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At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of

microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating

near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the

roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a

combination of analytical and numerical methods, it is shown that surface roughness leads to a clear

increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the

surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the

design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments

performed with MEMS.

DOI: 10.1103/PhysRevApplied.4.054016

I. INTRODUCTION

Casimir(-Lifshitz) forces are electromagnetic dispersion

interactions between neutral surfaces without permanent

dipoles. These forces arise from quantum-mechanical and

thermal fluctuations [1–3]. These dispersion forces are

expected to become significant as components of micro-

electromechanical systems (MEMS) enter submicrometer

separations [4–8]. The small scales at which MEM engi-

neering is now conducted have revived interest in the

Casimir force since devices such as vibration sensors and

switches are made with parts that are just a few micrometers

in size. They have the right size for the Casimir force to

play a role: the surface areas are sufficiently big and the

separations are sufficiently small for the force to draw

components together and lock them tight, an effect called

stiction. Whereas electrostatic forces can be eliminated by

reducing the voltage between the surfaces, and the influ-

ence of hydrodynamic and capillary forces can be avoided

by letting the device operate in a clean, dry environment,

the Casimir force cannot be excluded. Unlike the other

surface forces, the Casimir force can hence impose a

principal limitation on MEMS applications.

At separation distances larger than 100 nm, the spatial

gradient of the Casimir force can be measured very

precisely with a MEMS oscillator within a linearization

approximation [9]. However, at separations below 100 nm,

the nonlinearity of the Casimir force has been experimen-

tally demonstrated to have a qualitative effect on the motion

of MEM systems [10]. At these short separation ranges,

the Casimir force is, in particular, large enough to be a

formidable obstacle to achieving stable actuation. In such a

case, both the influence of the permittivities of the materials

[1,2] and that of surface roughness [11,12] must be taken

into account in order to come to a realistic evaluation of the

Casimir force. This is crucial for further understanding and

controlling the actuation dynamics of the system in order to

prevent stiction.

In this paper, we study the nonlinear actuation dynamics of

a damped driven Casimir oscillator including surface rough-

ness and the optical response of interacting bodies in a

realistic way. This allows for the modeling of realistic MEMS

oscillators. We show that surface roughness leads to an

increase of chaotic dynamics that would result in stiction.

The paper is organized as follows: after the Introduction,

the model of the MEM system is described. Next, the case

of a conservative system is briefly revisited to proceed to its

generalization, a driven oscillator. Finally, the results are

summarized in the Conclusions section.

II. MODEL

We model a MEMS oscillator as a classical mass-spring

system, an approach well established in the study of MEMS

[13]. The spring models a cantilever attached to a mass of

which the surface is separated less than 100 nm from

another surface (see Fig. 1). The motion of this mass is

actuated by external periodic forcing. The governing

equation is of the form

mẍ ¼ κðL0 − xÞ − FCasðxÞ − ϵγ _xþ ϵF0 cosωt: ð1Þ
*
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Here, FCasðxÞ denotes the Casimir force between two

(possibly rough) parallel plates [14], κ is the spring

constant, L0 is the equilibrium distance in the case where

the forces can be neglected [i.e., F0 ¼ 0 and FCasðxÞ ¼ 0],

which is the characteristic length scale of the problem, m
denotes the effective mass which is determined by the

natural frequency ω0 ≡

ffiffiffiffiffiffiffiffiffi

κ=m
p

, γ is the friction constant,

and F0 is the amplitude of the periodic driving force, whose

frequency is denoted by ω. Typical values of the friction

and driving forces are relatively small [15]. This is

indicated formally by the coefficient ϵ ¼ 1, which has

merely an indicative character.

Throughout this paper, we choose the actuation-

parameter values to be κ ¼ 0.5 N=m, L0 ¼ 100 nm, and

ω0 ¼ 2π 300 krad=s. With the proper initial conditions, the

spring constant is large enough to prevent stiction for the

conservative system [ϵ ¼ 0 in Eq. (1)] even in the rough

case [16]. The other actuation parameters in Eq. (1), γ, F0,

and ω, will be varied in the bifurcation analysis presented

here. The rough surfaces are characterized by the distance

upon contact d0 (Fig. 1), which is typically about

4 to 5 times the root-mean-square roughness [17]. It is

defined as the height of the highest asperity within a

realization of an interaction area. Since d0 redefines the

minimum separation, the coordinate of the oscillator

satisfies x > d0 ≥ 0. The case d0 ¼ 0 corresponds to flat

surfaces. The rough surface considered here has a rms

roughness of 10.1 nm and a contact distance of d0 ¼
50.8 nm [17].

The Casimir force is computed for two parallel plates

each of size 10 × 10 μm2. Ellipsometry data of gold films

are used as input for the force calculations, which is

required for a quantitative evaluation of the Casimir force

[18]. In order to account for the effect of surface roughness,

the results of the model from Ref. [14] are used.

Earlier works on the actuation dynamics of MEMS under

the influence of Casimir forces usually concern conservative

systems [6,8,16,19] [ϵ ¼ 0 in Eq. (1)] or autonomous

systems with damping [20] [F0 ¼ 0 in Eq. (1)]. The general

nonautonomous case, which is closer to an experimental

MEMS oscillator setup, has been tackled analytically for

ideal metals [21], as well as using an expansion of the

Casimir force in the oscillator’s coordinates [10,22]. The

higher-order terms in such polynomial expansions give rise

to additional zeros of the conservative force equation, which

do not correspond to physical equilibria [22]. Our approach

does not rely on any such approximations, and includes the

Casimir force at submicron-scale separations in an exper-

imentally relevant way [11,14]. We are not aware of other

theoretical work that takes the optical response and surface

roughness into account for forced Casimir oscillators.

The friction coefficient γ may also be written as

γ ¼ mω0=Q, where Q denotes the quality factor, which

typically takes values of the order 102–103 [20]. It is

assumed here that the MEM system operates in clean and

dry conditions: only intrinsic energy dissipation [15,20],

where some of the kinetic energy of the oscillator is

converted into heat is considered here. Capillary and

hydrodynamic forces can be ignored. The value of the

driving amplitude F0 considered here is typically of the

order of several nN. In this range of values thermal noise is

also negligible at room temperature [23].

III. CONSERVATIVE VERSUS

DRIVEN OSCILLATOR

A. The conservative oscillator (ϵ ¼ 0)

In the conservative case, a stable center equilibrium is

accompanied by an unstable saddle if the spring constant κ

is large enough [16]. The orbit in phase space which

connects the saddle asymptotically to itself as time goes to

�∞ is known as the homoclinic orbit. This orbit acts as a

separatrix, i.e., it separates qualitatively different solutions:

in the region enclosed by the homoclinic solution we find

periodic oscillations about the stable center corresponding

to stable actuation, whereas in the outer region there is no

periodic motion and every solution will lead to stiction.

This is illustrated by the (white) lines in Figs. 2(a) and 2(b):

the homoclinic orbit is indicated by the dashed (white) line.

Inside it, all curves are closed, which corresponds to

periodic solutions. Outside the dashed (white) line, the

curves do not return to their initial position, which indicates

the absence of periodic solutions for such initial conditions.

Such curves, which form the so-called phase portrait,

can be obtained in at least two ways for a conservative

oscillator: first, by directly numerically solving Eq. (1) for

ϵ ¼ 0 with, e.g., the Runge-Kutta algorithm. Second, one

can plot different level curves for different values of the

(constant) energy. Both methods produce identical results

indeed: Eq. (1) for ϵ ¼ 0 has been integrated on a grid of

300 × 300 initial conditions until stiction occurs. The red

region in Fig. 2 corresponds to initial conditions leading to

FIG. 1. Schematic of the system to clarify the meaning of the

parameters. Energy dissipation and gain are allowed through

damping and driving, respectively.
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stable actuation (for at least 100 natural periods 2π=ω0),

whereas an initial condition in the blue region leads to

stiction within one natural period.

Physically, the presence of periodic solutions corresponds

to stable actuation, whereas their absence indicates stiction.

Other types of solutions do not exist in the conservative case.

The fact that the homoclinic orbit strictly demarcates these

qualitatively different solutions precludes the possibility of

chaotic motion, i.e., the physically observable phenomenon

that the motion sensitively depends on its initial conditions

[24]. In other words, a chaotically moving oscillator can

have qualitatively different solutions for an arbitrarily small

difference in initial conditions. The case of a conservative

oscillator provides an important reference for our study of a

driven oscillator, since the latter will be treated as a

perturbative correction of the former.

B. The driven oscillator (ϵ ¼ 1)

The explicit time dependence of the driven oscillator

adds one dimension to the state space compared to the

conservative case. This opens the way for the occurrence of

chaotic motion. As the driving force is small compared to

the other forces, the source of the chaotic motion in the

present case is the splitting of the separatrix of the

conservative system, which by the Smale-Birkhoff homo-

clinic theorem [24] implies the occurrence of chaotic

motion. In the first-order approximation in ϵ of the

nonconservative system, the question of whether or not

the separatrix splits can be answered in terms of the

so-called Melnikov function [24] which in this case is

given by

Mðt0Þ ¼

Z

∞

−∞

_xhðtÞ
h

−
γω0L0

F0

_xhðtÞ þ cosωðtþ t0Þ
i

dt;

ð2Þ

where xh denotes the homoclinic solution. Note that Mðt0Þ
is periodic in t0 with period 2π=ω. In fact, the separatrix

splits if Mðt0Þ has simple zeros, i.e., Mðt0Þ ¼ 0 and

M0ðt0Þ ≠ 0 for some (and due to the periodicity infinitely

many) t0. If Mðt0Þ has no zeros, the separatrices will not

intersect and the motion will not be chaotic. The condition

of nonsimple zeros, i.e., Mðt0Þ ¼ 0 and M0ðt0Þ ¼ 0, gives

the threshold condition for chaotic motion [24]. Note that

the Melnikov function is dimensionless in Eq. (2): t is

expressed in units of 2π=ω0, and xh has units of L0.

However, the choice of units has no bearing on the

existence or the nature of the zeros of Mðt0Þ.
In the present case, where the equation of motion has the

form (1), the Melnikov function can be computed as [25]

Mðt0Þ ¼ −αh_x2hi þ AðωÞ cos½ωt0 þ φðωÞ�; ð3Þ

where the triangular brackets denote the time average with

respect to a uniform distribution, i.e.,

hfi≡

Z

∞

−∞

fðtÞdt;

for an integrable function fðtÞ, and α≡ γω0L0=F0. The

term AðωÞ cos½ωt0 þ φðωÞ� corresponds to the real part of

the Fourier transform of _xhðtÞ. [The functions AðωÞ and

φðωÞ are obtained from a polar representation of the latter.]

It should be stressed that the expressions of Eqs. (2) and (3)

are applicable only to the case of additive perturbative force

as in Eq. (1), where FCasðxÞ may be replaced by another

nonlinear function of x [25].

From Eq. (3) we see that the threshold condition for

chaotic motion, i.e., the presence of nonsimple zeros,

depends only on the ratio of γ and F0 and it is unaffected

by the phase φðωÞ, i.e., only the amplitude AðωÞ deter-

mines for which values of α and ω the threshold condition

is met. This allows us to write the threshold condition as

α ¼
AðωÞ

h_x2hi
; ð4Þ

where the amplitude AðωÞ can be obtained by taking the

absolute value of the Hilbert transform performed on

FIG. 2. Grid of 300 × 300 initial conditions for the system in Eq. (1) for ϵ ¼ 0. The red region shows initial conditions for which stable

actuation occurs for at least 100 natural periods 2π=ω0. In the blue region, stiction occurs within one natural period. Panel (a) shows the

result for a flat surface, and panel (b) represents a rough surface. The red region shows for which initial conditions stiction is avoided.

For initial conditions in the blue region, stiction occurs within one natural period 2π=ω0. The dashed (white) line in each figure shows

the homoclinic orbit of the conservative system. The continuous (white) lines are energy-contour plots.
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AðωÞ cos½ωt0 þ φðωÞ�. The Hilbert transform of a function

uðτÞ is defined as

H½uðτÞ�ðtÞ≡
1

π
P

Z

∞

−∞

dτ
uðτÞ

t − τ
; ð5Þ

where P denotes the principal value. Equation (5) is a

convolution in the same domain as the function uðτÞ. The
Hilbert transform is a commonly used technique in signal

analysis to obtain the envelope of an analytic signal [26]. Its

connection to the Kramers-Kronig relations makes it also

of particular interest to the field of optics of continuous

media [27].

Since AðωÞ cos½ωt0 þ ϕðωÞ� is the real part of the

Fourier transform of _xhðtÞ, the threshold condition in

Eq. (4) can be written explicitly in terms of the homoclinic

solution of Eq. (1) with ϵ ¼ 0 as

α ¼
1

h_x2hi
jH½ReðF ½_xhðtÞ�Þ�ðωÞj; ð6Þ

where F denotes the Fourier transform. From Eq. (6) it can

be concluded that once the homoclinic solution of the

conservative equation of motion is known, a statement can

be made about the zeros of the Melnikov function. Hence,

_xhðtÞ also contains the information about the occurrence of

chaotic motion for the driven oscillator. This also implies

that the separation range of interest for the qualitative

behavior of the solutions is completely determined by the

homoclinic orbit of the conservative system.

Figure 3 shows the threshold curve (6) in the ðω; αÞ plane
for a flat surface and for a rough surface [17]. For large

values of α, the friction dominates the driving, leading to

regular motion that asymptotically approaches the stable

periodic orbit associated with the stable equilibrium of the

conservative system. For parameter values below the curve

in Fig. 3, the splitting of the separatrix and hence chaotic

motion occurs.

In order to show the dynamical implication of the

separatrix splitting, we compute for each initial condition

½xð0Þ; _xð0Þ� the time the corresponding solution of Eq. (1)

leads to stiction and plot the contours of the “survival time”

in the ðx; _xÞ plane. More specifically, we numerically

integrate solutions for a uniform grid of 300 × 300 initial

conditions for six different combinations of roughness and

actuation-parameter values until stiction occurs or a maxi-

mum time of 100 periods of the forcing is reached. We note

that the validity of our numerical procedure has been

confirmed for the Duffing oscillator (see Supplemental

Material [28] for similar plots for a Duffing oscillator).

The results of these computations are shown in Fig. 4.

The red areas in Fig. 4 indicate the initial conditions for

which stiction is avoided for at least 100 periods of the

driving. For initial conditions within the dark-blue regions,

stiction typically occurs within one period. In the

conservative case, which is nonchaotic, the border between

the blue and red regions coincides with the homoclinic

orbit. We study the occurrence of chaotic motion in terms

of sensitive dependence of the motion on its initial

conditions. In the context of the plots in Fig. 4, this means

that there is a region of initial conditions where the

distinction between qualitatively different solutions is not

clear. Chaotic motion is therefore identified by a lack of a

simple, smooth border between the red and the dark-blue

regions. It should be kept in mind that the finite number of

grid points can also make this shape less smooth, which is a

numerical artifact not to be confounded with chaotic

motion. In the absence of chaotic motion, stiction either

occurs on the time scale of one period 2π=ω, or not at all.

However, if the motion is chaotic, stiction may still occur

after several tens of periods. Hence, chaotic motion con-

cerns also the long-term stability of the device.

Panels (a) and (b) at the top of Fig. 4 display the results

for parameter values above all the threshold curves (Fig. 3).

The Melnikov method predicts that the separatrices will

not intersect and hence that the motion of the oscillator will

not be chaotic in this case. Indeed, only red and dark-blue

regions occur, and the border between them is smooth

(within numerical accuracy). It can be seen that the driving

pushes the red area to the left of the homoclinic orbit (the

dashed white line). This is more pronounced in the rough

case [panel (b)] than in the flat case [panel (a)]. Also, the

damping allows a few initial conditions to the left of the

homoclinic orbit to lead to stable actuation.

Panels (c) and (d) in Fig. 4 show the results for actuation-

parameter values in the red region in Fig. 3. This means that

the Melnikov method predicts chaos in the rough case, but

not in the flat case. The flat case [panel (c)] is indeed clearly

not chaotic: Only dark-blue and red areas can be seen. The

border between them almost entirely coincides with the

homoclinic orbit (the dashed white line). The rough case

[panel (d)] is not quite as obvious here. At first sight, it

appears not to be chaotic either. However, upon closer

inspection it can be seen that the color of the area between

the red region and the dashed line is lighter than the color of

the region outside the homoclinic orbit. This is a (subtle)

indication of chaotic motion. In terms of the separatrices,

this could mean that they do intersect transversely, but that

0 0.5 1 1.5 2
0

0.01

0.02

0.03

FIG. 3. The threshold curves (6) for a rough and a flat surface.
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the angle of intersection is quite small. Something similar

can be seen in the case of the Duffing oscillator for

parameter values just below the threshold curve (see the

Supplemental Material [28] for an example of a compu-

tation of separatrices of a Duffing oscillator).

Finally, panels (e) and (f) in Fig. 4 show the results for

actuation-parameter values in the blue region of Fig. 3.

Here, the motion should be chaotic for both flat and rough

surfaces. This indeed turns out to be the case. In both the

flat case [panel (e)] and the rough case [panel (f)] stiction

can occur after several tens of periods of the driving.

Chaotic motion of Casimir oscillators introduces a

considerable risk of stiction. From a practical viewpoint,

chaotic motion should be avoided, since it constitutes

uncertainty about the qualitative nature of the solution of

the equation of motion. In a chaotic system there is in

practice no way to tell whether stiction or stable actuation

will occur. Note that in the conservative case, which is

nonchaotic, the initial conditions to the left of the saddle

equilibrium will always lead to stiction. However, this is

unrelated to chaos, which is associated with uncertainty

about the qualitative nature of the solutions.

We have shown that the results of the analytical

computations of the Melnikov method [Eq. (6) and

Fig. 3] are consistent with the numerical results shown

in Fig. 4. We tested our numerical procedure also for the

reference system given by the Duffing oscillator for which

the threshold curves can be computed analytically and the

separatrices can be obtained directly. (See the Supplemental

Material [28] for a comparison between analytical and

numerical threshold curves.)

IV. CONCLUSIONS

We investigate under what conditions chaotic motion

occurs in a damped driven Casimir oscillator. We demon-

strate that the nonlinearity of the Casimir force can give rise

to chaotic motion of MEMS at separations below 100 nm.

In terms of MEMS applications, chaos can be interpreted as

the “blurring” of the distinction between initial conditions

leading to stable actuation and the ones leading to stiction.

Such uncertainty about the qualitative nature of the motion

is highly undesirable for MEM systems. Surface roughness

makes the MEM system more susceptible to this effect.

Therefore, for MEMS applications, it is recommended to

minimize surface roughness in order to increase the range

of actuation-parameter values for which chaotic motion is

avoided. Note that, for a flat surface, more initial conditions

to the left of the saddle are possible, which always lead to

stiction. However, this is unrelated to chaos. It has been

established that the homoclinic solution of the conservative

system determines the separation range where chaotic

motion may occur. This is also the range where the

Casimir force, which constitutes the nonlinearity of the

FIG. 4. Grid of 300 × 300

initial conditions for the sys-

tem of Eq. (1) for ϵ ¼ 1. The

color bar indicates how much

time elapses until stiction oc-

curs, in units of 2π=ω, with a

maximum of 100. The dashed

(white) line in each figure

shows the homoclinic orbit

of the conservative system.

The left panels show the re-

sults for flat surfaces, whereas

the right panels represent

rough surfaces. The values

of the relevant parameters

are (a) flat, α ¼ 0.03 (not

chaotic); (b) rough, α ¼ 0.03

(not chaotic); (c) flat, α ¼
0.02 (not chaotic); (d) rough,

α ¼ 0.02 (chaotic); (e) flat,

α ¼ 0.005 (chaotic); (f) rough,

α ¼ 0.005 (chaotic). In each

panel ω=ω0 ¼ 1.05.
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equation of motion, is larger for rough surfaces than for flat

surfaces.

The method presented in this paper is not restricted to

Casimir oscillators. In fact, the Melnikov method is a

standard and widely used method for proving the occur-

rence of chaotic motion. It applies to basically any

periodically perturbed oscillator that possesses a homo-

clinic orbit in the limit of vanishing perturbation.

Technically, the method requires the existence of periodic

solutions inside of the loop formed by the homoclinic orbit

where the period needs to go monotonously to infinity

when the periodic solutions approach the homoclinic loop.

This is, however, usually the case inside of a homoclinic

loop and hence no restriction. For the technical details and

further applications, we refer to Ref. [24], which is a main

reference for the Melnikov method.

Furthermore, it is worth emphasizing that this method

does not require an analytical expression for the Casimir

force, or for any other surface force one may want to

consider. For example, it could accommodate theoretical

roughness corrections to hydrodynamic [29] and capillary

forces [30] for devices operating in ambient conditions.

Other future investigations may be focused on the corre-

lation between the effects of material properties and

roughness on the Casimir force.
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