

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998 2207

Nonlinear Adaptive Prediction of Speech
with a Pipelined Recurrent Neural Network

Jens Baltersee and Jonathon A. Chambers,Member, IEEE

Abstract—New learning algorithms for an adaptive nonlinear
forward predictor that is based on a pipelined recurrent neu-
ral network (PRNN) are presented. A computationally efficient
gradient descent (GD) learning algorithm, together with a novel
extended recursive least squares (ERLS) learning algorithm, are
proposed. Simulation studies based on three speech signals that
have been made public and are available on the World Wide Web
(WWW) are used to test the nonlinear predictor. The gradient
descent algorithm is shown to yield poor performance in terms of
prediction error gain, whereas consistently improved results are
achieved with the ERLS algorithm. The merit of the nonlinear
predictor structure is confirmed by yielding approximately 2
dB higher prediction gain than a linear structure predictor
that employs the conventional recursive least squares (RLS)
algorithm.

Index Terms—Adaptive algorithms, neural networks, nonlinear
prediction.

I. INTRODUCTION

M ANY SIGNALS are generated from an inherently non-
linear physical mechanism and have statistically non-

stationary properties, a classic example of which is the speech
signal. Linear structure adaptive architectures are suitable for
the prediction of such signals, but they do not exploit their
inherent nonlinearity and associated higher order statistics.
Adaptive techniques that account for the nonlinear nature
of the signal should therefore outperform conventional linear
adaptive techniques. An emergent, nonlinear structure suitable
for prediction is the artificial neural network (ANN). In 1995,
Haykin and Li [2] presented a novel, computationally efficient
nonlinear predictor based on a pipelined recurrent neural
network (PRNN). The learning algorithm used by Haykin and
Li for the PRNN is a gradient descent algorithm. This paper
presents new learning algorithms for the nonlinear predictor,
namely, a computationally more efficient gradient descent
(GD) learning algorithm and a novel extended recursive least
squares (ERLS) learning algorithm. Simulations, based on
three speech signals available from the author’s WWW home
page [7] are used to test the nonlinear predictor and the
appropriate new learning algorithms.

Manuscript received July 8, 1996; revised February 19, 1998. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Shigeru Katagiri.

J. Baltersee is with the Integrated Systems for Signal Processing Labora-
tory, Aachen University of Technology (RWTH), Aachen, Germany (e-mail:
balterse@ert.rwth-aachen.de).

J. A. Chambers is with the Signal Processing Section, Department of Elec-
trical and Electronic Engineering, Imperial College of Science, Technology
and Medicine, London, U.K. (e-mail: j.chambers@ic.ac.uk).

Publisher Item Identifier S 1053-587X(98)05230-1.

The paper is organized in the following manner. In
Section II, the nonlinear predictor, as presented by Haykin
and Li in [2], is described; it consists of a PRNN trained
by a GD learning algorithm and a linear LMS postprocessor.
It is shown in Section III how this GD learning algorithm
can be modified in order to reduce computational complexity
without affecting the prediction performance. Furthermore,
in Section IV, a novel learning algorithm for the PRNN
based on the ERLS algorithm is proposed. In Section V, the
performance of the nonlinear predictor using both the GD and
the ERLS algorithm is compared with the performances of
conventional linear structure predictors using the least mean
square (LMS) and recursive least squares (RLS) algorithms.
The simulation results indicate that the GD algorithm, which
is also used by Haykin and Li in [2], is not the best learning
algorithm for the PRNN. Improved results are obtained with
the newly introduced ERLS learning algorithm. Section VI
summaries the main results and concludes the paper.

II. THE NONLINEAR ADAPTIVE PREDICTOR

The nonlinear predictor proposed by Haykin and Li [2] is
based on the notion of first linearizing the input signal with
the help of the PRNN and then feeding these processed data
into a conventional linear predictor to yield a one-step forward
prediction of the original signal. This combination of nonlinear
and linear processing should be able to extract both nonlinear
and linear relationships contained in the input signal. It is
expected that such a predictor will outperform, in terms of
prediction gain as defined later, a conventional linear predictor
when applied to signals generated by some nonlinear under-
lying mechanism. Fig. 1 represents the prediction process due
to Haykin and Li.

A. The Pipelined Recurrent Neural Network

The linearization of the input signal is achieved using a
PRNN. A PRNN consists of a number of small-scale recurrent
neural network (RNN) modules, which is shown in Fig. 2.
In the processing layer, the inputs are linearly combined and
then fed through a nonlinear activation function to form
the output of each neuron. The weights of each neuron
form a weight vector , where
is the number of external inputs, and is the number of
feedback connections. The weight vectors from each neuron
form a weight matrix , with being
the number of neurons in the network. For more details about
recurrent neural networks and their learning algorithms, refer

1053–587X/98$10.00 1998 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

2208 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

Fig. 1. Two-step prediction process of the nonlinear predictor.

Fig. 2. Fully connected recurrent neural network.

to the comprehensive paper by Williams and Zipser [5]. The
network shown in Fig. 2 is a special type of recurrent neural
network since all of its outputs, whether hidden or not, are
fed back to the input layer of the network, i.e., in
this case. Such a network is called a fully connected recurrent
neural network. In the PRNN, recurrent neural networks
are connected as shown in Fig. 3. Moduleof the PRNN is
a fully connected RNN, whereas in modules ,
one of the feedback signals is substituted with the output of
the first neuron of the following module. The external
signal vector is delayed by

at the input of the module , where denotes the
delay operator of time units, and is the identity matrix.
All of the modules have the same weight
matrix , which is time variant, i.e., . The overall
output of the PRNN is the output of the first neuron of the
first module, i.e., , as shown in Fig. 3. The PRNN, as
presented in [2], employs a learning algorithm that is based
on the GD algorithm, as in [5]. This kind of GD algorithm is
called a real time recurrent learning (RTRL) algorithm, which
is particularly suitable for the prediction of nonstationary (e.g.,
speech) signals since the weights are continuously adapted.
Continuous adaptation means that at every discrete time step

, a correction to the weight matrix of a module
is calculated, which is added to in order obtain

the updated weight matrix . The adaptation itself is
an optimization technique of the stochastic gradient (SG) type.
Note that this is the case for most other neural network
learning algorithms, which usually fix the weights after an

initial training period and are thus not suitable for prediction of
nonstationary signals. The merit of a PRNN, as compared with
a single fully connected recurrent neural network, is that its
computational complexity is reduced for the same total number
of neurons. Let the total number of neurons in an RNN be.
If RNN’s, each with neurons, constitute the modules
of the PRNN, then the total number of neurons in the PRNN
is . The computational complexity of a fully connected
RNN consisting of the same number of neurons, trained
with a GD type algorithm, say the RTRL algorithm, would
be [2], [5]. The PRNN architecture achieves
a reduction in the computational complexity for the same
number of neurons to [2]. Another advantage of the
PRNN over a single RNN is its increased inherent nonlinearity,
which results from the cascading of several nonlinear modules.

Equations (1) give a full description of the dynamics of the
PRNN, as depicted in Fig. 3

for

for (1)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

BALTERSEE AND CHAMBERS: NONLINEAR ADAPTIVE PREDICTION OF SPEECH WITH A PIPELINED RECURRENT NEURAL NETWORK 2209

Fig. 3. Pipelined recurrent neural network.

where

output of the th neuron in module;
internal activity (net input) of the th neuron in
module ;
weight for the th input to the th neuron within
a module;
nonlinear activation function for all of the neurons
in the network;
number of external inputs to a module in the
PRNN;
vector transpose.

Given the input vectors for each module
, the outputs of all neurons in the network at

the time step can be calculated (1). The output of a module
is defined as the output of its first neuron . As the particular
modules in the PRNN configuration are connected, the overall
output of the PRNN becomes the output of the first neuron of
module 1, i.e., . The one-step prediction error of module

at time step , which is denoted by , is then defined as
the difference between the desired response at that module at
the time step , i.e., and the output of the module

at the time step , which is denoted by

(2)

In order to implement the PRNN, it is necessary to derive a
learning algorithm based on the gradient of the cost function
of the PRNN, which is a measure of the sum of squared
instantaneous errors over all of the outputs of PRNN modules
(4) at the time instant . The learning algorithm must calculate
the correction term in order to update the weight
matrix at each discrete time step. The continuous
adaptation of the weight matrix is necessary since the predictor
operates on the nonstationary data. Note that having the same
weight matrix for all modules makes the task of finding
such a learning algorithm considerably easier. The values of
the elements of the weight matrix at time step can

be calculated using

(3)

where is an matrix, with columns
having elements representing the weights belonging
to each of the neurons and having an additional weight for
the constant bias input, which is included in the input vector.

Two learning algorithms are derived in the sequel: a GD
learning algorithm and a novel algorithm based on the ERLS
algorithm. Both learning algorithms should minimize an over-
all error function of the PRNN, as given in (4). Since the
PRNN consists of modules, there are instantaneous
error signals. Both learning algorithms must minimize a
of these squared instantaneous error signals. A forgetting
factor , which determines the weighting of the individual
modules, is introduced. Thus, the error function of the PRNN
over all modules at the time instant becomes the cost
function of the PRNN given as

(4)

where is given in (2).

B. The Linearization of the Input Signal

The first operation of the nonlinear predictor is the lin-
earization of the input signal using a PRNN, as shown
in Fig. 1. The linearization procedure itself consists of three
steps:

• Prediction: Compute the one-step nonlinear forward pre-
diction errors of the PRNN at the discrete time instant
(2), and calculate (4).

• Weight Updating:A learning algorithm uses the gradient
of the cost function (4) to calculate the weight matrix
correction , which is added to the weight matrix

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

2210 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

of a module in order to build the updated weight
matrix .

• Filtering: The output signal of the PRNN at the next time
instant is computed (1). This is performed by re-
calculating all the outputs

of the modules using the updated weight
matrix of a module and the updated input
vectors to the modules . The updated input
vectors are formed by substituting the external input
vector with

in the input vectors for each module
. In Haykin’s and Li’s nonlinear predictor

[2], the feedback values contained in the input vectors
were updated at this stage. Later on, in

Section III, it will be shown that it is advantageous to
update the feedback values at this step, as it reduces the
computational complexity of the nonlinear predictor. The
feedback values at the time step consist, therefore,
of the filtered outputs at time step.

C. The Linear Subsection

The output signal of the nonlinear subsection is
finally fed into the linear subsection of the nonlinear predictor
in order to accomplish the one-step forward prediction process.
The linear subsection is a conventional linear predictor, using
either an LMS or an RLS algorithm to update the adjustable
weights. For an introduction to linear prediction, refer to [1].
The nonlinear activation function used in the PRNN is the
logistic sigmoid function whose amplitude lies in , which
makes the output of the PRNN nonzero mean. It is well known
that a constant bias input should be included among the inputs
to a linear filter so that the LMS or RLS algorithm works
well on nonzero mean input signals. This fact was ignored
in Haykin and Li’s paper. If the bias is included, then the
tap length of the linear predictor was chosen as 12, which is
standard for telephonic quality speech,1 for the constant
bias input.

III. A GD L EARNING ALGORITHM AND

A MODIFIED NONLINEAR PREDICTOR

A GD algorithm can be derived for the PRNN following
the approach of [5]. The idea is to calculate the correction

to the weight matrix in the direction of the
negative of the gradient of the cost function (4). Hence,
the change for theth weight of neuron at the time step ,
i.e., , can be found as

(5)

As the external input signal vectordoes not depend on the
elements of and the errors at the
output of the modules of the PRNN are calculated with respect
to the output of the first neuron of theth module ,

the partial derivative of the instantaneous error of theth
module in the PRNN, with respect to the weight , i.e.,

, becomes

(6)

Using the chain rule, the last equation becomes

(7)
where denotes the first derivative of the activation function

with respect to its argument, which is the internal activity
of the first neuron in theth module . Substituting (1) into
(7) yields

(8)

The first term in the previous sum is zero except for
and , and the only elements of the input vectorthat
depend on the elements of are the feedback values in the
input vector to the module, which are denoted by(12). Now,
(8) becomes

(9)

where

(10)

If the feedback values in are also updated before the
filtering part of the linearization procedure (see the previous
section), then is defined by

(11)

(12)

If the feedback values in are not updated, then the time
index in the previous equation has to be replaced with
and with . The effect of not updating the
feedback values, as in [2], will be discussed at the end of this
section. For the time being, it is assumed that the feedback

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

BALTERSEE AND CHAMBERS: NONLINEAR ADAPTIVE PREDICTION OF SPEECH WITH A PIPELINED RECURRENT NEURAL NETWORK 2211

values are updated. Having defined the vector, it is now
possible to formulate a recursive relationship for the partial
derivatives of the elements of the feedback vector with
respect to the weights , i.e., . For the
case when (and), (7) becomes

(13)

The partial derivatives on the right-hand side of (13) arise
because the modules of the PRNN have feedback, whereby
previous values of the output samples depend on the previous
values of the weights, which, in turn, are related to the
current weights via the weight updates algorithm. It should
be noticed that these derivatives are made with respect to
the present elements of so that the expression (13) is
no longer recursive. However, if the learning ratefor the
PRNN is chosen sufficiently small so that the weights are
supposed to adapt slowly, then under the approximation that

, (13) can be approximated by

(14)

For the case when (and), no
approximation needs to be made, and the upper relation
becomes

(15)

Using (9), (14), and (15), the gradients of the outputs of the
neurons can be expressed through the recursive relations

(16)

(17)

Examining the derivation of the GD learning algorithm, it is
noted thatnot updating the feedback values that are contained
in the input vectors has a negative side effect; the
gradient for the elements of the feedback vector does not equal
the gradient for the outputs of the neurons

(18)

Therefore, the recursions of (16) and (17) are not appropriate
and should not be used to calculate the gradients of the
neuron outputs. It is therefore necessary to first use the
recursions of (14) and (15) in order to calculate the gradi-
ents of the feedback values. Once these gradients have been
obtained, (9) can be used to calculate the gradients at the
output neurons. This additional, triply indexed relation, with
computational complexity of , is not needed if the
feedback values are updated before the start of the filtering
part of the linearization procedure. Hence, by updating the
feedback values, the total computational complexity of the GD
learning algorithm is reduced. The prediction performance of
the modified version is not affected by this change, as shown
in Section V. Furthermore, the linearization procedure now
consists of only two steps instead of three.

• Prediction: Compute the one-step prediction errors (2)
from the PRNN, and calculate the cost function (4).

• Weight Updating: Use the SG algorithm on the cost
function (4) to calculate the correction , which
is added to the weight matrix to form the updated
weight matrix .

There is no need for the explicit filtering procedure because the
prediction part of the above linearization procedure at time step

now comprises the filtering part of the linearization
procedure at time step.

IV. A N OVEL LEARNING ALGORITHM FOR

THE PRNN BASED ON THE EXTENDED

RECURSIVE LEAST SQUARES (ERLS) ALGORITHM

The novel extended recursive least squares (ERLS) algo-
rithm, which is presented here, is derived from the extended
Kalman filter (EKF) algorithm. For a thorough analysis of the
EKF, see [3] and [4]. The cost function of the PRNN now
becomes

(19)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

2212 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

which must be minimized with respect to the weight matrix
. The constant represents a forgetting factor that

is introduced into the cost function (19) according to the RLS
strategy and makes the resulting learning algorithm suitable
for prediction of nonstationary signals. The ERLS algorithm
is devised to solve the nonlinear minimization problem of
(19) with respect to . In order to derive this algorithm,
the starting point is the EKF system model and measurement
model equations [4]

(20)

where

weight vector obtained by rear-
ranging the weight matrix into a column vector

in a column-by-column manner;
observation vector;

vector of white Gaussian noise (WGN)
;

observation noise that is a vector of WGN
[4].

Furthermore, the functions and are assumed to be
nonlinear, differentiable, and possibly time varying and are
assumed to perform a mapping between Euclidean vector
spaces

(21)

and

(22)

For the prediction of speech, the function in (20) is
unknown and may be approximated by the random walk model

(23)

whereas the nonlinear mapping function can be lin-
earized using a first-order Taylor expansion about the estimate

based on its previous value, i.e.,
, which yields

(24)

where the gradient of can be expressed as

(25)

so that the observation equation of (20) becomes

(26)

Moreover, the correlation matrix of the state noise vector
is equal to a scaled version of the minimum mean square error
(MMSE) matrix of the EKF [3], [4]

(27)

where is the forgetting factor introduced in (19). Using (23),
(26), and (27), together with the EKF approach as in [4], the
following equations of the ERLS algorithm can be obtained:

(28)

(29)

(30)

For the PRNN, the vector becomes

(31)

Furthermore, the vector , which is the result of the
nonlinear mapping is actually the
vector of the outputs of the PRNN modules

(32)

Finally, using (23) for , i.e.,
, the matrix of instantaneous

gradients becomes

(33)

whose elements are given in (16) and (17), which completes
the derivation of the ERLS algorithm for the PRNN. The ob-
servation noise covariance matrix of the ERLS algorithm
was set to during the simulations .

V. EXPERIMENTAL RESULTS

The focus of this section is to assess the performance of
the nonlinear predictor through simulations on three speech
signals, which are denoted , , and . The signals are
available from the author’s WWW home page [7]. Signal
is identical to that used by Haykin and Li [2]. The measure
that was used to assess the performance of the predictor is the
one-step forward prediction gain defined as

dB (34)

where denotes the estimated variance of the input speech
signal , and denotes the estimated variance of the
error signal . This definition of the prediction gain
is different from the one used in Haykin’s and Li’s paper,
which uses the corresponding mean–squared values instead
of the variance estimates. The estimates of variances have
been chosen since the DC term contained in the mean squared
values gives biased results.

The configurations of the nonlinear predictor that were
tested are

• PRNN with GD + LMS in the linear subsection;
• PRNN with GD + RLS in the linear subsection;
• PRNN with ERLS + RLS in the linear subsection.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

BALTERSEE AND CHAMBERS: NONLINEAR ADAPTIVE PREDICTION OF SPEECH WITH A PIPELINED RECURRENT NEURAL NETWORK 2213

Each configuration was compared against the performance of
a conventional linear predictor based on either the LMS or the
RLS algorithm.

The initialization of the network weights was achieved via
epochwise training, as is commonplace for neural networks
with fixed weights. The elements of the initial weight matrix

were chosen as small random numbers. The first
samples of the signal to be predicted were taken as the
pretraining sequence. For input samples, the appropriate
weight corrections were calculated after each input vector
was presented to the network. These weight corrections were
not added to at each time step but were summed up as

and added to the weight matrix at the very end
of every epoch. Usually, a number of epochs is required to
initialize , i.e., to calculate . The length of the training
sequence during initialization was set to , as in [2].
Setting the number of training epochs to 200 proved sufficient
for the gradient descent algorithm, whereas five epochs were
found sufficient for the ERLS learning algorithm. When the
gradient descent algorithm was employed, modules,
each having neurons, were used. This choice of
parameters was chosen according to [2]. The ERLS algorithm
was shown to perform best with modules and
neurons. The number of the external inputs to a module of
the PRNN using the GD learning algorithm was set to .
Simulations show that increasing the system order does not
improve the prediction performance. When the ERLS learning
algorithm was used, however, the best results were achieved
when parameter was set to . The nonlinear activation
function used by the neurons of the PRNN was the logistic
sigmoid function given by

(35)

where the constant controls the slope of the function. For
the PRNN employing the gradient descent algorithm, the
appropriate value for was found to be , whereas
for the PRNN using the ERLS learning algorithm, it was

. The forgetting factors and the learning rates
were chosen individually for each input signal. Table I gives
insight into the differences in terms of the prediction gain

(34) between the Haykin–Li scheme [2] and the proposed
modified nonlinear predictors. The simulation was undertaken
using the input speech signal denoted by. Tables II–IV
comprise the simulation results for all speech signals used in
the experiments, namely, , , and . The prediction gains
in Tables I–IV were denoted as follows.

• for the nonlinear predictor based on the PRNN
configuration;

• for the RLS linear predictor;
• for the LMS linear predictor.

The following symbols are used in Table V for the parameter
settings of the PRNN and the linear predictors.

forgetting factor for the ERLS algorithm in the PRNN;
learning rate of the SG algorithm in the PRNN;
forgetting factor for the RLS algorithm in the linear
subsection of the PRNN based nonlinear predictor;

TABLE I
COMPARISON OF HAYKIN’S AND LI’S AND THE

MODIFIED NONLINEAR PREDICTORS USING SIGNAL s2

learning rate for the LMS algorithm in the linear
subsection of the PRNN based nonlinear predictor;
forgetting factor of the linear structure RLS based
predictor;
learning rate of the linear structure LMS based pre-
dictor.

A. Haykin–Li Nonlinear Predictor versus
Proposed Nonlinear Predictor

This first experiment shows that the simplification in the
learning algorithm of the nonlinear PRNN predictor, as pro-
posed in Section III, does not result in a degradation of the
prediction gain. In fact, a slight improvement in performance
has been obtained after the modification, as shown in Table I,
which might be seen as a result of better utilizing the newly
introduced information in the updated feedback vector of the
PRNN. The rows in Table I show a comparison between the
Haykin–Li and modified version of the PRNN-based predictor
in terms of the prediction gain . Although identical results
were obtained for the GD-trained networks (first and second
row in Table I), when the ERLS learning algorithm was used in
the PRNN (third row in Table I), the modified version achieved
an 0.32 dB advantage in the prediction gain over the
version described in [2]. The rest of the experiments were
therefore carried out using the modified and computationally
more efficient version of the nonlinear predictor.

B. PRNN with Gradient Descent Learning Algorithm
+ LMS in the Linear Subsection

In this experiment, the nonlinear predictor using the gradi-
ent descent learning algorithm in the PRNN and the LMS
algorithm in the linear section was examined. According
to the results from the previous experiment, the prediction
performance of the modified predictor was expected to be close
to the performance of the Haykin–Li nonlinear predictor [2].
The results of the simulations for this experiment are shown in
Tables II–IV. The same pattern for presenting information is
used in the tables. The upper halves of the tables comprise the
comparison of the performance of the nonlinear predictor using
prediction algorithms to the performance of the sole linear
LMS predictor, whereas in the lower halves of the tables, the
comparison of the prediction algorithms against the sole RLS
linear predictor is shown. The same notation as in previous
tables was used, with representing the number of neurons
per module. The advantage of the PRNN + LMS nonlinear
predictor over the conventional linear LMS predictor has been
shown to be 1.01 dB for signal , 1.43 dB for signal ,
and 0.99 dB for signal (see the sixth row in Tables II–IV).

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

2214 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

TABLE II
COMPARISON OF NONLINEAR PREDICTOR WITH RLS
AND LMS LINEAR PREDICTORS USING SIGNAL s1

TABLE III
COMPARISON OF NONLINEAR PREDICTOR WITH RLS
AND LMS LINEAR PREDICTORS USING SIGNAL s2

Furthermore, the nonlinear predictor has been found to perform
worse than the conventional linear RLS predictor for all of
the speech signals being tested. The linear RLS predictor has
shown an advantage of 2.45 dB over the nonlinear predictor
for signal , 2.06 dB for signal , and 1.89 dB for signal

(see the first row in Tables II–IV). Moreover, the RLS is
a computationally less complex algorithm than the gradient
descent algorithm applied to the nonlinear predictor. This
indicates that the nonlinear predictor is not sufficiently efficient
in terms of computational requirements and prediction gain
when the configuration with the GD learning algorithm in the
PRNN and the LMS algorithm in the linear subsection is being
used.

C. PRNN with Gradient Descent Learning Algorithm
+ RLS in the Linear Subsection

The previous experiment is repeated, with the only differ-
ence being that the RLS algorithm was used in the linear
subsection instead of the LMS algorithm. The results of the
simulations for the same three speech signals, , and
are shown in Tables II–IV following the same pattern as in
the previous experiment. The prediction gains obtained were
higher than the prediction gains achieved with the sole linear
RLS predictor for all three signals. The advantage of the
nonlinear predictor over the RLS linear predictor was 0.31
dB for signal , 0.25 dB for signal , and 0.05 dB for
signal (see the second row in Tables II–IV). Compared

TABLE IV
COMPARISON OF NONLINEAR PREDICTOR WITH RLS
AND LMS LINEAR PREDICTORS USING SIGNAL s3

with the sole LMS linear predictor, the advantage of the
nonlinear predictor for speech signals, , and was,
respectively, 3.77, 3.74, and 2.93 dB (see the seventh row in
Tables II–IV). This shows that the advantage in the prediction
gain achieved by using the nonlinear predictor compared with
the sole RLS linear predictor is not substantial. At the same
time, the computational complexity of the nonlinear predictor
is much higher than the computational complexity of a linear
RLS-based predictor.

D. PRNN with ERLS Learning Algorithm
+ RLS in the Linear Subsection

All the results presented so far, and the results obtained in
[2], show little benefit using the complex PRNN architecture,
as compared with the conventional RLS linear predictor. This
was the authors’ motivation to investigate possible alternatives
in the learning algorithms. An algorithm that, when applied to
the PRNN-based nonlinear predictor, results in considerable
advantage in prediction gain over the sole RLS predictor is the
ERLS learning algorithm. The results of the simulations with
the ERLS learning algorithm in the nonlinear subsection and
the RLS algorithm in the linear subsection of the nonlinear
predictor are shown in Tables II–IV (see the fourth, fifth,
eighth, and ninth rows). The highest prediction gains were
achieved when the modules in the PRNN were working with
only one neuron. In that case, the nonlinear predictor achieved
approximately 2 dB for signals and and 1.61 dB for
signal advantage in prediction gain over the RLS linear
predictor (see the third row in Tables II–IV).

For the signal , a slight increase in the prediction gain was
noted when two neurons were used per module, whereas for
signals and , this resulted in performance deterioration
(see the fourth and ninth rows in Tables II–IV). A reason for
not benefiting in performance when the number of neurons
per module is increased can be related to the features of
the learning algorithm used. The ERLS algorithm is based
on a linearization of the nonlinear mapping function in the
observation equation. A first-order Taylor expansion [see (24)]
of the nonlinear function is used. If the first-order
approximation to the function is not sufficiently accurate,
then the performance of the ERLS algorithm will not improve
while increasing the number of neurons in a module. On

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

BALTERSEE AND CHAMBERS: NONLINEAR ADAPTIVE PREDICTION OF SPEECH WITH A PIPELINED RECURRENT NEURAL NETWORK 2215

Fig. 4. Relation between the number of modules in PRNN and the prediction
gain.

the other hand, increasing the number of neurons increases
the inherent nonlinearity in the system. Therefore, the first-
order Taylor expansion may not satisfy the demands of the
nonlinear mapping function, which explains why an increase
in the number of neurons per module does not necessarily lead
to a better performance of the system.

This experiment shows that the nonlinear predictor achieves
good prediction results when the ERLS algorithm was used
in the PRNN, even when only one neuron was used in each
module of the PRNN. On the other hand, except for the
network dynamics, the computational complexity of the ERLS
algorithm is of the same order of magnitude as that of the
RTRL algorithm. Thus, the ERLS algorithm is indeed a more
appropriate algorithm for training the PRNN for the prediction
purpose.

E. The Contribution of the Linear Subsection
Toward the Total Prediction Performance

The last experiment was undertaken again, whose outcome
is shown in Fig. 4, which shows the relation between the
number of modules used in the PRNN and the corresponding
prediction gain for signal . The results are shown for both
the sole PRNN and the whole nonlinear predictor, including
the linear subsection. The contribution of the linear subsection
to the total prediction gain can be found as the difference
between the corresponding curves in Fig. 4. The difference
was found to be approximately constant (0.3 dB) for the
numbers of modules considered. The same analysis for signals

and has shown the difference in prediction gain of
(0.27 dB) for signal and (0.2 dB) for signal , which
is the measure of the contribution of the linear subsection of
the nonlinear predictor to the prediction gain of the whole
nonlinear predictor. At the same time, the computational
complexity of the linear subsection is not significant, as
compared with the computational complexity of the PRNN.
This supports the notion of first extracting nonlinearity from,
e.g., speech signals and then processing them by conventional
adaptive linear predictors.

Fig. 4 also shows that increasing the number of modules
and, consequently, the degree of nonlinearity of the structure
of the nonlinear predictor, does improve the performance of

the predictor. The greatest improvements have been achieved
when the number of modules was increased from one to
three, thereby improving the prediction gain by 0.26 dB. A
further increase in the number of modules would result in
further improvements in the prediction gain. The advantage in
prediction gain obtained, however, does not support the use of
such a complex architecture (i.e., 0.11 dB is the advantage in
the prediction gain for an increase in the number of modules
of the PRNN from three to 11).

Finally, the PRNN-based nonlinear predictor was compared
with the sole nonlinear predictor realized as a single recurrent
neural network (RNN), consisting of the same number of
neurons as the PRNN. The advantage in prediction gain with
the structure of the nonlinear predictor with one neuron in
three modules and the RLS algorithm in the linear subsection
to a single RNN with the same number of neurons was 0.58 dB
for signal , whereas for signals and , the corresponding
values were 0.53 and 0.98 dB, respectively.

VI. CONCLUSION

New learning algorithms for an adaptive nonlinear for-
ward predictor based on a pipelined recurrent neural network
(PRNN) have been presented. A gradient descent (GD) learn-
ing algorithm, which has lower computational complexity
then a standard real time recurrent learning (RTRL) algorithm
for the PRNN architecture, has been developed. This GD
algorithm, when applied to the PRNN structure, has been
demonstrated not to outperform, in terms of prediction gain, a
conventional adaptive forward predictor based on a recursive
least squares (RLS) algorithm.

An extended recursive least squares (ERLS) training al-
gorithm for the PRNN has therefore been developed. For a
class of highly nonstationary time-varying signals, such as
speech, the ERLS training algorithm has been shown to obtain
significantly higher prediction gain values than the previously
developed GD algorithm [2], provided that the underlying
linearization of the PRNN structure was appropriate. With
the ERLS learning algorithm, the nonlinear predictor achieved
advantages of approximately 2 dB in terms of prediction gain
over the sole linear RLS predictor. This algorithm performed
best with only one neuron in each of the three PRNN modules
and is thus computationally less demanding than the nonlinear
predictor presented in [2], which used two neurons and five
modules. The benefit in the total number of neurons was due
to the strength of the novel ERLS algorithm.

Compared with the recurrent neural network (RNN) with the
same number of neurons as the PRNN, the PRNN architec-
ture exhibits better prediction gains with less computational
complexity.

The above results demonstrate the potential of the combined
linear and nonlinear processing architectures in prediction
applications.

ACKNOWLEDGMENT

The authors would like to thank Dr. Li for providing the
speech signal , which was used in the simulations, and the
anonymous reviewers for their helpful comments.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

2216 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1998

REFERENCES

[1] J. Makhoul, “Linear prediction: A tutorial review,”Proc. IEEE,vol. 63,
pp. 561–580, Apr. 1975.

[2] S. Haykin and L. Li, “Non-linear adaptive prediction of nonstationary
signals,” IEEE Trans. Signal Processing,vol. 43, pp. 526–535, Feb.
1995.

[3] S. Haykin, Adaptive Filter Theory,3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[4] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[5] R. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,”Neural Comput.,vol. 1, pp. 270–280,
1989.

[6] J. Shynk, “Adaptive IIR filtering,”IEEE Acoust., Speech, Signal Pro-
cessing Mag.,vol. 6, pp. 4–21, Apr. 1989.

[7] http://www.ert.rwth-aachen.de/Personen/balterse.html.

Jens Balterseewas born in Essen, Germany, on
April 25, 1971. He received the M.Eng. degree
in electrical and electronic engineering from Impe-
rial College of Science, Technology, and Medicine,
London, U.K., in 1996.

Currently, he is a Research Assistant at the In-
stitute for Integrated Signal Processing Systems
(ISS), Aachen University of Technology, Aachen,
Germany, working toward the Ph.D. degree. His
current research interests include synchronization,
estimation, equalization, and space-time processing.

Jonathon A. Chambers(M’93) was born in Peter-
borough, U.K., in 1960. After an electronics artificer
apprenticeship in the Royal Navy, he received the
first class B.Sc. (Hons.) degree in electrical and
electronic engineering from the Polytechnic of Cen-
tral London, London, U.K., receiving the Robert
Mitchell Medal as the top graduate in 1985. He was
then appointed to a lectureship at the Polytechnic of
Central London, teaching courses in digital signal
processing. He received the Ph.D. degree in adaptive
signal processing in 1990 from Imperial College,

London, U.K. after studying there and at Cambridge University, Cambridge,
U.K.

He spent three years as a Research Scientist at Schlumberger Cambridge
Research, applying adaptive signal processing techniques to oilfield-related
applications. He returned to a lectureship in signal processing in the Depart-
ment of Electrical and Electronic Engineering, Imperial College, in 1994.
He has authored or coauthored many technical publications on adaptive
signal processing and is currently running research projects in adaptive signal
processing and its application in mobile communication systems.

Dr. Chambers is a member of the IEE Professional Group Committee
E5 on Signal Processing, a Guest Editor for theInternational Journal of
Adaptive Control and Signal Processing, and an Associate Editor for IEEE
TRANSACTIONS ON SIGNAL PROCESSING.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:36 from IEEE Xplore. Restrictions apply.

