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Nonlinear Adaptive Prediction of Speech
with a Pipelined Recurrent Neural Network

Jens Baltersee and Jonathon A. Chambkiksnber, IEEE

Abstract—New learning algorithms for an adaptive nonlinear The paper is organized in the following manner. In
forward predictor that is based on a pipelined recurrent neu-  Section Il, the nonlinear predictor, as presented by Haykin
ral network (PRNN) are presented. A computationally efficient and Li in [2], is described; it consists of a PRNN trained

gradient descent (GD) learning algorithm, together with a novel . . .
extended recursive least squares (ERLS) learning algorithm, are by a GD learning algorithm and a linear LMS postprocessor.

proposed. Simulation studies based on three speech signals thatlt is shown in Section Ill how this GD learning algorithm
have been made public and are available on the World Wide Web can be modified in order to reduce computational complexity
(WWW) are used to test the nonlinear predictor. The gradient wijthout affecting the prediction performance. Furthermore,
descent algorithm is shown to yield poor performance in terms of i, gaction IV, a novel learning algorithm for the PRNN
prediction error gain, whereas consistently improved results are based the ERLS algorithm i d. In Section V. th
achieved with the ERLS algorithm. The merit of the nonlinear ased on the ag?” mis proposg - In-Section v, the
predictor structure is confirmed by yielding approximately 2 Performance of the nonlinear predictor using both the GD and
dB higher prediction gain than a linear structure predictor the ERLS algorithm is compared with the performances of
that employs the conventional recursive least squares (RLS) conventional linear structure predictors using the least mean
algorithm. square (LMS) and recursive least squares (RLS) algorithms.
Index Terms—Adaptive algorithms, neural networks, nonlinear The simulation results indicate that the GD algorithm, which
prediction. is also used by Haykin and Li in [2], is not the best learning
algorithm for the PRNN. Improved results are obtained with
the newly introduced ERLS learning algorithm. Section VI

I. INTRODUCTION b i
. summaries the main results and concludes the paper.
ANY SIGNALS are generated from an inherently non-

linear physical mechanism and have statistically non-
stationary properties, a classic example of which is the speech Il. THE NONLINEAR ADAPTIVE PREDICTOR

signal. Linear structure adaptive architectures are suitable forrhe nonlinear predictor proposed by Haykin and Li [2] is
the prediction of such signals, but they do not exploit thefased on the notion of first linearizing the input signal with
inherent nonlinearity and associated higher order statistigge help of the PRNN and then feeding these processed data
Adaptive techniques that account for the nonlinear natuiigo a conventional linear predictor to yield a one-step forward
of the signal should therefore outperform conventional linegfediction of the original signal. This combination of nonlinear
adaptive techniques. An emergent, nonlinear structure suitaifi linear processing should be able to extract both nonlinear
for prediction is the artificial neural network (ANN). In 1995,and linear relationships contained in the input signal. It is
Haykin and Li [2] presented a novel, computationally efficierdxpected that such a predictor will outperform, in terms of
nonlinear predictor based on a pipelined recurrent neuggkdiction gain as defined later, a conventional linear predictor
network (PRNN). The learning algorithm used by Haykin anglhen applied to signals generated by some nonlinear under-
Li for the PRNN is a gradient descent algorithm. This pap@jing mechanism. Fig. 1 represents the prediction process due
presents new learning algorithms for the nonlinear predict@s, Haykin and Li.

namely, a computationally more efficient gradient descent
(GD) learning algorithm and a novel extended recursive qu&_t
squares (ERLS) learning algorithm. Simulations, based on ) o . ) . ) ]
three speech signals available from the author's WWW home! N€ linearization of the input signal is achieved using a

page [7] are used to test the nonlinear predictor and tR&NN. A PRNN consists ofanumber of _small—scalg rec_urrent
appropriate new learning algorithms. neural network (RNN) modules, which is shown in Fig. 2.

In the processing layer, the inputs are linearly combined and
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Fig. 1. Two-step prediction process of the nonlinear predictor.
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Fig. 2. Fully connected recurrent neural network.

to the comprehensive paper by Williams and Zipser [5]. Thaitial training period and are thus not suitable for prediction of
network shown in Fig. 2 is a special type of recurrent neurabnstationary signals. The merit of a PRNN, as compared with
network since all of its outputs, whether hidden or not, a® single fully connected recurrent neural network, is that its
fed back to the input layer of the network, i.d7, = N in computational complexity is reduced for the same total number
this case. Such a network is called a fully connected recurré@itneurons. Let the total number of neurons in an RNN\be
neural network. In the PRNN)/ recurrent neural networks If A RNN's, each with/N neurons, constitute the modules
are connected as shown in Fig. 3. Modeof the PRNN is Of the PRNN, then the total number of neurons in the PRNN
a fully connected RNN, whereas in modulgh/ —1, ---, 1}, is M-N. The computational complexity of a fully connected
one of the feedback signals is substituted with the output BNN consisting of the same number of neurons, trained
the first neuron of the following module. Thex 1 external With @ GD type algorithm, say the RTRL algorithm, would
signal vectors” (n) = [s(n — 1), -+, s(n — p)] is delayed by be O((M-N)_‘*) [2], [5]. The PRNN archlte_cture achieves
»~™T at the input of the moduler, where=~™ denotes the & reduction in the computational complexity for the same
delay operator ofn time units, andI is the identity matrix. number of neurons t@(M'_N%) [2]. Another advantage of the
All of the modules have the sam(@V +p + 1) x N weight PR_NN over asingle RNN is its increased mherept nonlinearity,
matrix W, which is time variant, i.e:V = W (). The overall which re§ults from. the cascadlng'of. several nonllnear modules.
output of the PRNN is the output of the first neuron of thE Equations (1) give a full description of the dynamics of the

first module, i.e.,y; 1, as shown in Fig. 3. The PRNN, as RNN, as depicted in Fig. 3
presented in [2], employs a learning algorithm that is based
on the GD algorithm, as in [5]. This kind of GD algorithm is ¥, x(n) = ®(vi x(n))

called a real time recurrent learning (RTRL) algorithm, which p+N+1

is particularly suitable for the prediction of nonstationary (e.g., vi,x(n) = Z wr, 1(n ), 1(n)

speech) signals since the weights are continuously adapted. =1

Continuous adaptation means that at every discrete time stepuy (n) =[s(n — i), ---, s(n —i —p+1), 1

n, a cprrectionAW(n) .to fche weight matr.ix of a modgle Yirr,1(n), vi2(n— 1), -+, yi n(n = 1)]
Wi(n) is calculgted, Whlqh is added W (n) in orQer _obtalp for 1<i<M—1

the updated weight matri¥V (n + 1). The adaptation itself is T . .

an optimization technique of the stochastic gradient (SG) type. (n) =[s(n—12), -+, s(n—i—p+1), 1

Note that this isnot the case for most other neural network Yi,i(n = 1), yi2(n — 1), -+, i N(n = 1)]
learning algorithms, which usually fix the weights after an for i=M 1)
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Fig. 3. Pipelined recurrent neural network.

where be calculated using
¥, k(n) output of thekth neuron in module;
v, k(n) internal activity (net input) of théth neuron in W(n+1) = W(n)+ AW(n) 3)
module ¢;
W1 weight for thelth input to thekth neuron within whereW(n) is an(N +p + 1) x N matrix, with N columns
a module; having(N+p+1) elements representing the weights belonging
o(+) nonlinear activation function for all of the neuronso each of theV neurons and having an additional weight for
in the network; the constant bias input, which is included in the input vector.
P number of external inputs to a module in the Two learning algorithms are derived in the sequel: a GD
PRNN; learning algorithm and a novel algorithm based on the ERLS
() vector transpose. algorithm. Both learning algorithms should minimize an over-
Given the input vectorsi;(n) C {s(n)} for each module all error function of the PRNN, as given in (4). Since the
i (i=1,---, M), the outputs of all neurons in the network aPRNN consists of// modules, there arél/ instantaneous

the time step: can be calculated (1). The output of a modileerror signals. Both learning algorithms must minimizevan

is defined as the output of its first neurgn, . As the particular of theseM squared instantaneous error signals. A forgetting
modules in the PRNN configuration are connected, the overt@ttor A, which determines the weighting of the individual
output of the PRNN becomes the output of the first neuron Bfodules, is introduced. Thus, the error function of the PRNN
module 1, i.e.y:, 1. The one-step prediction error of moduleover all modules at the time instant becomes the cost

i at time step, which is denoted by; (n), is then defined as function E(n) of the PRNN given as

the difference between the desired response at that module at

the time step, i.e., s(n —¢+1) and the output of the module M 1o
i at the time steps, which is denoted by; 1(n) E(n) =Y XN~'e}(n) (4)
7=1
ei(n) = s(n —i+1) —yi,1(n). )

wheree;(n) is given in (2).

In order to implement the PRNN, it is necessary to derive a ) L .
learning algorithm based on the gradient of the cost functiéh The Linearization of the Input Signal
of the PRNN, which is a measure of the sum of squaredThe first operation of the nonlinear predictor is the lin-
instantaneous errors over all of the outputs of PRNN modulearization of the input signdls(n)} using a PRNN, as shown
(4) at the time instant. The learning algorithm must calculatein Fig. 1. The linearization procedure itself consists of three
the correction termAW (r) in order to update the weightsteps:
matrix W(n) at each discrete time step. The continuous « Prediction: Compute the one-step nonlinear forward pre-
adaptation of the weight matrix is necessary since the predictor diction errors of the PRNN at the discrete time instant
operates on the nonstationary data. Note that having the same (2), and calculate (4).
weight matrixW (n) for all modules makes the task of finding « Weight Updating:A learning algorithm uses the gradient
such a learning algorithm considerably easier. The values of of the cost function (4) to calculate the weight matrix
the elements of the weight matrW at time step(n + 1) can correctionAW (n), which is added to the weight matrix
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of a moduleW (») in order to build the updated weightthe partial derivative of the instantaneous error of ikte

matrix W(n + 1). module in the PRNN, with respect to the weight, 4, i.e.,
* Filtering: The output signal of the PRNN at the next timede;(n)/dwy, (n), becomes

instant(n + 1) is computed (1). This is performed by re-

calculating all the outputg; »(n+1)(¢ =1, ---, M, k= de;(n) dy; 1(n)

1,.--, N) of the modules using the updated weight dwyi(n) _3wk,z(n)' 6)

matrix of a moduleW(n + 1) and the updated input

vectors to the modules (n + 1). The updated input Using the chain rule, the last equation becomes

vectors are formed by substituting the external input

vector s;(n) = [s(n — 1), ---, s(n — i — p + 1)] with Ayi1(n) By 1(n) du1(n) . 7

si(n + 1) in the input vectorsu;(n) for each module Fwn, 1(n) = ou (n) dwg_o(n) = (I)(Ui,l(”))m

i =1,---, M. In Haykin’s and Li’'s nonlinear predictor ’ ’ 7)

[2], the feedback values contained in the input vectogghered denotes the first derivative of the activation function

u;(n) were not updated at this stage. Later on, inp with respect to its argument, which is the internal activity

Section IlI, it will be shown that it is advantageous tef the first neuron in théth modulev; ;. Substituting (1) into
update the feedback values at this step, as it reduces thg yields

computational complexity of the nonlinear predictor. The
feedback values at the time step+1) consist, therefore, . Av; 1(n)
of the filtered outputs at time step ‘P(Ui,l(”))m

2 4 o)

)
p+N+1 <8w1 a(n)
8wk7l(n) he

C. The Linear Subsection = d(v; 1(n))<

The output signal of the nonlinear subsectigiin + 1)} is a=1
finally fed into the linear subsection of the nonlinear predictor i o(n)
in order to accomplish the one-step forward prediction process. le, a(”)) (8)
The linear subsection is a conventional linear predictor, using ’

either an LMS or an RLS algorithm to update the adjusta Jleh

weights. For an introduction to linear prediction, refer to [1]

Th li tivation functioh d inthe PRNN is th
e nonlinear activation functioh(-) used in the s the | depend on the elements 8 are the feedback values in the

logistic sigmoid function whose amplitude lies[iy 1), which . .
makes the output of the PRNN nonzero mean. It is well knov@iuggfg:ﬁééo the module, which are denotedrtfl2). Now,

that a constant bias input should be included among the inp
to a linear filter so that the LMS or RLS algorithm works

e first term in the previous sum is zero except for= 1
nd! = «, and the only elements of the input vectorthat

well on nonzero mean input signals. This fact was ignoredl(v, ,(n) Guia(n)

in Haykin and Li's paper. If the bias is included, then the Fwr,1(n )

tap length of the linear predictor was chosen as 12, which is ;. o(n)

standard for telephonic quality speechl for the constant @(vi,1( Z dwy, 1(n) w1,(y+p+1(n) + Sk, 1(n)
bias input.

9)

I1l. A GD L EARNING ALGORITHM AND
A MODIFIED NONLINEAR PREDICTOR 1 kel
B f—

A GD algorithm can be derived for the PRNN following bt = {0’ k£ (10)
the approach of [5]. The idea is to calculate the correction
AW (n) to the weight matrixW (n) in the direction of the If the feedback values im;(n) are also updated before the
negative of the gradient of the cost functiéifn) (4). Hence, filtering part of the linearization procedure (see the previous
the change for théth weight of neuronk at the time stem, Section), therr;(n) is defined by
i.e., Awy i(n), can be found as

where

) o i =Wit1,1(n), yi2(n = 1), -y, (0 — 1)]
A ‘7():_ < )\1—172( )) 1SiSM—1 (11)
T T ) Z o rF = [y a(n — 1), gio(n — 1), -+, yi,n(n— 1)]
N Z Aty 254 6 i= M. (12)

™) B dw,i(n)’
If the feedback values in;(n) are not updated, then the time

As the external input signal vecterdoes not depend on theindexn in the previous equation has to be replaced Witk 1)
elements ofW and the errors:;(n) (i = 1, ---, M) at the and (n — 1) with (n — 2). The effect ofnot updating the
output of the modules of the PRNN are calculated with respdeedback values, as in [2], will be discussed at the end of this
to the output of the first neuron of thigth moduley; 1(n), section. For the time being, it is assumed that the feedback
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values are updated. Having defined the veatby it is now M= Ayi, j(n)
possible to formulate a recursive relationship for the partial Juwy,1(n)
derivatives of the elements of the feedback veetgy with . Wit1,,(n) N
respect to the weightsy, ;, i.e., dr; ;(n)/dwy (n). For the ~®(v;, 5(n)) [W wj, pra(n) +
case whenl(<i < M and2 < j < N), (7) becomes 5 1) =2
ar; j(n) 851:a1(n 1) Wj, atpt1(n)
8wk71(n)
. 8yijj(n — 1) + 6k1uz 1 ] (17)
o awa(TL)
= ®(v;, j(n — 1)) Examining the derivation of the GD learning algorithm, it is

Orial(n —1) noted thatot updating the feedback values that are contained
. <Z ;i atpr(n — 1) + Sy (n — 1)). in the input vectorsu;(n) has a negative side effect; the
gradient for the elements of the feedback vector does not equal
(13) the gradient for the outputs of the neurons

The partial derivatives on the right-hand side of (13) arise or; j(n) |, Oy j(n—1)
because the modules of the PRNN have feedback, whereby dwy, 1(n) dwg,1(n)
previous values of the output samples depend on the previous

values of the weights, which, in turn, are related to ththerefore, the recursions of (16) and (17) are not appropriate

current weights via the weight updates algorithm. It shouf?d Should not be used to calculate the gradients of the

be noticed that these derivatives are made with respect ¢'fguron outputs. It is therefore necessary to first use the

the present elements &V so that the expression (13) jgfeeurstons of (14) and (15) in order to calculgte the gradi-
. . : ents of the feedback values. Once these gradients have been
no longer recursive. However, if the learning ratefor the

PRNN is chosen sufficiently small so that the weights aobtalned (9) can be used to calculate the gradients at the

utput neurons. This additional, triply indexed relation, with
supposed to adapt slowly, then under the approximation tQ tmputanonal complexity 0D(M-N?), is not needed if the
w, i(n + 1) =~ wy,_(n), (13) can be approximated by

feedback values are updated before the start of the filtering
part of the linearization procedure. Hence, by updating the

(18)

i, j(n) ~ &(v; Z Oria(n — ) feedback values, the total computational complexity of the GD
dw,1(n) & 8w“ learning algorithm is reduced. The prediction performance of
the modified version is not affected by this change, as shown
c Wi atptr1(n — 1) + pui i(n — 1)), (14) in Section V. Furthermore, the linearization procedure now
consists of only two steps instead of three.
For the case whenl(< i < M — 1 andj = 1), no ¢ Prediction: Compute the one-step prediction_ errors (2)
approximation needs to be made, and the upper relatlon from the PRNN, and calculate the cost function (4).
becomes * Weight Updating: Use the SG algorithm on the cost
function (4) to calculate the correcticAW (n), which
Ir; 1(n) is added to the weight matriw (») to form the updated
owy, 1(n) weight matrix W{n + 1).
Yit1,1(n) There is no need for the explicit filtering procedure because the
T ow(n) prediction part of the above linearization procedure at time step

(n + 1) now comprises the filtering part of the linearization

= ®(vit11(n)) procedure at time step.

<Z 8(;:—:1“ 7; W1, apt1(n) + 6kju7;+171(n)> . (15)
V. A NOVEL LEARNING ALGORITHM FOR

Using (9), (14), and (15), the gradients of the outputs of the THE PRNN BASED ON THE EXTENDED

neurons can be expressed through the recursive relations RECURSIVE LEAST SQUARES (ERLS) ALGORITHM

S - The novel extended recursive least squares (ERLS) algo-
M rithm, which is presented here, is derived from the extended
Gy, 1(n) Kalman filter (EKF) algorithm. For a thorough analysis of the

EKF, see [3] and [4]. The cost function of the PRNN now

897 (y - )
O(vi, 5 [Z dwg, 1 (n — 1) W), atp+1(n) becomes

i=M =

+ bnju, z(n)] (16) e(n) =Y "*E(k) (19)

k=1
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which must be minimized with respect to the weight matriwhere¢ is the forgetting factor introduced in (19). Using (23),
W. The constan{ € (0, 1] represents a forgetting factor that(26), and (27), together with the EKF approach as in [4], the
is introduced into the cost function (19) according to the RL®llowing equations of the ERLS algorithm can be obtained:
strategy and makes the resulting learning algorithm suitable

for prediction of nonstationary signals. The ERLS algorithm K(n) =¢'M(n — 1)H" (n)

is devised to solve the nonlinear minimization problem of ([Cn) + € H()M(n — DHT (n)]71 (28)
(19) with respect toW. In order to derive this algorithm, N

the starting point is the EKF system model and measurement w(n) :vAV(T — 1) + K(n)[x(n) —h(Ww(n — 1)) (29)
model equations [4] M(n) =& [I - K(n)H(n)[M(n — 1). (30)
w(n) =a(w(n— 1)) +u(n) For the PRNN, thel/ x 1 vectorx(n) becomes
x(n) =h(w(n)) + v(n) (20)
XT(”) = [8(71), S(TL_ 1)7 Ty S(TL_M—’_]-)] (31)

where

w(n) N(N +p+ 1) x 1 weight vector obtained by rear- Furthermore, the vectoh(n), which is the result of the
ranging the weight matri into a column vector nonlinear mappinda(n) = h(w(n)) is actually theM x 1

w in a column-by-column manner; vector of the outputs of the PRNN modules
x(n) M x 1 observation vector;
u(n) vector of white Gaussian noise (WGN) W?'(n) = [y, 1(n), y2,1(n), -+, yar, 1(n)]. (32)

u(n)~N(0, Q);
v(n) observation noise that is a vector of WGNFinally, using (23) forE(w(n)), i.e., w(n|n — 1) = W(n —
v(n)~N(0, C(n)) [4]. 1ln — 1) = w(n — 1), the matrix H(n) of instantaneous
Furthermore, the functiona(-) and h(-) are assumed to begradients becomes
nonlinear, differentiable, and possibly time varying and are

assumed to perform a mapping between Euclidean vector H(n) = dh(w(n — 1)) (33)
spaces aw(n —1)
a: RV(VApHD _ RN(N4p+D) (21) whose elements are given in (16) and (17), which completes
the derivation of the ERLS algorithm for the PRNN. The ob-
and servation noise covariance matfiX ) of the ERLS algorithm
h: RN(N+p+l) _, RM 22) was set tocI during the simulationg € R*.

For the prediction of speech, the functiet-) in (20) is

unknown and may be approximated by the random walk model
The focus of this section is to assess the performance of

w(n) =w(n — 1)+ un) (23) the nonlinear predictor through simulations on three speech
. ) ) ~signals, which are denotesll, s2, and s3. The signals are
whereas the nonlinear mapping functidr(-) can be lin- 5yailable from the author's WWW home page [7]. Sigsal
earized using a first-o_rder Tay_lor expansiorj about the estim@t§yentical to that used by Haykin and Li [2]. The measure
E(w(n)) based on its previous value, i.eE(w(n)) = thatwas used to assess the performance of the predictor is the
w(n|n — 1), which yields one-step forward prediction gaiR,, defined as

V. EXPERIMENTAL RESULTS

h(w(n)) ~h(#(nn — 1)) + Vb (S(nln - 1)) 2
[w(n) — w(n|n —1)] (24) £,=10 log, <6_—‘;> dB (34)

where the gradient dh(-) can be expressed as
Sh(w(n|n — 1))

ht =" 7

v winln—1)

where 52 denotes the estimated variance of the input speech
signal {s(n)}, and 2 denotes the estimated variance of the
error signal{e(n)}. This definition of the prediction gain
is different from the one used in Haykin's and Li's paper,
which uses the corresponding mean—squared values instead
x(n) = H(n)w(n) + v(n) of the variancg estimates. The estirr_lates. of variances have
been chosen since the DC term contained in the mean squared
+[h(w(n|n = 1)) = H(n)%(nln = 1)]. (26) yq)yes gives biased results.
The configurations of the nonlinear predictor that were

=H(n) (25)

so that the observation equation of (20) becomes

Moreover, the correlation matrix of the state noise veator)
is equal to a scaled version of the minimum mean square er?%?ted are
(MMSE) matrix of the EKF [3], [4] * PRNN with GD + LMS in the linear subsection;
« PRNN with GD + RLS in the linear subsection;
Q(n) = E{u(n)u”(n)} = (¢ =1M(n)  (27) .+ PRNN with ERLS + RLS in the linear subsection.
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Each configuration was compared against the performance of TABLE |

a conventional linear predictor based on either the LMS or the COMPARISON OF HAYKIN'S AND LI'S AND THE
RLS algorithm. MoDIFIED NONLINEAR PREDICTORS USING SIGNAL 52

The initialization of the network weights was achieved via ~ non-linear Rpy original | Rpy modified

epochwise training, as is commonplace for neural networks predictor version version
with fixed weights. The elements of the initial weight matrix SG+LMS 9.49 9.49
W(0) were chosen as small random numbers. The first SG+RLS 11.80 11.80
samples of the signal to be predicted were taken as the FERLS+RLS, N=2 13.08 13.40

pretraining sequence. Fadt input samples, the appropriate
weight correction®\'W were calculated after each input vector
was presented to the network. These weight corrections wer
not added toW at each time step but were summed up as
AW, ,..h and added to the weight matrW at the very end

. learning rate for the LMS algorithm in the linear
subsection of the PRNN based nonlinear predictor;
forgetting factor of the linear structure RLS based

of every epoch. Usually, a number of epochs is required to predictor;
initialize W, i.e., to calculatdV (L). The length of the training Ic;aigtrgrlng rate of the linear structure LMS based pre-

sequence during initialization was set fo= 300, as in [2].
Setting the r_1umber of training .epochs to 200 proved sufﬂmeR'F Haykin-Li Nonlinear Predictor versus
for the gradient descent algorithm, whereas five epochs W?-'rreoposed Nonlinear Predictor

found sufficient for the ERLS learning algorithm. When the

gradient descent algorithm was employéd, = 5 modules, This first experiment shows that the simplification in the
each havingN = 2 neurons, were used. This choice ofearning algorithm of the nonlinear PRNN predictor, as pro-
parameters was chosen according to [2]. The ERLS algoritit@sed in Section I, does not result in a degradation of the
was shown to perform best with/ = 3 modules andV = 1  Prediction gain. In fact, a slight improvement in performance
neurons. The number of the external inputs to a module I@qis been obtained after the modification, as shown in Table |,
the PRNN using the GD learning algorithm was septe 4. Which might be seen as a result of better utilizing the newly
Simulations show that increasing the system order does #iffoduced information in the updated feedback vector of the
improve the prediction performance. When the ERLS learnifgRNN. The rows in Table | show a comparison between the
algorithm was used, however, the best results were achieyé@ykin—Li and modified version of the PRNN-based predictor
when parametep was set top = 8. The nonlinear activation in terms of the prediction gaiRpN. Although identical results
function used by the neurons of the PRNN was the logistiéere obtained for the GD-trained networks (first and second

sigmoid function given by row in Table 1), when the ERLS learning algorithm was used in
the PRNN (third row in Table 1), the modified version achieved
B(v) 1 (35) an 0.32 dB advantage in the prediction gdipy over the

YT + exp(—v) version described in [2]. The rest of the experiments were

therefore carried out using the modified and computationally

where the constartt controls the slope of the function. Formore efficient version of the nonlinear predictor.
the PRNN employing the gradient descent algorithm, the
appropriate value fob was found to beb = 1.0, whereas B. PRNN with Gradient Descent Learning Algorithm
for the PRNN using the ERLS learning algorithm, it was | MS in the Linear Subsection
b = 2.75. The forgetting factors and the learning rates . . . . . .

S . . . In this experiment, the nonlinear predictor using the gradi-
were chosen individually for each input signal. Table | gives i . .
S . . . - ent descent learning algorithm in the PRNN and the LMS
insight into the differences in terms of the prediction 9ai  Jrithm in the linear section was examined. Accordin
R, (34) between the Haykin—Li scheme [2] and the propos&-%‘og ' 9

modified nonlinear predictors. The simulation was undertaken the results from the previous experiment, the prediction

using the input speech signal denoted 4y Tables lI-IV performance of the modified predictor was expected to be close

comprise the simulation results for all speech signals usedto the performance of the Haykin—Li nonlinear predictor [2].
prise. P 519 S€0.He results of the simulations for this experiment are shown in
the experiments, namely], s2, ands3. The prediction gains

. Tables II-1V. The same pattern for presenting information is
in Tables I-IV were denoted as follows. . X

. ) used in the tables. The upper halves of the tables comprise the

* Rpx for t.he'nonlmear predictor based on the PRNN,mnarison of the performance of the nonlinear predictor using
configuration; _ e prediction algorithms to the performance of the sole linear

* Hpges for the RLS linear predictor; LMS predictor, whereas in the lower halves of the tables, the

* Lprys for the LMS linear predictor. comparison of the prediction algorithms against the sole RLS
The following symbols are used in Table V for the paramet@ihear predictor is shown. The same notation as in previous

settings of the PRNN and the linear predictors. tables was used, wittV representing the number of neurons
Qp forgetting factor for the ERLS algorithm in the PRNN;per module. The advantage of the PRNN + LMS nonlinear
wp learning rate of the SG algorithm in the PRNN; predictor over the conventional linear LMS predictor has been

Q; forgetting factor for the RLS algorithm in the linearshown to be 1.01 dB for signail, 1.43 dB for signals2,
subsection of the PRNN based nonlinear predictor; and 0.99 dB for signai3 (see the sixth row in Tables II-IV).
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TABLE 1 TABLE IV
COMPARISON OF NONLINEAR PREDICTOR WITH RLS COMPARISON OF NONLINEAR PREDICTOR WITH RLS
AND LMS LINEAR PREDICTORS USING SIGNAL s1 AND LMS LINEAR PREDICTORS USING SIGNAL s3
non-linear RPN RPRLS RPN - RPRLS non-linear RPN RPHLS RPN - RPRLS
predictor predictor
SG+ILMS 10.25 | 12.70 -2.45 SG+LMS 7.3 9.19 -1.89
SG+RLS 13.01 12.70 0.31 SG+RILS 9.24 9.19 0.05
ERLS+RLS, N=1]14.73 | 12.70 2.03 ERLS+RLS, N=1]10.90 9.19 1.61
FRLS+RLS, N=2114.77 | 12.70 2.07 FRLS+RLS, N=2| 9.85 9.19 1.11
Rpn | Rpoms | Bpn — Rprus Rpn | Rerms | Bpv — Bprms
SG+LMS 10.25 9.2 1.01 SG+ILMS 7.30 6.31 0.99
SG+RLS 13.01 9.24 3.77 SG+RLS 9.24 6.31 2.93
ERLS+RLS, N=1| 14.73 9.24 5.49 ERLS+RLS, N=11]10.80 6.31 4.49
FERLS+RLS, N=2 | 14.77 9.24 5.53 ERLS+RLS, N=2| 9.85 6.31 3.54
TABLE 1l

c with the sole LMS linear predictor, the advantage of the
OMPARISON OF NONLINEAR PREDICTOR WITH RLS . . i

AND LMS LINEAR PREDICTORS USING SIGNAL 52 nonlinear predictor for speech signad$, s2, and s3 was,
respectively, 3.77, 3.74, and 2.93 dB (see the seventh row in

n;’éldﬁzir Bew | Reres | Ben = Reres Tables 1I-1V). This shows that the advantage in the prediction

E’G TS 540 T 1150 506 gain achieved by using the nonlinear predictor compared with

SG+RL€ H‘ 20 11'55 ‘0 ‘25 the sole RLS linear predictor is not substantial. At the same

ERZS+}%LS N7 13}9 11}5 2'04 time, the computational complexity of the nonlinear predictor
, N= 0 O . . . f . .

FRLSIRLS N—2|13.40 | 1155 785 ELn;l_chgSZghper;gi];grthe computational complexity of a linear

Rpy | Reims | Bpv ~ Rprys ’

SG+LMS 9.49 8.06 1.43 i . .

SGLELS 1180 | 8.06 374 D. PRNN with ERLS Learning Algorithm

ERLS+ILS, N=1|13.50 | 8.06 553 + RLS in the Linear Subsection

ERLS+RLS, N=2|13.40 | 8.06 5.34 All the results presented so far, and the results obtained in

[2], show little benefit using the complex PRNN architecture,

, ) as compared with the conventional RLS linear predictor. This
Furthermore, the nonlinear predictor has been found to perfopis the authors’ motivation to investigate possible alternatives

worse than the conve_ntlonal linear RI_‘S predictor for_ all qf; the learning algorithms. An algorithm that, when applied to
the speech signals being tested. The linear RLS predictor jgs prnN-based nonlinear predictor, results in considerable
shown an advantage of 2.45 dB over the nonlinear prediclgly aniage in prediction gain over the sole RLS predictor is the
for signal s1, 2.06 dB for signals2, and 1.89 dB for signal gp) 5 |earning algorithm. The results of the simulations with
s3 (see the first row in Tables II-IV). Moreover, the RLS ige ER| S learning algorithm in the nonlinear subsection and
a computationally less complex algorithm than the gradleme RLS algorithm in the linear subsection of the nonlinear
descent algorithm applied to the nonlinear predictor. Thbsredictor are shown in Tables Il-IV (see the fourth, fifth,
indicates that the nonlinear predictor is not sufficiently efficie%tighth, and ninth rows). The highest prediction gains were
in terms of computational requirements and prediction galfiyieyed when the modules in the PRNN were working with
when the configuration with the GD learning algorithm in thg,y one neuron. In that case, the nonlinear predictor achieved
PRNN and the LMS algorithm in the linear subsection is be”@pproximately 2 dB for signals1 and s2 and 1.61 dB for

used. signal s3 advantage in prediction gain over the RLS linear
predictor (see the third row in Tables 1I-1V).

For the signakl, a slight increase in the prediction gain was
noted when two neurons were used per module, whereas for
The previous experiment is repeated, with the only diffesignalss2 and s3, this resulted in performance deterioration

ence being that the RLS algorithm was used in the linegee the fourth and ninth rows in Tables II-1V). A reason for
subsection instead of the LMS algorithm. The results of thot benefiting in performance when the number of neurons
simulations for the same three speech sigrdlss2, ands3 per module is increased can be related to the features of
are shown in Tables II-IV following the same pattern as ithe learning algorithm used. The ERLS algorithm is based
the previous experiment. The prediction gains obtained wese a linearization of the nonlinear mapping function in the
higher than the prediction gains achieved with the sole lineabservation equation. A first-order Taylor expansion [see (24)]
RLS predictor for all three signals. The advantage of thef the nonlinear functionh(-) is used. If the first-order
nonlinear predictor over the RLS linear predictor was 0.3pproximation to the functioh(-) is not sufficiently accurate,
dB for signal s1, 0.25 dB for signals2, and 0.05 dB for then the performance of the ERLS algorithm will not improve
signal s3 (see the second row in Tables II-1V). Comparedhile increasing the number of neurons in a module. On

C. PRNN with Gradient Descent Learning Algorithm
+ RLS in the Linear Subsection
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Relation between number of modules and Rp the predictor. The greatest improvements have been achieved
when the number of modules was increased from one to
o 157 ——- non-linear predictor three, thereby improving the prediction gain by 0.26 dB. A
O 149+ — PANN e further increase in the number of modules would result in
= 128+ e -7 further improvements in the prediction gain. The advantage in
T 47 prediction gain obtained, however, does not support the use of
S 146 ,,// such a cpmplex grchitectu_re (i.e., 0:11 dB is the advantage in
B a5l the prediction gain for an increase in the number of modules
3 14’4 1 of the PRNN from three to 11).
a8 Finally, the PRNN-based nonlinear predictor was compared
g 1437 with the sole nonlinear predictor realized as a single recurrent
14,2 3 5 7 ) 11 neural network (RNN), consisting of the same number of
modules neurons as the PRNN. The advantage in prediction gain with
Fig. 4. Relation between the number of modules in PRNN and the predictitfi@ structure of the nonlinear predictor with one neuron in
gain. three modules and the RLS algorithm in the linear subsection

to a single RNN with the same number of neurons was 0.58 dB
the other hand, increasing the number of neurons increag%rfs'gnabl’ v(\;hsegreasdfoc; 3;??%52 and$3£.th? corresponding
the inherent nonlinearity in the system. Therefore, the firgfgues were 0.55 and ©. » respectively.
order Taylor expansion may not satisfy the demands of the
nonlinear mapping function, which explains why an increase VI. CONCLUSION

in the number of neurons per module does not necessarily leaew learning algorithms for an adaptive nonlinear for-

to a better performance of the system. ward predictor based on a pipelined recurrent neural network
This experiment shows that the nonlinear predictor achievgsRNN) have been presented. A gradient descent (GD) learn-
good prediction results when the ERLS algorithm was us@gly algorithm, which has lower computational complexity
in the PRNN, even when only one neuron was used in eagfén a standard real time recurrent learning (RTRL) algorithm
module of the PRNN. On the other hand, except for thgr the PRNN architecture, has been developed. This GD
network dynamics, the computational complexity of the ERL§gorithm, when applied to the PRNN structure, has been
algorithm is of the same order of magnitude as that of thsmonstrated not to outperform, in terms of prediction gain, a

RTRL algorithm. Thus, the ERLS algorithm is indeed a morgonventional adaptive forward predictor based on a recursive
appropriate algorithm for training the PRNN for the predictiofeast squares (RLS) algorithm.

purpose. An extended recursive least squares (ERLS) training al-

gorithm for the PRNN has therefore been developed. For a
E. The Contribution of the Linear Subsection class of highly nonstationary time-varying signals, such as
Toward the Total Prediction Performance speech, the ERLS training algorithm has been shown to obtain

. . significantly higher prediction gain values than the previously
The last experiment was undertaken again, whose outcog&/eloped GD algorithm [2], provided that the underlying

IS sf;)ownfm Follgi 4 Wh'(;:h iEOV\SR:\TEI rel(?t;ﬁn between g]%earization of the PRNN structure was appropriate. With
numober of modules used in e and the correspondigia, e, g learning algorithm, the nonlinear predictor achieved

fﬁgds'gﬁfnp%m fg::]jl?l’?:bli];)rlzenf;grl]tesa?rersg'?;\tﬂ(l)nr f%rclb(g.r:]advantages of approximately 2 dB in terms of prediction gain
W : predictor, InCluding, o 1he sole linear RLS predictor. This algorithm performed

the linear subsection. The contribution of the linear subsectiggst with only one neuron in each of the three PRNN modules
to the total prediction gain can be found as the differen d is thus computationally less demanding than the nonlinear

between the corresponding curves in Fig. 4. The d'ﬁerenﬁ?edictor presented in [2], which used two neurons and five

was found to be approm_mately constantQ(3 dB) _for thg mf)dules. The benefit in the total number of neurons was due
numbers of modules considered. The same analysis for 991% $he strength of the novel ERLS algorithm

Sioagg Z?é hfas §howl;12 thedd|ﬁ(;ar2e3(ée f|n p_red|c|:t|30n %?'R 0 Compared with the recurrent neural network (RNN) with the
(~0. ) for signals2 and 0. ) for signals3, whic same number of neurons as the PRNN, the PRNN architec-

Is the measure of t_he contribution O.f t_he Ime_ar subsection fire exhibits better prediction gains with less computational
the nonlinear predictor to the prediction gain of the Wh0|8

Pmplexity.

nonlmear pred|ctor..At ks same t'me’ the gomputaﬂona The above results demonstrate the potential of the combined
complexity of the linear subsection is not significant, iﬁ

compared with the computational complexity of the PRN r;;ﬁgaz;r;isnonlmear processing architectures in- prediction
This supports the notion of first extracting nonlinearity from, '
e.g., speech signals and then processing them by conventional
adaptive linear predictors. ACKNOWLEDGMENT
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