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Nonlinear Adaptive Flight Control Using Incremental

Approximate Dynamic Programming and Output

Feedback

Ye Zhou∗, Erik-Jan van Kampen† and QiPing Chu‡

Delft University of Technology, 2629HS Delft, The Netherlands

I. Introduction

Model-free adaptive control approaches are worthwhile to be investigated for fault tolerant flight control
due to many unsolved challenges in model-based strategies.1–8 Reinforcement Learning (RL) controllers
have been proposed to solve nonlinear, optimal control problems without using accurate system models.9,10

Traditional RL, for solving optimality problems, is an off-line method using an n-dimensional look-up table
for all possible state vectors, which may cause the “curse of dimensionality”.11,12

To tackle the “curse of dimensionality”, numerical methods, such as Approximate Dynamic Programming
(ADP), have been developed to solve the optimality problem,12,13 by applying a function approximator
with parameters to approximate the value/cost function. Searching for an applicable structure and for
the parameters of the function approximator is a global optimization problem as these approximators are
in general highly nonlinear. For the special case when the dynamics of the system are linear, Dynamic
Programming (DP) gives a complete and explicit solution, because the one-step state cost and the cost
function in this case are quadratic.13 For general nonlinear control problems, DP is difficult to carry out
and ADP designs are not systematic.11

Considering the design challenges mentioned above, trade-off solutions which may lead to simple and
systematic designs are extremely attractive. Some successful approaches have been reported lately.14–17 In
this paper, an incremental ADP (iADP) model-free adaptive control approach is developed for nonlinear
systems. This control approach is inspired by the ideas and solutions given by several articles13,17–20 . It
starts with the selection of the cost function in a systematic way,13 and follows with the Linear ADP (LADP)
model-free adaptive control approach.17 As the plant to be controlled in this paper is nonlinear, the iADP
is developed based on the linearized incremental model of the original nonlinear system.18–20

The incremental form of a nonlinear dynamic system is actually a linear time-varying approximation of
the original system assuming sufficiently high sample rate for the discretization.18–20 Combining LADP and
the incremental form of the system to be controlled leads to a new nonlinear adaptive control algorithm
iADP. It retains the advantages of LADP with a systematic formulation of cost function approximations for
nonlinear systems, while keeping the closed-loop system optimized.

Classical ADP methods assume that the system is fully observable and that the observed states obey a
Markov process. The problems of partial/imperfect information and unmeasurable state vector estimation
are very challenging and demanded to be solved in numerous applications.21 Many researches have already
taken presence of stochastic, time-varying wind disturbance into account as a general problem in practical
navigation and guidance control.22,23 Despite that, parametrized output feedback controllers have been
designed to deal with problems without full state information and to achieve finite time stability based on
observers.24–29 However, these methods still need a priori knowledge or/and assumption of the system model
structure.
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Other than that, output feedback approximate dynamic programming algorithms17 have been proposed,
as opposed to full state feedback, to tackle problems without direct state observations. These algorithms
do not require any a priori knowledge of the system or engineering knowledge to design control parame-
ters, or even a separate observer. However, these algorithms are derived for affine in control input linear
time-invariant (LTI) systems. This paper starts with an algorithm development combining ADP and the
incremental approach assuming direct availability of full state observation.30 Following is the core contribu-
tion of the paper, in which an iADP algorithm based on output feedback is designed by applying the output
and input measurement to reconstruct the full state.

II. Incremental Approximate Dynamic Programming

Incremental methods are able to deal with nonlinear systems. These methods compute the required
control increment at a certain moment using the conditions of the system in the instant before.19 Aircraft
models are highly nonlinear and can be generally given as follows:

ẋ(t) = f [x(t),u(t)], (1)

y(t) = h[x(t)], (2)

where Eq. (1) is the system dynamic equation, in which f [x(t),u(t)] ∈ Rn provides the physical evaluation
of n states over time, Eq. (2) is the output (observation) equation, which can be measured using sensors,
and h[x(t)] ∈ Rp is a vector denoting p measured outputs.

The system dynamics around the condition of the system at time t0 can be linearized by using the
first-order Taylor series expansion:

ẋ(t) ≃ ẋ(t0) + F [x(t0),u(t0)][x(t)− x(t0)] +G[x(t0),u(t0)][u(t)− u(t0)], (3)

where F [x(t),u(t)] = ∂f [x(t),u(t)]
∂x(t) ∈ Rn×n is the system matrix of the linearized model at time t, and

G[x(t),u(t)] = ∂f [x(t),u(t)]
∂u(t) ∈ Rn×m is the control effectiveness matrix of the linearized model at time t.

It is assumed that the control inputs, states, and state derivatives of the system are measurable. Under
this assumption, the model around time t0 can be written in an incremental form:

∆ẋ(t) ≃ F [x(t0),u(t0)]∆x(t) +G[x(t0),u(t0)]∆u(t). (4)

This linearized incremental model is identifiable by using least squares (LS) techniques.

A. Incremental Approximate Dynamic Programming Based on Full State Feedback

Physical systems are generally continuous, but the collected data are discrete samples. It is assumed that
the control system has a constant high sampling frequency. Thus, the nonlinear system can be written in a
discrete form:

xt+1 = f(xt,ut), (5)

yt = h(xt). (6)

When the system has a direct availability of full state observation, the output equation can be written as

yt = xt. (7)

By taking the Taylor expansion, the linearized discrete model of this nonlinear system around xt−1, which
approximates xt, can also be written in an incremental form:

∆xt+1 ≃ Ft−1∆xt +Gt−1∆ut, (8)

where ∆xt = xt − xt−1, ∆ut = ut − ut−1, Ft−1 = ∂f(x,u)
∂x

|xt−1,ut−1
∈ Rn×n is the system matrix, and

Gt−1 = ∂f(x,u)
∂u

|xt−1,ut−1
∈ Rn×m is the control effectiveness matrix at time step t− 1. Because of the high

frequency sample data and slow-varying system, the current linearized model (Ft−1, Gt−1) can be identified
fromM different data points using a piecewise sequential LS method.30,31 Because there are n+m parameters
in the ith row, M needs to satisfy M ≥ (n+m).
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To minimize the cost of the system to reach its goal, the one-step cost function is defined quadratically:

ct = c(yt,ut,dt) = (yt − dt)
TQ(yt − dt) + uT

t Rut, (9)

where Q and R are positive definite matrices, and dt denotes the desired output. Considering a stabilizing
control problem, the one-step cost function at time t can be written as

ct = c(yt,ut) = yT
t Qyt + uT

t Rut. (10)

For infinite horizons, the cost-to-go function is the cumulative future reward from any initial state xt:

Jµ(xt) =
∞∑

i=t

γi−t(yT
i Qyi + uT

i Rui)

= yT
t Qyt + (ut−1 +∆ut)

TR(ut−1 +∆ut) + γJµ(xt+1),

(11)

where µ is the current policy (control law) for this iADP algorithm, γ ∈ [0, 1] is a parameter called the
discounted rate or the forgetting factor. The cost-to-go function for the optimal policy µ∗ is defined as
follows:

J∗(xt) = min
∆ut

[
yT
t Qyt + (ut−1 +∆ut)

TR(ut−1 +∆ut) + γJ∗(xt+1)
]
. (12)

And the policy µ is defined as feedback control in an incremental form:

∆ut = µ(ut−1,xt,∆xt). (13)

The optimal policy at time t is given by

µ∗ = arg min
∆ut

[
yT
t Qyt + (ut−1 +∆ut)

TR(ut−1 +∆ut) + γJ∗(xt+1)
]
. (14)

When the dynamics of the system are linear, this problem is known as the linear-quadratic regulator
(LQR) control problem. For this nonlinear case, the cost-to-go is the sum of quadratic values in the outputs
and inputs with a forgetting factor. Thus, the cost-to-go Jµ(xt) should always be positive. In general,
ADP uses a surrogate cost function approximating the true cost-to-go. The goal is to capture its key
features instead of accurately approximating the true cost-to-go. In many practical cases, even for time-
varying systems, simple quadratic cost function approximations are chosen so that the evaluation step can
be exactly carried out and the optimization problem is reduced to be tractable.13 A systematic cost function
approximation applied in this paper is chosen to be quadratic in xt for some symmetric, positive definite
matrix P :

Ĵµ(xt) = xT
t Pxt. (15)

This quadratic cost function approximation has an additional, important benefit for this approximately
convex state-cost system with a fixed minimum value. To be specific, this system has an optimal state when
it reaches the desired state and keeps it. The true cost function has many local minima elsewhere because
of the nonlinearity. On the other hand, this quadratic cost function has only one local minimum, which is
also the global one. Therefore, this quadratic form helps to prevent the policy from going into any other
local minimum. The learned symmetric, positive definite P matrix guarantees progressive optimization of
the policy.

The LQR Bellman equation for Ĵµ in the incremental form becomes

Ĵµ(xt)& = yT
t Qyt + (ut−1 +∆ut)

TR(ut−1 +∆ut)

& + γ(xt + Ft−1∆xt +Gt−1∆ut)
TP (xt + Ft−1∆xt +Gt−1∆ut).

(16)

By setting the derivative with respect to ∆ut to zero, the optimal control can be obtained:

∆ut = −(R+ γGT
t−1PGt−1)

−1[Rut−1 + γGT
t−1Pxt + γGT

t−1PFt−1∆xt]. (17)

From Eq. (17), it can be concluded that the policy is in the form of system variables (ut−1,xt,∆xt) feedback,
and the gains are functions of the dynamics of the current linearized system (Ft−1, Gt−1).
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Opposite to the model-based control algorithms with on-line identification of nonlinear systems, avail-
ability of these local linear models is sufficient for iADP algorithms. Furthermore, the determination of
the linear model structure is much simpler than the identification of the nonlinear model structure. If the
nonlinear model is unknown, while the full state is measurable, the iADP algorithm, as shown below, can
be applied to improve the policy online.

iADP algorithm based on full state feedback (iADP-FS)
Evaluation. The cost function kernel matrix P under policy µ can be evaluated and updated recursively

to Bellman equation for each iteration j = 0, 1, ... until convergence:

xT
t P

(j+1)xt = yT
t Qyt + uT

t Rut + γxT
t+1P

(j)xt+1. (18)

Policy improvement. Policy improves for the new kernel matrix P (j+1):

∆ut = −(R+ γGT
t−1P

(j+1)Gt−1)
−1[Rut−1 + γGT

t−1P
(j+1)xt + γGT

t−1P
(j+1)Ft−1∆xt]. (19)

When ∆t approximates to 0, the identified incremental model Ft−1, Gt−1 and the prediction of the
next state approximate the true values. With this linearized model, this problem locally becomes an LQR
problem. Referring to optimal control problems, the policy designed above approaches the optimal policy as
γ = 1. However, in ADP, the discount factor γ is usually chosen as γ ∈ (0, 1), so that the infinite sum has a
finite value as long as the cost sequence is bounded, and the agent is not ‘myopic’ in being concerned only
with maximizing immediate cost.9

B. Incremental Approximate Dynamic Programming Based on Output Feedback

The full state of a system, such as an air vehicle system, is often not available. In addition, agents often try
to control a system without enough information to infer its real states.21 The partially observable Markov
decision process (POMDP) framework can be used to deal with stochastic systems. For deterministic systems,
these types of methods are often referred to as output feedback. The systems still need to be observable,
which means that the unmeasurable internal states (full states) can be reconstructed with the observations
over a long enough time horizon. For model-free methods, the system is observable when the observability
matrix has a full column rank.

Considering the nonlinear system again, see Eq. (5) and (6), the output (observation) around xt−1 can
also be linearized with Taylor expansion:

∆yt ≃ Ht−1∆xt, (20)

where Ht−1 = ∂h(x)
∂x

|xt−1
∈ Rp×n is the observation matrix at time step t − 1. The nonlinear system

incremental dynamics, see Eq. (8) and (20), at current time t can be represented by the previously measured
data on time horizon [t-N, t]:

∆xt ≃ F̃t−2,t−N−1 ·∆xt−N + UN ·∆ut−1,t−N , (21)

∆yt,t−N+1 ≃ VN ·∆xt−N + TN ·∆ut−1,t−N , (22)

where symbol F̃t−a,t−b =
∏t−b

i=t−a Fi = Ft−a · · · · · Ft−b,

∆ut−1,t−N =




∆ut−1

∆ut−2

...

∆ut−N



∈ RmN , ∆yt,t−N+1 =




∆yt

∆yt−1
...

∆yt−N+1



∈ RmN ,

UN =
[
Gt−2 Ft−2Gt−3 ... F̃t−2,t−N ·Gt−N−1

]
∈ Rn×mN is the controllability matrix,

VN =




Ht−1F̃t−2,t−N−1

Ht−2F̃t−3,t−N−1

...

Ht−NFt−N−1



∈ RpN×n is the observability matrix,
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TN =




Ht−1Gt−2 Ht−1Ft−2Gt−3 Ht−1F̃t−2,t−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 Ht−2Gt−3 Ht−2Ft−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 0 Ht−3Gt−4 · · · Ht−3F̃t−4,t−N ·Gt−N−1

...
...

. . .
. . .

...

0 0 · · · 0 Ht−N ·Gt−N−1



∈ RpN×mN .

When the system is fully observable, the left inverse of VN , which has a full column rank, can be obtained:

V left
N = (V T

N VN )−1V T
N . (23)

To have a full column rank for observability matrix VN , N needs to satisfy N ≥ n/p. Making the number
of parameters to be identified as small as possible, the smallest value for N which meets N ≥ n/p is usually
selected.

By left-multiplying V left
N to Eq. (22), and then substituting the equation of ∆xt−N into Eq. (21), the

incremental state can be reconstructed uniquely as a function of the past input/output:

∆xt ≃ F̃t−2,t−N−1 · V
left
N ·∆yt,t−N+1 + (UN − F̃t−2,t−N−1 · V

left
N · TN ) ·∆ut−1,t−N

=
[
M∆u M∆y

] [∆ut−1,t−N

∆yt,t−N+1

]

= Mt−1∆zt,t−N ,

(24)

where M∆y denotes F̃t−2,t−N−1 · V left
N ∈ Rn×pN , M∆u denotes UN − M∆yTN ∈ Rn×mN , and Mt−1 =

[M∆u M∆y] ∈ Rn×(m+p)N . The matrix Mt−1 is identifiable by using previous M̂ steps with M̂ ≥ (m+p)N .
The nonlinear incremental output equation, Eq. (20), can be represented by a history of measured

input/output data on time horizon [t-N, t-1] in another form:

∆yt−1,t−N ≃ V N ·∆xt−N + TN ·∆ut−1,t−N , (25)

where V N =




Ht−2F̃t−3,t−N−1

Ht−3F̃t−3,t−N−1

...

Ht−N−1



∈ RpN×n ,

TN =




0 Ht−2Gt−3 Ht−2Ft−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 0 Ht−3Gt−4 · · · Ht−3F̃t−4,t−N ·Gt−N−1

...
...

. . .
. . .

...

0 0 · · · 0 Ht−N ·Gt−N−1

0 0 0 0 0



∈ RpN×mN .

When the system is fully observable, the left inverse of V N , which also has a full column rank, can be
obtained:

V
left

N = (V
T

NV N )−1V
T

N . (26)

Left-multiplying V
left

N to Eq. (25) and substituting the resulted ∆xt−N into Eq. (21) and then the resulted
∆xt into Eq. (20), the dynamics of the output and of previous measured data can be obtained:

∆yt ≃ (Ht−1UN −Ht−1F̃t−2,t−N−1 · V
left

N TN ) ·∆ut−1,t−N

+Ht−1F̃t−2,t−N−1V
left

N ·∆yt−1,t−N

= F t−1 ·∆ut−1,t−N +Gt−1 ·∆yt−1,t−N .

(27)

The output increment ∆yt+1 can also be reconstructed uniquely as a function of the measured in-
put/output data of N previous steps:

∆yt+1 ≃ F t ·∆ut,t−N+1 +Gt ·∆yt,t−N+1

= F t,11 ·∆ut + F t,12 ·∆ut−1,t−N+1 +Gt ·∆yt,t−N+1,
(28)
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where F t ∈ Rp×Nm is the extended system matrix, Gt ∈ Rp×Np is the extended control effectiveness matrix,
F t,11 ∈ Rp×m and F t,12 ∈ Rp×(N−1)m are partitioned matrices from F t. F t and Gt are identifiable by using

the piecewise sequential LS method.30,31 In this case, there are (m+p)N parameters in each row. Therefore,
the number of previous data samples M needs to satisfy M ≥ (m+ p)N .

It is assumed that the cost-to-go of the system state at time t can be written as a function of a symmetric
expended kernel matrix P in the quadratic form in terms of a history of observation vectors zt,t−N =
[uT

t−1,t−N ,yT
t,t−N+1]

T :

Ĵµ(zt,t−N ) = zTt,t−NPzt,t−N . (29)

The optimal policy under the estimation of P in terms of zt,t−N is rewritten to be

µ∗ = arg min
∆ut

(yT
t Qyt + uT

t Rut + γzTt+1,t−N+1 P zt+1,t−N+1), (30)

where

zTt+1,t−N+1 P zt+1,t−N+1 =




ut−1 +∆ut

ut−1,t−N+1

yt +∆yt+1

yt,t−N+2




T 


P11 P12 P13 P14

PT
12 P22 P23 P24

PT
13 PT

23 P33 P34

PT
14 PT

24 PT
34 P44







ut−1 +∆ut

ut−1,t−N+1

yt +∆yt+1

yt,t−N+2


 . (31)

By differentiating with respect to ∆ut, the policy improvement step can be obtained in terms of the measured
data:

− [R+ γP11 + γ(F t,11)
T · P33 · F t,11 + γP13F t,11 + γ(P13F t,11)

T ] ·∆ut

= [R+ γP11 + γ(F t,11)
T · PT

13]ut−1 + γ[(F t,11)
TP33 + P13]yt

+ γ[P12 + (F t,11)
T · PT

23]ut−1,t−N+1 + γ[P14 + (F t,11)
T · P34]yt,t−N+2

+ γ[(F t,11)
TP33 + P13](F t,12 ·∆ut−1,t−N+1 +Gt ·∆yt,t−N+1).

(32)

If the nonlinear model is unknown, and only partial information about the states is accessible, the output
feedback ADP algorithm combined with the incremental method can be applied to improve the policy online.

iADP algorithm based on output feedback (iADP-OP)
Evaluation. The cost function kernel matrix P under policy µ can be evaluated and updated recursively

according to Bellman equation for each iteration j = 0, 1, ... until convergence:

z′Tt,t−N+1P
(j+1)

z′t,t−N+1 = yT
t Qyt + uT

t Rut + γz′Tt+1,t−N+2P
(j)

z′t+1,t−N+2. (33)

Policy improvement. The policy improves for the new kernel matrix P
(j+1)

according to the derived
optimal control policy:

∆ut =− [R+ γP11 + γ(F t,11)
T · P33 · F t,11 + γP13F t,11 + γ(P13F t,11)

T ]−1·

{[R+ γP11 + γ(F t,11)
T · PT

13]ut−1 + γ[(F t,11)
TP33 + P13]yt

+ γ[P12 + (F t,11)
T · PT

23]ut−1,t−N+1 + γ[P14 + (F t,11)
T · P34]yt,t−N+2

+ γ[(F t,11)
TP33 + P13](F t,12 ·∆ut−1,t−N+1 +Gt ·∆yt,t−N+1)}.

(34)

Approximating ∆t to 0, the policy designed above approaches the optimal policy.

III. Numerical Experiments and Results

This section applies both iADP-FS and iADP-OF algorithms on a simulation of controlling an aerospace
related model. This is to show how the algorithms perform in stabilizing and regulating the system in
presence of input disturbances and an initial offset.
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A. Air vehicle model

A nonlinear air vehicle simulation model is used in this section. Air vehicle models can be highly nonlinear
and are generally given as follows:

ẋ(t) = f [x(t),u(t) +w(t)], (35)

y(t) = h[x(t)], (36)

where Eq. (35) is the kinematic state equation, w(t) is the external disturbance, which is set to be caused
only by the input noise, Eq. (36) is the output (observation) equation.

As an application, only the elevator deflection will be regulated as pitch control to stabilize the air vehicle.
Thus, two longitudinal states, angle of attack α and pitch rate q (i.e. x = [α q]), and one control input, the
elevator deflection angle δe, are concerned.

The nonlinear model in the pitch plane is simulated around a steady wings-level flight condition:

α̇ = q +
q̄S

maVT

Cz(α, q,Ma, δe), (37)

q̇ =
q̄Sd

Iyy
Cm(α, q,Ma, δe), (38)

where q̄ is dynamic pressure, S is reference area, ma is mass, VT is speed, d is reference length, and Iyy
is pitching moment of inertia. Cz and Cm are the aerodynamic force and moment coefficients, which are
highly nonlinear functions. As a preliminary test, an air vehicle model32,33 is taken in the pitch plane for
−10o < α < 10o .

When the input is u(t) = 0, α = 0 and q = 0 form an equilibrium of the system. The flight control task
is to stabilize the system (i.e., a regulator problem), if there is any input disturbance or any offset from this
condition. Specifically, an optimal policy µ∗ and the associated optimum performance need to be found by
minimizing the state-cost function J .34

B. Results

1. IADP algorithm based on full state feedback

As with other ADP methods, good state-cost estimation depends heavily on the exploration of the state
space, which is represented by persistent excitation in this case. An amplitude varying multiple doublet
disturbance was used this numerical experiment to test the performance of the proposed controllers. Fig. 1
shows the response when a 3211 input disturbance is introduced. The control system trained with iADP
algorithm rejects the disturbance compared to the response with the initial policy.
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Figure 1. IADP-FS applied to nonlinear aircraft model with 3211 input disturbance

Fig. 2 shows the control performance when the initial state is an offset after a simulated gust. After
training, the information of G(x,u) and F (x,u) can be used to estimate the current linearized system when
the system cannot be identified using online identification without persistent excitation. Because the iADP
method uses a simple quadratic cost function, the policy parameters of kernel matrix P converge after only
2 iterations.

7 of 11

American Institute of Aeronautics and Astronautics



State 1: angle of attack

Time [s]

α
[d
eg
]

State 2: pitch rate

Time [s]

q
[d
eg
/s
]

Input: elevator

Time [s]

δ
[d
eg
]

initial policy trained policy

0 4 8 120 4 8 120 4 8 12

-1.2

-0.8

-0.4

0

0.4

-10

-8

-6

-4

-2

0

2

-5

-4

-3

-2

-1

0

1

Figure 2. IADP-FS applied to nonlinear aircraft model with an initial offset

This control method does not need the model of the nonlinear system, but still needs the full state to
estimate the cost function and the control effectiveness matrix. If the model of the nonlinear system is
unknown, and only coupled state information (observations) can be obtained, the iADP algorithm based on
output feedback can be used.

2. IADP algorithm based on output feedback

In practice, vane measurement techniques are cost effective in measuring the angle of attack α.35 Vanes
are usually mounted on the aircraft in a location xvane that allows for relatively undisturbed air flow to be
measured:

αmeasure ≃ Cc(α+
xvane − xcg

V
· q), (39)

where Cc denotes the calibration coefficient, and xcg is the aircraft center of gravity. As a consequence, the
kinematic position error induced by angular velocities q at the vane location has to be considered.

According to this practical case, the output/sensor measurement is set to be a combination of α and q
with coefficients. Considering a practical case, which is to regulate α, a big portion of α (0.9) and a small
portion of q (0.1) are selected:

y(t) = [c1 c2] · x(t) = [0.9 0.1] ·

[
α

q

]
. (40)

Fig. 3 shows the disturbance response when a 3211 input disturbance was introduced; Fig. 4 shows the
control performance when the initial state is an offset from the stable condition after a simulated gust; Fig.
5 shows that the policy parameters of the kernel matrix converge quickly. After only 4 training iterations,
the nonlinear system can be regulated, as shown in Fig. 3 and Fig. 4.
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Figure 3. IADP-OP applied to nonlinear aircraft model with 3211 input disturbance

Note that when information of α is available, we can calculate q by using the identified model and enough
previously measured observations. With some knowledge or assumptions on the model, the aircraft pitch
plane system, α and q, is observable with only information of α. However, the proposed iADP algorithm is a
model-free method, i.e., no assumptions about the model are needed, and the observations are from only two
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Figure 4. IADP-OP applied to nonlinear aircraft model with an initial offset
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Figure 5. Kernel matrix parameters during training with IADP-OP

samples. Therefore, the observability is defined in terms of whether VN in Eq. (22) has full column rank. If
no information about one of the states can be provided, the iADP algorithm might not be beneficial.

Fig. 6 and Fig. 7 show a comparison of disturbance response and natural response, respectively, among
3 policies. The initial policy is what the original system follows. It cannot compensate for the undesired
inputs, such as gusts and ground effects. When the full state is available, the iADP-FS algorithm improves
the closed-loop performance, lowers the disturbance response, and stabilizes the system from an offset much
quicker. When the full state is unavailable, but the system is observable, the iADP-OP algorithm generates a
policy. This policy has an almost equal ability to stabilize and regulate the system to the policy of iADP-FS.

State 1: angle of attack

Time [s]

α
[d
eg
]

State 2: pitch rate

Time [s]

q
[d
eg
]

Input: elevator

Time [s]

δ
[d
eg
]

initial policy iADP-FS policy iADP-OP policy input disturbance

0 4 8 120 4 8 120 4 8 12
-0.25
-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-20

-15

-10

-5

0

5

10

15

-10

-8

-6

-4

-2

0

2

4

6

Figure 6. Comparison of policies applied to nonlinear aircraft model with 3211 input disturbance
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Figure 7. Comparison of policies applied to nonlinear aircraft model with an initial offset

IV. Conclusion

This paper proposes a novel adaptive control method for nonlinear systems, called incremental Approxi-
mate Dynamic Programming (iADP). It systematically applies a quadratic cost-to-go function and greatly
simplifies the design process of ADP. In addition, the incremental approach can deal with the nonlinearity
of systems. The iADP method combines the advantages of both the LADP method and the incremental
approach, and provides a model-free, effective adaptive flight controller for nonlinear systems. In addition to
the iADP algorithm based on full state feedback (iADP-FS), an iADP algorithm based on output feedback
(iADP-OP) is developed. IADP-OP uses only a history of measured input and output data from a dynamical
nonlinear system to reconstruct the local model.

Both the iADP-FS algorithm and the iADP-OP algorithm are applied to an aerospace related model.
The simulation results show that the trained policy with either algorithm rejects the disturbance compared
to the response with the initial policy. This demonstrates that both model-free adaptive control algorithms
improve the closed-loop performance of the nonlinear system, while keeping the design process simple and
systematic as compared to conventional ADP algorithms.

This new method can potentially design a near-optimal controller for nonlinear systems without a priori
knowledge nor full state measurements of the dynamic model. Although still no theoretical guarantees on
the nonlinear system performance can be offered, the performance of systems with approximately convex
cost functions is observed to be very promising. For general nonlinear systems and more complex tasks, real
applications and other possibilities such as piecewise quadratic cost functions will be studied in the future.
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