible even in severe NLOS conditions.
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