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The method of multiple scales is used to obtain a second-order uniformly valid expansion for the 
nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a 
nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady 
nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the 
absorption versus frequency curve, in qualitative agreement with the experimental observations. 
Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the 
effect of the material nonlinearity decreases with increasing sound frequency. 

Subject Classification: 25.20; 20.45' 25.22' 20.15. 

INTRODUCTION 

Measured data in typical jet engines indicate that the 
sound pressure levels involved may be in excess of 160 
dB which corresponds to a pressure fluctuation of the 
order of 0.01 atm. At these levels, the nonlinear effects 
play an important role in the attenuation of the sound. 
These nonlinear effects can be classified into two types: 
the nonlinearity of the gas itself and the nonlinearity of 
the acoustic properties of the lining material. Although 
the gas nonlinearity is significant at sound pressure 
levels exceeding 160 dB, the material nonlinearity (es- 
pecially perforated plates) may be significant at sound 
pressure levels above 130 dB. 

Most of the studies of the nonlinear effects of the gas 
have been based on an irrotational, inviscid, compress- 
ible wave propagating in a hard-walled uniform duct 
with n O mean flow. Fay I obtained a Fourier series so- 
lution, valid in the farfield, for the one-dimensional 
wave equation taking into account the effects of gas com- 
pressibility and viscosity. Fubini •' obtained a solution, 
valid in the nearfield, for the one-dimensional, isen- 
tropic wave equation in terms of Bessel functions. 
Blackstock 3 used the weak shock theory to obtain a gener- 
al solution which is valid in the near- and farfields as 

well as the transition between them. Coppens 4 and 
Pestorius and Blackstock s determined the viscous and 
thermal dissipative effects on the nonlinear propagation 
of plane waves in hard-walled ducts. 

Maslen and Moore ø used the method of strained param- 
eters (e.g., Sec. 3.1 of Ref. 7) to analyze strong trans- 
verse waves in a circular cylinder. They determined 
the effect of the amplitude on the frequency of oscilla- 
tion. They also determined the dissipative effects of 
the acoustic boundary layer. Burns ø analyzed finite- 
amplitude waves in a hard-walled duct, taking into 
account dissipation. However, his expansion is not 
uniformly valid because it contains secular terms. 
Keller and Millman ø used the method of strained param- 
eters to determine the wavenumber shift for the dis- 

persive modes in a hard-walled duct. Peube and 
Chasseriaux 1ø treated nonlinear wave propagation in 
hard-walled ducts with variable cross section. They 
proposed two expansions, one valid for small Mach 
numbers and the other valid for long waves. However, 
no solutions were obtained to assess the nonlinear effects. 

Zorumski and Parrott 11 and Kurze and Allen lz found, 
experimentally, that the nonlinear material effects 
tend to flatten and broaden the absorption versus fre- 
quency curve. At resonance, the high intensity level 
increases the resistance of the liner resulting in a 
lower attenuation. To quantify the nonlinear effects on 
the attenuation, Ingard 13'14' used the one-dimensional 
transmission line approximation to determine the non- 
linear material effect on the attenuation of the lowest 

mode at low frequencies. Kurze and Allen 1•' extended 
the work of Ingard to the region of resonance. They 
found that their analytical solution is in agreement with 
their experimental results. 

Isakovich ls determined a second-order expansion for 
the nonlinear motion of an irrotational, inviscid, com- 
pressible gas in a duct lined with a material having lin- 
ear acoustic properties. He found that the expansion is 
free of secular terms as opposed to the case of propa- 
gation in an unbounded space. 

The purpose of the present paper is to analyze the 
nonlinear effects of both the gas motion and the lining 
material on the propagation and attenuation of all modes 
in a uniform two-dimensional duct by determining a 
third-order uniform expansion using the method of multi- 
ple scales (e.g., Chap. 6 of Ref. 7). 

I. PROBLEM FORMULATION 

We consider nonlinear acoustic wave propagation in a 
uniform two-dimensional duct whose walls are lined 

with an acoustic material. We assume the gas to be in- 
viscid, irrotational, and initially quiescent with a uni- 
form pressure P0 and a uniform density P0. The limi- 
tations of the inviscid, irrotational assumption will be 
discussed below. We introduce a Cartesian coordinate 

system whose x axis coincides with the center of the 
duct, and its y axis is normal to the walls of the duct 
(see Fig. 1). We introduce dimensionless quantities 
using the ambient speed of sound Co, the half-width d of 
the duct, and the ambient density P0. Thus, we let 
•=•*/d,•=•*/Co, P=P*/P0, P=P*/PoCo •, and t=t*co/d, 
where starred and unstarred quantities denote dimen- 
sional and dimensionless quantities, respectively, • is 
the position vector, • is the velocity vector, p is the 
gas density, p is the gas pressure, and t is the time. 
In terms of these dimensionless quantities, the equations 
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FIG. 1. A schematic of the flow configuration. 

describing the conservation of mass and momentum are 

aP+v. (p•) = o (1•) 

p +•o =-Vp+• V'r, (2) 
where ß is the dimensionless stress tensor and Re 

= ½0d/•-with v the kinematic viscosity of the gas. In 
what follows, we neglect the viscous terms in Eq. 2 and 
assume that • is derivable from the dimensionless po- 
tential function d)(x, y,/); that is, 

•=V• . (3) 

Moreover, we assume that the pressure and density are 
related by the isentropic relationship 

P */Po - (P*/Po)Y 

or, in dimensionless quantities, by 

yp=pr , (4) 

where y is the specific heat ratio of the gas. 

Substituting for v and p from Eqs. 3 and 4 into Eq. 2 
with Re-oo and integrating, we obtain 

1 p•-•= (1 - •)[•, + •(v•)•] + 1• (5) 

or, in two-dimensional form, 

c•= (• -•,)[•), +• •,•+ •,•)] + •, (6) 
where c is the speed of sound which is related to p and 
p by 

cZ=yp/p-p •'-• . (7) 

Differentiating Eq. 5 with respect to t, eliminating p 
using Eqs. 1, 3, 5, and 7, and arranging, we obtain 

a•+ (v •v• v(v )•' c•v • at2 • 4))2 +2 ' 4 ) = 4) (8) 
or, in two-dimensional form, 

11o 5 a ( 
+ •= (5• + 2•6•x• ] = 0 . (9) 

We assume the walls to be acoustically treated by a 
liner consisting of a thin rigid porous sheet or per- 
forated plate backed by honeycomb cavities. Several 
forms have been proposed for the nonlinear impedance 
of such a liner (see, for example, Melling x6 for a review 
and new results). In this paper, we use the following 

semiempirical form proposed by Zorumski and ParrottX?: 

P* Po [R*(v*)+X*(V*,co*)(•-,)l - v* (10) 

where R* is the nonlinear resistance, X* is related to 
the nonlinear reactance, and p* and v* are, respective- 
ly, the pressure and normal velocity at the inner duct 
walls. This form is based on what Zorumski and Parroft 

call the "instantaneous acoustic laws," which imply in- 
compressibility across the sheet or plate and include a 
semiempirical term in the momentum equation. 

For simplicity, we assume that both walls are lined 
with the same material, so that we consider the upper 
half of the duct. Moreover, the acoustic disturbances 
are either symmetric or antisymmetric. We consider 
the symmetric case in this paper; that is, 

4•(x, o, t)= o. (1•1•) 

In terms of the dimensionless quantities defined above, 
we rewrite Eq. 10 as 

p-y-X=[R(ch•)+X(cb•)•]qb•, aty-1 , (12) 
where R is the nonlinear dimensionless resistance and 

X is related to the nonlinear dimensionless reactance. 
In what follows, we assume that R and X are analytic 
functions of • and hence expand them as even polyno- 
mials in ½•. Eliminatingp and p from Eqs. 6, 7, and 
12 and using the polynomial expansions of R and X, we 
obtain 

- •,- • (•+•) +• •, +• •,(•+ •)- •(2-•) • •, 

To determine an approximate solution for Eqs. $ and 
9 subject to the boundary conditions 11 and 13, we use 
the method of multiple scales (see, for example, Chap. 
6 of Ref. 7) and let 

3 

(b =•-] ½"4•,(x0 ,xz, y, t) +0(½ 4) , (14) 

where ½ is a small but finite parameter characterizing 
the amplitude of the wave, and Xo-X is a fast scale 
characterizing the wavelength while xz=½Zx is a slow 
scale characterizing the amplitude modulation. The 
axial derivative becomes 

a/ax = a /aXo +e •' a/ax• . (15) 

Substituting Eqs. 14 and 15 into Eqs. 6, 9, 11, and 13 
and equating coefficients of like powers of ½, we obtain: 

Order ½' 

a-7-0 + oY =ø' (16) 

a c•x/ay = 0 , aty=0, (17) 

a_• 0, at 1 a•_ +R0a-• +X0 = Y= ß 
at ay ayat 

(18) 
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Order ½ •': 

+ - - -•-•x-+ OtL\ ox d \ oy/] ax• ay • at •' + ' 

ack•./Oy = O, at y = O, 

•*" +•o • •" •"*" ' (•T' ' (•" ' at • +Xøoyot =•kat ] -• kaxd -• ' kay/ 

aty=l. 

Order • •. 

a• + • - aF =- a•oa• at • 

(19) 

(20) 

(21) 

+ at k + ay + ot + 

+2• ox0 ox0 ay Oy oxS\•x0/ 

+• +2 8x0 8y 8x00y ' (22) 

0½a/oy =0, at y =0, 

0Ca' +R0 00- • + X0 Ot OyOt 0x 0 Ox 0 0y 0y 

(23) 

•) \•-/J 

- R•. \•--y / - X•. 0y 0t ' at y = 1. (24) 

Before carrying out the solution, we digress to dis- 
cuss the limitations of the inviscid, irrotational gas as- 
sumption. Equations 3 and 14 show that •= 0(½). Since 
r_= 0(•)= 0(½) and we are keeping terms of 0(½ a) in • and 
•, Eq. 2 shows that our analysis is valid when ½•' 
> 0(Re4). For a duct with d= 1 ft. at room temperature 
(Co = 1150 ft./sec., v=2.142x10 '4ft.•'/sec.), Re•5.4 
x 10 ø and our analysis is valid for ½ > 4.3 x10 '• which 
corresponds to an SPL (sound pressure level) m 130 dB. 
For a duct with d = 1 in., the analysis is valid for ½ > 1.5 
x 10 -a which corresponds to an SPL • 140.5 dB. 

II. SOLUTION 

We take the solution of Eq. 16 subject to the boundary 
conditions 17 and 18 in the form 

qb• =A(x•.) costry e i<kxø'ø•t> + c. c. , (25) 

where c.c. stands for the complex conjugate of the pre- 
ceding terms, co =co*dfco is the dimensionless frequency, 
and the real and imaginary parts k 0 and a0 of k = k*d are 
the dimensionless wavenumber and attenuation rate, 
respectively. Substituting Eq. 25 into Eqs. 16 and 18, 
we find that 

k •' = co •' - trY' , (26) 

where tr is a root of 

tr tantr = - ico(Ro - •X0) '• . (27) 
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Note that the function A(x•.) is undetermined to this order; 
it will be determined from the third-order problem. 

Substituting for ½x from Eq. 25 into Eqs. 19 and 21, 
we have 

0•'•2 + 0•rh• a•'½•' = 4K + r•. cos2try) ox• oy • - oD r- 
x AZexp[2i(kxo-cot)]+c. c. , (28) 

(29) 

where 

r4 = [« trY' + r•.(Ro- 2iXo)(sin 2tr + 2tr cos 2tr) 

- 2i•(r• + F a sin 2tr)] 

x {2iw cos 2tr + 2tr(R o -2ico7o) sin 2tr}. (32) 

Note that Eq. 31 is not valid when a 0 is small because 
the second term approaches oo as a0--0. When a•-<0(e), 
exp (- a0x o) must be considered slowly varying rather 
than fast varying when solving for ½•.. The result is 

•.: (r• + ray sin 2try + r 4 cos 2try)A •' exp[2i(kx o - cot) ] 

+ ratA• exp(- 2a o x 0) + c. c., when a• -< ½. (33) 

Substituting for (• and ½•. from Eqs. 25, and either 
Eq. 31 or Eq. 33 into Eqs. 22 and 24, we obtain 

0•'qba a •'qbs [_ dA a•'•a = + 2ik cos Ky 
ax• oy •. at •. • 

+ F(y)AZ•e'ZaoXo]ei(kXo '"•t) +c. c. 
+ harmonics other than exp(+ icot) , (34) 

at o •y-y + Xo ayot e + c. c. 
+harmonics other than exp(ñicot) at y = 1, (35) 

where F and G are defined in Appendix A. We seek a 
particular solution to Eqs. 23, 34, and 35 of the form 

4>a = ½(Y, x•.) exp [i(kx o - cot) ] . (36) 

Putting Eq. 36 into Eqs. 23, 34, and 35, we obtain 

(31) 

where 

: 'ico[«(¾- 1)co•'.k •' tr•']tr'•' (30a) rt - , 

' i(y + 1)co•'tr '• (30b) , 

= - ' trgsintr sin• (30c) «(kk -co•') costr cosg- • , 

where the overbar indicates the complex conjugate. The 
solution of the second-order problem (Eqs. 20, 28, and 
29) depends on whether a 0 is small or not. If % is not 
small, 

q•. = (r• + r•.y sin 2try + r• cos 2try)A •' exp[2i(kx o - cot)] 

-(ra/2OtoR o sin 2Oto)AA cos 2Otoy exp(-2OtoXo)+c. c., 
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FIG. 2. Variation of •2 with cd for the lowest five modes 
(R0=0.1146 , R2-106, •0=0.12, •2 =-106, fr=1000 Hz). 

az•l dA +•z•=-2ik cos •y+F(y)AZ• exp(- 2aoXo) , (37) ayZ • 
a• 

(Ro - icoXo)•yy - ico• = GAZ• exp(- 2aoXo) , at y = 1, (38) 
•b• = O, at y = 0 . (39) 

The inhomogeneous Eqs. 37-39 have a solution if, and 
only if, their inhomogeneous parts are orthogonal to 
every solution of the adjoint homogeneous problem; that 
is, 

(1 sin2K•d•4 (-GCOSK ;• dy) + = + F)cosy 
xAZ•e '•ø•ø . (40) 

Solving for dA/dx2, performing•the integration, and re- 
placing x 0 by x and x 2 by eZx, we obtain 

dA = _ ez ( c•z + ikz)AZ • e.Zao• (41) dx ' 

where c• z+ ika is also defined in Appendix A. Letting A 
=a exp(c•0x + i•) with real a and • in Eq. 41 and separat- 
ing real and imaginary parts, we get 

da/dx: - (a o + ½•'a z a•.)a , (42) 

where a is the amplitude of the wave. 

Equation 42 shows that the attenuation rate of a given 
mode is the sum of two terms, an c• 0 which is indepen- 
dent of the amplitude, and an e zc•za z which is a function 
of the amplitude. Thus, the nonlinearity increases or 
decreases the attenuation rate depending on whether az 
is positive or negative. Figure 2 shows the variation of 
c•z of the lowest five modes with frequency for R 0 = 0. 1146, 
•o=fr d xo/co=0.12, Rz=106 , •z=•ZXzCo/frd=-106 , and 
a material reference frequency fr = 1000 Hz. For each 
mode, there is a threshold frequency above which the 
nonlinearity increases the attenuation (c• z > 0) and below 
which the nonlinearity decreases the attenuation (c• z < 0). 
Moreover, the threshold frequency increases with in- 
creasing mode number. This behavior is also demon- 
strated in Fig. 3, which shows the variation of the ab- 
sorption coefficient (rate of change of L with x where L 
is the sound pressure level) of the lowest four modes 
with frequency for a dimensionless particle velocity of 
0.005 at the wall and the above material parameters ex- 

cept R0 = 1.0 andre.= - •.= 2x 104. This figure shows also 
that for each mode there exists a threshold frequency 
below which the nonlinearity had an adverse effect and 
above which it has a favorable effect on the absorption 

coefficient, in qualitative agreement with the experimen- 
tal findings of Zorumski and Parrott ll and Kurze and 
Allen. lz Moreover, the absorption coefficient of the 
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FIG. 3. Variation of the absorption coefficient of the lowest 
four modes with frequency for a wall particle, dimensionless 
velocity of 0. 005, and material parameters of Fig. 2, except 
Ro=l.0 and R2=-•2=2x10 4. 
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FIG. 4. Variation of the absorption coefficient of the lowest 
mode with frequency and nonlinearity R0=0.1146, X0=0.12, 
R2 =- X2, and fr= 1000 Hz. 

lowest mode is much more affected by the nonlinearity 
than those of the higher modes, owing to its smaller 
linear absorption coefficient. , 

Figures 4 and 5 show the variation of the absorption 
coefficient of the lowest mode with frequency for the two 
linear resistances R 0 =0.1146 and R 0 = 1.0. When the 
linear resistance is very much below.R=, the linear re- 
sistance corresponding to maximum absorption, such as 
R0 =0.1146, Fig. 4 shows that the nonlinearity increases 
the absorption coefficient because it pdshes the total re- 
sistance toward R= (Fig. 6). On the other hand, when 
R0 is below but near R= (such as R 0 = 1.0), Fig. 5 shows 
that the nonlinearity may have an adverse effect on the 
absorption, especially at low frequencies where the ab- 
sorption coefficient may flatten. At high frequencies, 
the absorption coefficient broadens indicating a favorable 
effect. 

Figures 4 and 5 show that the nonlinear effects of the 
material decrease with increasing sound frequency, 
whereas the nonlinear effects of the gas increase with 
increasing sound frequency. Moreover, the nearer R 0 
to R= the larger is the effect of the gas nonlinearity. 

III. SUMMARY ' 

The method of multiple scales is used to determine 
quantitatively the nonlinear effects of the gas and the lin- 

ing material acoustic properties on the propagation and 
attenuation of sound waves in two-dimensional ducts. 
The results show that the nonlinear effects of the mate- 

{•ial decrease with frequency, in contrast with the non- 
iinear effects of the gas, which increase with frequency. 
The nonlinearity affects the lowest mode more than the 
higher modes. For each mode; there exists a threshold 
frequency below which the nonlinearity has an adverse 
effect and above which it has a favorable effect on the 

absorption coefficient, in qualitative agreement with the 
experimental observations of Zorumski and Parrott •t and 
Kurze and Allen. t•' The threshold frequency increases 
with increasing mode number. 

Note that the present analysis is valid only when the 
waves are dispersive; that is, K of Eqs. 26 and 27 is not 
very small. 
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APPENDIX A 

F(y) = A t cos•y + A•. cos(2K - •)y + A 3 cos(2K + 

+ A•y sin(2• - •')y + A•y sin(2• + •)y +f(y) , (A1) 

.-J x 

0.01 

• NONLINEAR MATERIAL AND GAS 

.... NONLINEAR MATERIAL 
-• LINEAR 

(l•ly I = 0.008, R 2 = 15625 ) 
(l•lyl = 0.005, R 2 = 20000) 

-\ 

--.: -.. 

I I I I I I 
5 5 7 9 ii 

(,u --.• 

FIG. 5. Variation of the absorption coefficient of the lowest 
mode with frequency and nonlinearity for R0= 1.0, {0 =0.12, 
R 2 = - {•., and fr= 1000 Hz. 
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FIG. 6. Variation of the linear absorption coefficient of the 
lowest mode with the frequency and the linear resistance. 

where 

• 2•4 • 1 2 Al=_2i02Fl[•-l)w2+2k•]-•(•-l) + •' ,/•2•' 2 -- •' K2•' 
i 1 3 -•(y+l)hSh-•(y-3)h•2+•(Y-1) (•2_h2), (Ag) 

A 2 • (•- 1)(2• + 1)•4 + •F2 - •F4[(• - 1) •2 
- • •)[k•+• (y+l)• 2] (A3) + 2•} + 2•] + • (• + - , 

A•=-• (•- 1)(2•+ 1)•- {•gF•- {•F•[(• - 1)• • 
• 1 

+ 2• - 2•] + • (•- •)[•- •- (• + • 

A• =- F•[{(•- 1)• • + 2{•-+ 2{•], 

A• =- r•[{(•- 1)• • + 2{•- 2{•] •, 
/(y)=-2(y- 1)•F•cos•y, when •0(•), 

2{•F• [(• - {}) cos(• - 2•o)y 
•0 sin2•o 

- (• + {}) cos(• + 2•o)y ], when • > 0(•) , 

C = 2 cos•(F• + F2 sin2• + F• cos2•) (• • -•) 

+ g sing[(sin2g + 2• cos2•)F• - 2•F• sin2•] 

- {• cosg [}• cos• cos• + • sin• sing] 

• {(• 2)• • - • - cos• cosg - 2{•F• cos• 

+ (3• - {X•)• sin• sing 

(A4) 

(A5) 

(A6) 

(A7) 

+ • i02 cos•(- •2 cosa• + •2 sina•) + g, 

g = - 2i02F S cos•, when a• -< 0(e) , 

= _ 2F.• (ik cos2a 0 cos• - K sin2a 0 sinK), 
R0 sin2a0 

when a• >0(½), 

- 2i•@3 
G2+ik2=k(2K+ sin2•) ' 
where 

(AS) 

(A9) 

(A10) 

[sin (• + •) sin (• - •) ] • cos• _ • [ •f;'• + •(• _ •) @• = Ro - i02 X-------• 

••in(3• - •) sin(• - •)] -Aa 2(3•-•) + •-}• ] 

[_sin(3[ + •) sin([ + •)] 
- A• [-2(3[ + •) + •(• •- }• j 

Fin(•- •) cos(•- •) cos(3•- •) sin(3K-•)] - A4 [5• -' • - 2(• - •) - 2(3• - •) + 2(3• - 

[sin(K+•) sin(3K+•) cos(3K+•) - • •2(•--7• + - •)2 2(3• + •)2 2(3• + •) 

• sin2•) q = (• - 1)o22I'3 + 2• , when 

cos(• + •)] 
2(• 7 •) J+q' 

(All) 

iv) F• IK - ik ) sin2(• - C•o) - 2/{ 0 sin2c• o [ - c• o 

(t{ + ik) sin2(• + c• 0) 
K+• 0 

2ik sin2c•0] ' when c• > 0(½) . o/0 
(A12) 
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