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ABSTRACT This paper focuses on the high performance pointing control of tank servo systems with

parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural

flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system

is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems,

a continuous frictionmodel is employed.Moreover, a hybrid nonlinearmodel combining structural flexibility

and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and

flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the

backsteppingmethod, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is

compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control

law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability

analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric

uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of

the proposed control strategy is verified by a large number of comparative simulation results.

INDEX TERMS Tank servo systems, nonlinearity, uncertainty, adaptive control, robust control.

I. INTRODUCTION

Tank servo systems are significant parts of modern tank fire

control systems [1]. They are mainly used to realize the

azimuth and pitch attitude adjustment and servo tracking of

the tank guns. Meanwhile the servo system is also a key

factor to ensure the stability of the tank turrets and guns while

the tanks are moving. However, the tank servo system not

only has many complex nonlinear factors, but also includes

parametric uncertainties and unmodeled disturbances. The

high precision pointing control for tank servo systems has

always been the focus of control scholars and engineering

experts. Although the controllers based on linear control

theory are currently relatively mature, their global stability

and servo tracking performance can hardly meet the current

requirements [2]. Therefore, it is indispensable to further
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explore progressive nonlinear control strategies to improve

high performance for tank servo systems.

To improve the pointing control performance of tank servo

systems, the current research mainly focuses on the following

two aspects: the precise modeling of tank servo systems

and the improvement of control strategies. The traditional

control methods for the tank servo systems are mainly based

on a single-channel independent design, which consider the

movement of the azimuth subsystem and the pitch subsystem

to be independent. Meanwhile the design of the controllers

was mainly aimed at the independent research of the relevant

characteristics for the motors in the subsystem, ignoring the

dynamic characteristics of the tank servo system. In [3]–[6],

by designing different nonlinear control methods to enhance

the tracking performance for the tank servo systems, it was

essentially the control of servo motors for azimuth or pitch

subsystems. The design of the above controllers has not

considered the two-axis dynamic coupling characteristics,

which will lead to not good enough control performance.
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In [7], [8], the two-axis dynamic coupling models of the

tank servo systems were established, and the corresponding

controllers were designed, however, the electrical dynamics

were not taken into consideration, which makes the designed

control law not suitable for practical application. In [9],

a dynamic model of two-DOF tank servo system with two

motor drive subsystems was established. However, the fric-

tion nonlinearity, model uncertainty and dynamic character-

istics of servo motors were not deeply explored.

In addition to the two-axis coupling characteristics, the

friction, backlash, flexibility and mechanism nonlinearity in

the tank servo systems are all obstacles to our accurate mod-

eling process. How to unify the above nonlinearities in the

form of mathematical representation plays a significant role

in improving the performance for the designed controller.

Friction nonlinearity is a key factor affecting the low-speed

servo performance of the systems [10]. Accurate friction

compensation can availably boost the servo performance for

the tank servo systems. The influence of friction nonlinearity

was not considered in some control studies for tank servo

systems [11], [12]. Most studies consider the effect of fric-

tion nonlinearity when designing controllers, but the friction

model was considered a simple Stribeck model [13], [14].

However, it should be noted that the Stribeck friction model

is piecewise continuous, which means it is not differentiable.

It is conflicting to design a controller based on the back-

stepping method to deal with unmatched nonlinear frictions

through the traditional Stribeck model. Hence, there is still

room for improvement of the friction nonlinearity in the

design process of the previous tank servo system controllers.

Furthermore, the impact of backlash and flexible nonlin-

earity in the tank servo system cannot be ignored [15], and

related scholars had done in-depth research on it from the

structure [16], [17] and control theory [9], [18]–[21]. The

theoretical analysis of the backlash nonlinearity for the tank

servo system provided a basis for the design of nonlinear

compensation control strategies [18], [19]. In [20], an adap-

tive robust controller was designed for the backlash nonlin-

earity in the tank servo system. In [9], an optimal control

scheme was derived for backlash compensation. On the basis

of [9], the backlash and flexible nonlinearity were combined

into consideration for tank servo system, used optimal control

designs for backlash compensation and flexible nonlinearity

was handled by feedback linearization.

In the dynamic systems with small moment of inertia

and low speed of the controlled object, the flexible nonlin-

earity can generally be ignored [22], [23]. However, in the

tank servo systems, flexible nonlinearity will cause the sys-

tems to lag significantly and form mechanical resonance.

In the launching state of tank moving, all transmission shafts

(including motor shafts), gears on the shafts, fasteners, cou-

plings, and transmission boxes and bases of the transmission

devices all have different degrees of elastic deformation [24].

Therefore, the flexible nonlinear analysis of the tank servo

systems is quite complicated. To simplify the research dif-

ficulty, generally the flexibility of the entire transmission

device can be equivalent to the output shaft [9], [24], [25].

The flexibility of the transmission shaft between the motor

and the load was represented by a linear spring model for

tank servo systems [9], [24]–[27]. In [26], through parameter

identification of the transmission shaft stiffness coefficient,

the flexible nonlinearity of the tank servo system was further

studied.

Moreover, apart from the dynamic coupling and nonlinear

characteristics mentioned above, there are also many model

uncertainties, which can be divided into parameter uncertain-

ties and unmodeled disturbances, in the tank servo systems

[24], [25]. The parameter uncertainties are mainly reflected

in the change of load mass and coefficient of viscous friction.

The unmodeled disturbances include dynamic characteristics

of the system and external disturbanceswhich cannot be accu-

rately considered during modeling. In [28], [29], the unmod-

eled disturbances of the tank servo system were estimated

by the extended state observer. In [30], the RBF neural

network was used to adaptively approximate the system

perturbation parameters and unmodeled disturbances to sup-

press the chattering of the system. In [31], [32], the authors

proposed σ modification and normalization signal methods

for the simultaneous existence of unmodeled dynamics and

bounded disturbance. For the external disturbance and param-

eter uncertainty in the tank servo system, a control scheme

combining disturbance observer and sliding mode variable

structure control was proposed [33]. Obviously, the above

research dealt with the model uncertainties for tank servo sys-

tems in the design process of the controllers, which improved

the servo performance of the systems compared with the

traditional PID controller.

In this paper, a nonlinear adaptive robust controller is put

forward for high performance pointing control of tank servo

systems come under parametric uncertainties and uncer-

tain nonlinearities including nonlinear friction, backlash and

structural flexibility based on backstepping method. In the

controller design, the parameter adaptation law is integrated

to reduce the parametric uncertainties, and the unmodeled

disturbances are handled by certain robust feedback. The sys-

tem friction nonlinearity is described by a continuous differ-

entiable friction model, including viscous friction, coulomb

friction and Stribeck effect. The unknown parameters in the

friction model are updated by adaptation law to achieve

accurate friction compensation. A hybrid nonlinear model

combining structural flexibility and transmission backlash is

constructed to describe the nonlinear characteristics of the

backlash and flexible coupling between the input and output

shafts of the drive end for the tank servo system. Due to the

feedforward cancellation, the adverse effects caused by the

system nonlinearities are much alleviated. The action paths of

various feedforward compensation strategies are considered

in combination with the nonlinear coupling characteristics

of the azimuth subsystem motors and the pitch subsystem

electric cylinder. In the design of the final feedforward con-

trol law, decoupling control of various nonlinear factors is

realized through full state feedback. The proposed nonlinear
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adaptive robust controller not only guarantees the asymptotic

tracking performance for parametric uncertainties, but also

has good robustness to unmodeled disturbances.

The main contributions of this paper include the following

aspects. 1) A comprehensive nonlinear dynamic mathemat-

ical model of tank servo system is built considering the

two-axis coupling dynamic characteristics, nonlinear friction,

backlash, transmission shaft flexibility, as well as various

model uncertainties, including parameter uncertainties and

unmodeled disturbances. 2) A model-based nonlinear adap-

tive robust control strategy is proposed to achieve high-

precision pointing control of tank servo systems.

3) When the projection-type adaptive law is adopted, the

stability of the closed-loop system will not be disturbed, the

mutual influence between parameter adaptation and robust

control law can be reduced, and the gain setting efficiency

of the controller is improved. 4) To test the proposed con-

troller, extensive comparative simulation results are acquired

to demonstrate its superiority and availability.

This paper is arranged as follows. Chapter II gives the for-

mulation of the problem and the dynamic models. Chapter III

introduces the design process of the presented nonlinear

adaptive robust controller and its primary theoretical conse-

quence. Comparative simulation consequences are achieved

from chapter IV. Chapter V gives some conclusions.

II. PROBLEM FORMULATION AND DYNAMIC MODELS

The main function of the tank servo system in the movement

of the tank is reflected in the following two aspects. Aim at

the angle of the tank gun barrel while the tank is moving.

After the angle aiming, the tank gun is kept in a stable state

to improve the first shot hit rate. The subsystems of tank

gun barrel in the process of tank firing can be divided into

azimuth subsystem and pitch subsystem. The goal is that

given a sequential control input, the tank servo system as far

as possible to track any smooth motion trajectory.

A. NONLINEAR DYNAMIC MODEL OF TANK

SERVO SYSTEM

The two-axis coupling system diagram of the tank servo

system based on the [9] is shown in Figure 1. The charac-

teristics of the two-axis coupling structure of the tank servo

system as well as the characteristics in the process of firing

are described in Figure 1. The angle change of the barrel in

the pitch subsystem and the turret in the azimuth subsystem

describes the position of the barrel in the working space for

the tank servo system.

According to the analysis of traditional robot modeling

technology in [34], the dynamic model of tank servo systems

is derived. To make the modeling and derivation process

concise and clear, in the tank servo system the tank turret is

referred to as part 1, and the tank gun is referred to as part 2.

The azimuth rotation angle of tank gun and the pitch

rotation angle of tank gun were defined q =
[

q1 q2
]T

∈ R2,

the corresponding angular velocity q̇ =
[

q̇1 q̇2
]T

∈ R2.

FIGURE 1. Two-axis coupling system diagram of the tank servo system.

According to the Euler–Lagrange dynamics equation,

the mathematical model of the coupling nonlinear dynamics

for the tank servo system is built as follows:

Ma(q)q̈+Mb(q, q̇)q̇− δg = T (1)

where Ma(q) is a positive definite symmetric generalized

mass matrix,Mb(q) is a Coriolis matrix; δg is gravity vector of

the conservative force system of the tank servo system, δg =
[

δg1 δg2
]T

=
[

0 −m2gL4 cos q2
]T

∈ R2, δg1 represents the

gravitational moment of the azimuth subsystem, δg2 repre-

sents the gravitational moment of the pitch subsystem; m2

represents the mass of the barrel for the azimuth subsystem;

L4 is the distance between the trunnion of the tank gun and the

centroid of the barrel; T =
[

T1 T2
]T

∈ R2, T1 is the driving

torque at the load end of the tank azimuth subsystem, T2 is the

driving torque at the load end of the tank pitch subsystem.

B. MATHEMATICAL MODEL OF THE DRIVE END

OF THE AZIMUTH SUBSYSTEM

The tank azimuth subsystem mainly controls the move-

ment of the turret in horizontal direction, which is mainly

composed of power converter, turret motor, current sensor,

directional machine, horizontal gyroscope and horizontal

controller.

Considering the friction characteristics and the unmodeled

disturbance of the driving end of the azimuth subsystem,

the load-end torque balance equation in the azimuth direction

can be written as

T1 = Tm1 − f1(q̇1) − d1(t). (2)

The tank azimuth subsystem is driven by a servo motor via

a reducer, there are inevitably problems with transmission

backlash and structural flexibility. Therefore, the torque bal-

ance equation of the azimuth subsystem is:

Tm1 = G1(ϕ(qm1/n1) − q1) (3)

where Tm1 is the torque at the end of the drive shaft after

considering the flexibility of the drive shaft; f1(q̇1) is the

friction torque of the azimuth subsystem; d1(t) is the unmod-

eled disturbance in the azimuth subsystem; ϕ(qm1/n1) is a

function describing the transmission backlash; qm1 is the

VOLUME 9, 2021 23387



S. Yuan et al.: Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems

rotation angle of the azimuth subsystem motor; n1 represents

the reduction ratio of the azimuth subsystem motor; G1 is the

stiffness coefficient of the transmission shaft.

The friction characteristics have a greater impact on the

low-speed performance of the azimuth subsystem, in order to

more accurately describe the true friction behavior, the fol-

lowing continuous nonlinear friction model [35] is adopted:

f1(q̇1) = l11 [tanh(c11q̇1) − tanh(c12q̇1)]

+l12 tanh(c13q̇1) + l13q̇1 (4)

where l11, l12, l13 are different friction levels; c11, c12, c13
are different shape coefficients that characterize the friction

characteristics; Without viscous dissipation, the Coulomb

friction coefficient exists and is modeled through the term

l12 tanh(c13q̇1); the term tanh(c11q̇1) − tanh(c12q̇1) is the

Stribeck effect and the term l13q̇1 denotes the viscous friction.

The servo motor at the drive end of the azimuth subsystem

adopts a three-closed-loop control structure. Since the elec-

trical response is much faster than the mechanical response,

the drive speed loop can be approximated as a first-order

inertia link. The first-order inertia link can be used to describe

the relationship between the angular velocity of the azimuth

servo motor and the control input. Hence, the dynamics of the

motor system can be expressed as follows:

q̈m1 =
bp1

τp1
u1 −

1

τp1
q̇m1 + 11(t) (5)

where bp1 is the steady-state gain of the velocity loop of the

azimuth subsystem, τp1 is the time constant of the approxi-

mate model of the first-order inertia link of the velocity loop

for the azimuth subsystem, u1 is the control input of the

azimuth subsystem, q̇m1 is the angular velocity of the motor

for the azimuth subsystem, q̈m1 is the angular acceleration

of the azimuth subsystem with respect to the motor, 11(t)

represents the approximate model error at the drive end of

the azimuth subsystem.

C. MATHEMATICAL MODEL OF THE DRIVE END

OF THE PITCH SUBSYSTEM

The pitch subsystem is mainly composed of the power con-

verter, the servo motor, the ball screw, the current sensor,

the high-low direction gyroscope and the high-low direction

controller.

The kinematics schematic diagram of the pitching subsys-

tem is shown in Figure 1. The difference between the model-

ing and azimuth subsystem lies in the modeling of the electric

cylinder. The inner part of the electric cylinder adopts a gear

reducer and a ball screw for transmission, which converts the

linear motion into the rotary motion of the tank barrel. Due

to the fast response, the high transmission efficiency, easy

maintenance, long life and other characteristics of the electric

cylinder. The use of electric cylinders as power sources is a

very important part of the all-electric tanks in China.

In Figure 1, O is the tank gun trunnion; Oe1 is the lower

fulcrum of the electric cylinder, Oe2 is the upper fulcrum of

the electric cylinder, L1 is the vertical distance from the tank

gun trunnion to the lower fulcrum of the electric cylinder,

L2 is the horizontal distance from the tank gun trunnion to

the lower fulcrum of the electric cylinder, L3 is the distance

from the trunnion of the tank gun to the upper fulcrum of

the electric cylinder, L4 is the distance from the tank gun

trunnion to the center of mass of the barrel. xp0 is the initial

length of the electric cylinder, xp1 is the length of the electric

cylinder after adjusting the gun angle (the length between the

point Oe1 and the point Oe21), 1(x) represents the push rod

displacement of the electric cylinder piston.

Considering the friction characteristics of the driving end

and the unmodeled disturbances of the pitching subsystem,

the load-end torque balance equation of the pitching subsys-

tem can be expressed as:

T2 = F · L3 sin qr − m2.g · L4 cos q2 − f2(q̇2) − d2(t) (6)

where F is the output thrust of the electric cylinder, qr is

the angle between the output thrust of the electric cylinder

and the axis of the barrel, q2 is the pitch angle of the barrel,

f2(q̇2) is the friction torque of the pitch subsystem, d2(t) is the

unmodeled disturbance of the pitch subsystem.

In order to characterize the real friction behavior more

accurately, the following continuous nonlinear friction

model [35] f2(q̇2) is used

f2(q̇2) = l21 [tanh(c21q̇2) − tanh(c22q̇2)]

+l22 tanh(c23q̇2) + l23q̇2 (7)

where l21, l22, l23 are different friction levels; c21, c22, c23
are different shape coefficients that characterize the friction

characteristics; Without viscous dissipation, the Coulomb

friction coefficient exists and is modeled through the term

l22 tanh(c23q̇2); the term tanh(c21q̇2) − tanh(c22q̇2) is the

Stribeck effect and the term l23q̇2 denotes the viscous friction.

Since there is a corresponding nonlinear relationship

between the push rod displacement of the electric cylin-

der and the rotation angle of the tank barrel, the fol-

lowing trigonometric function relationship can be obtained

according to the figure 1: q0 = arctan(L1
L2
), xp0 =

√

(L2 − L3)
2 + L21 , sin qr =

√

L21+L22 sin(q2+q0)

xp1
, xp1 =

√

L23 + L21 + L22 − 2L3

√

L21 + L22 cos(q0 + q2), 1x = xp1 −

xp0 = l
2πn2

qm2.

Similar to the azimuth subsystem, the tank pitch system

also has problems with transmission backlash and structural

flexibility. Therefore, the torque at the end of the motor drive

shaft of the pitch subsystem can be expressed as:

Tm2 = G2(ϕ(qm2/n2) − q2) (8)

whereG2 is the stiffness coefficient of the transmission shaft;

n2 is the reduction ratio of the pitch subsystem reducer; qm2 is

the rotation angle of the pitch subsystem motor; q̇m2 is the

rotational angular velocity of the pitch subsystem motor.
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The relationship between the output thrust and torque of

the ball screw is as follows:

Tm2 =
l

2πη
F (9)

where l is the lead of the ball screw, η is the mechanical

efficiency of the screw.

The servomotor at the drive end of the pitch subsystem also

adopts a three-closed-loop control structure. Similar to the

azimuth subsystem, the drive speed loop can be approximated

as a first-order inertia link. The dynamics of the motor system

is expressed as:

q̈m2 =
bp2

τp2
u2 −

1

τp2
q̇m2 + 12(t) (10)

where bp2 is the steady-state gain of the velocity loop of the

pitch subsystem, τp2 is the time constant of the approximate

model of the first-order inertia link of the velocity loop of

the pitch subsystem, u2 is the control input of the pitch

subsystem, q̈m2 is the angular acceleration of the motor of

the pitch subsystem, 12(t) represents the approximate model

error at the drive end of the pitch subsystem.

III. NONLINEAR ADAPTIVE ROBUST

CONTROLLER DESIGN

A. DESIGN MODEL AND ISSUES TO BE ADDRESSED

According to the formula (1), (2), (5), (6) and (10), the torque

balance equation of the tank servo system can be derived:

Ma(q)q̈=W1qm−W2q−Mb(q, q̇)q̇− Tf −W3 − d(t) (11)

q̈m =W4u−W5q̈m + 1(t) (12)

where

Ma(q) =

[

A11(q) A12(q)

A21(q) A22(q)

]

,

Mb(q) =

[

0 B12( q q̇ )

B21( q q̇ ) B22( q q̇ )

]

,W1=

[

G1
n1

0

0
2πηG2

ln2
h(x12)

]

,

W2 =

[

G1 0

0
2πηG2

l
h(x12)

]

,W3 =

[

0

m2gL4 cos(x12)

]

,

W4 =





bp1
τp1

0

0
bp2
τp2



 ,W5 =

[

1
τp1

0

0 1
τp2

]

, q =
[

q1 q2
]T

,

qm =
[

qm1 qm2
]T

,T =
[

T1 T2
]T

,Tf =
[

f1(q̇1) f2(q̇2)
]T

,

d(t) =
[

d1(t) d2 (t)
]T

, 1(t) =
[

11(t) 12(t)
]T

,

h(x12) = L3 sin qr =
L3

√

L21 + L22sin(q2 + q0)

xp1
.

Aiming at the problems of transmission gap and structural

flexibility in the tank servo system, take the azimuth subsys-

tem as an example. Let y1 = q1m/n1, then the gap function

ϕ(y1) = ϕ(q1m/n1) can be processed as follows:

ϕ(y1) = y1 + d1(y1) (13)

where d1(y1) = d11(y1) + d12(y1), d11(y1) = [ϕ0 −

y10]e
−α(y1−y10)sign(ẏ1), d12(y1) = e−αy1sign(ẏ1)

∫ y1
y10 [b− 1]

eαvsign(ẏ1)dv, both parameter α and parameter b are constants;

d1(y1) is bounded as shown in [36]; ϕ(y1) can represent the

effect of the backlash; Gi is the stiffness coefficient of the

transmission shaft. Therefore, the influence of the flexibility

of the transmission shaft and the nonlinearity of the transmis-

sion gap can be expressed based on the equations (3) and (8).

Define the following state variables as x1 = [x11x12]
T =

[q1q2]
T , x2 = [x21x22]

T = [q̇1q̇2], x3 = [x31 x32]
T =

[qm1 qm2]
T , x4 = [x41 x42]

T = [q̇m1q̇m2]
T , then the tank

servo system can be expressed in a state-space form as






























ẋ1 = x2

Ma(x1)ẋ2 = W1x3 −W2x1

−Mb(x1, x2)x2 − Tf −W3 − d(t)

ẋ3 = x4

ẋ4 = W4u−W5x4 + 1(t)

(14)

Generally, Due to the changes in the movement state of the

tank during the journey, the friction characteristics of the

azimuth and pitch rotation axis of the servo system will

change accordingly, resulting in changes in the corresponding

parameters of the tank servo system, such as l11, l12, l13, l21,

l22 and l23. Therefore, the unknown parameters are defined as

θ = [θ1, θ2, θ3]
T , where θ1 = [θ11, θ21]

T , θ2 = [θ12, θ22]
T ,

θ3 = [θ13, θ23]
T and θ11 = l11, θ12 = l12, θ13 = l13,

θ21 = l21, θ22 = l22, θ23 = l23. Based on the equations

(4) and (7), relevant parameters in the continuous nonlinear

friction model are defined as follows:

ϕ(x2) = [ϕ1(x2), ϕ2(x2), ϕ3(x2)]
T ,

ϕ1(x2) =

[

tanh(c1q̇1) 0

0 tanh(c1q̇2)

]

,

ϕ2(x2)

=

[

tanh(c2q̇1) − tanh(c3q̇1) 0

0 tanh(c2q̇2) − tanh(c3q̇2)

]

,

ϕ3(x2) =

[

q̇1 0

0 q̇2

]

.

Hence, the state-space form (14) is able to be rewritten as

follows






























ẋ1 = x2

Ma(x1)ẋ2 = W1x3 −W2x1 −Mb(x1, x2)x2

− ϕ(x2)
T θ −W3 − d(t)

ẋ3 = x4

ẋ4 = W4u−W5x4 + 1(t)

. (15)

Before the controller design, the following assumption is

made.

Assumption 1: The desired position trajectory x1d(t)∈ C4

and bounded;

Assumption 2: The defined unknown parameters satisfy

θ ∈ �θ {θ : θmin ≤ θ ≤ θmax} (16)

where θmin = [θ11min, θ21min, θ12min, θ22min, θ13min, θ23min]
T ,

θmax = [θ11max, θ21max, θ12max, θ22max, θ13max, θ23max]
T are

known.
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Assumption 3: The unmodeled disturbance d(t) and the

approximate model error 1(t) in (15) are bounded, i.e.,

|d(t)| ≤ δ1, 1(t) ≤ δ2 (17)

where δ1 and δ2 are unknown constants.

B. PROJECTION MAPPING AND

PARAMETER ADAPTATION

Let θ̂ denotes the estimate of unknown parameter θ and θ̃

denotes the estimation error (i.e θ̃ = θ̂ − θ ). Viewing (16),

a discontinuous projection can be described as [37]:

Pr oj
θ̂ i
(•i) =







0, if θ̂i = θimax and • i > 0

0, if θ̂i = θimin and • i < 0

•i, otherwise

(18)

where •i describes the ith component from the vector •,

the action < for two vectors is executed according to

the corresponding elements of the vectors. The i = 11,

21, 12, 22, 13, 23. By applying an adaptation law

presented by

˙̂
θ = Pr oj

θ̂
(Ŵτ ) with θmin ≤ θ̂ (0) ≤ θmax (19)

where Ŵ >0 represents a diagonal adaptation rate matrix and

τ represents an adaptation function after synthesis. For arbi-

trary adaption function τ , the projection mapping employed

in (19) ensures

(P1)θ̂ ∈ �
θ̂

{

θ̂ : θmin ≤ θ̂ ≤ θmax

}

(20)

(P2)θ̃T
[

Ŵ−1 Pr oj
θ̂
(Ŵτ ) − τ

]

≤ 0, ∀τ. (21)

C. CONTROLLER DESIGN

Step 1: Designing the adaptive robust controller according

to the backstepping method [37]–[39] because the design

model (15) contains unmatched uncertainties. Before design-

ing the controller we first need to define the following error

variables

z2 = ż1 + k1z1 = x2 − x2eq (22)

x2eq = ẋ1d − k1z1, z3 = x3 − α2, z4 = x4 − α3 (23)

where z1 = x1 − x1d is the output tracking error; x2eq is the

virtual control law of the state x2; z2 represents the discrep-

ancy between the actual state x2 and the virtual control x2eq;

and k1 is a positive feedback gain; α2 is the virtual control law

of the state x3; z3 is the discrepancy between the actual state

x3 and the virtual control α2; α3 is the virtual control law of

the state x4; z4 is the discrepancy between the actual state x4
and the virtual control α3.

On account of the transfer function between z1 and z2 is

able to be expressed as G(s) = z1(s) z2(s) =1/(s+ k1), which

is a steady transfer function. If the tracking error z1 becomes

small or converges to zero then z2 gets small or converges

to zero. Therefore, how to make z2 smaller is the next main

design goal.

Step 2: Considering the equation (15) and the equa-

tion (22), the derivative of z2 with respect to time is

Ma(x1)ż2 = Ma(x1)ẋ2 −Ma(x1)ẋ2eq

= W1x2 −W2x1 −Mb(x1, x2)x2 − ϕT (x2)θ

−W3 − d(t) −Ma(x1)ẋ2eq (24)

By combining the definition of error z3, there can be

Ma(x1)ż2 = Ma(x1)ẋ2 −Ma(x1)ẋ2eq

= W1z3 +W1α2 −W2x1 −Mb(x1, x2)x2

−ϕT (x2)θ −W3 − d(t) −Ma(x1)ẋ2eq. (25)

In this step, the analysis shows that the state x3 can be

regarded as a virtual control input, and the α2 is designed

for x3. Thus, the virtual control law α2 is

α2 = α2a + α2s, α2s = α2s1 + α2s2,

α2s1 = −W−1
1 k2z2,

α2a = W−1
1 [W2x1 +Mb(x1, x2)x2

+ϕ(x2)θ̂ +W3 +Ma(x1)ẋ2eq]. (26)

In (26), k2 is a positive feedback gain; α2a is a model-

based adaptive feedforward compensation control law, which

can enhance the tracking accuracy of the system; α2s is the

robust control law where α2s1 is the linear robust feedback

term for stabilizing the nominal tank servo system and α2s2

is a nonlinear robust control law used to refrain from the

unmodeled disturbance. In order to stabilize the system, α2s2

is designed to satisfy the following stabilization conditions:

z2

[

α2s2 + ϕ(x2)
T θ̃ − d(t)

]

≤ ξ1 (27)

z2α2s2 ≤ 0. (28)

Hence the robust term α2s2 is described as

α2s2 = W−1
1

−h1

2ξ1
z2 (29)

where ξ1 is a positive design parameter which can be arbitrar-

ily small, and h1 is any smooth functionmeeting the following

definitions:

h1 ≥ ‖ϕ‖2 ‖θM‖2 + δ21 (30)

where θM = θmax − θmin.

Substituting (26) into (25), we obtain

Ma(x1)ż2 = W1z3 + ϕ(x2)θ̃ − d(t) − k2z2 + α2s2. (31)

From the analysis of the equation (31), it can be seen that

if z3 = 0, the nonlinear robust control law α2s2 can refrain

from the unmodeled disturbance d(t), and the synthesized

adaptive law can deal with the uncertainty of parameters,

so the expected output tracking can be achieved through the

follow-up stability analysis. Hence, in the next step, the goal

is to make the z3 as small as possible.
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Step 3: Combining the equation (23) and calculating the

time derivative of the error z3 can be obtained

ż3 = ẋ3 − α̇2 = x4 − α̇2 = z4 + α3 − α̇2 (32)

where α̇2 will be divided into two parts: the known and

calculable part is represented by α̇2c which will be applying

in the controller design; the incalculable and unknown part is

represented by α̇2u whichwill be refrained from certain robust

feedback, then

α̇2c =
∂α2

∂x1
x2 +

∂α2

∂x2
M−1
a (x1)[W1x3 −W2x1

−Mb(x1, x2)x23−ϕ(x2)
T θ̂ ] −W+

∂α2

∂θ̂

˙̂
θ +

∂α2

∂t
(33)

α̇2u =
∂α2

∂x2
M−1
a (x1)

[

ϕ(x2)
T θ̃ + d(t)

]

. (34)

The virtual control law α3 will be designed as follows:

α3 = α3a + α3s, α3s = α3s1 + α3s2 (35)

α3a = α̇2c, α3s1 = −k3z3 (36)

where k3 is a positive feedback gain; α3a is a model-based

adaptive feedforward compensation control law, which can

improve the tracking accuracy of the system; α3s is the robust

control law where α3s1 is a linear robust feedback term for

stabilizing the nominal tank servo system and α3s2 is a non-

linear robust control law used to refrain from the unmodeled

disturbance. In order to stabilize the system, α3s2 is designed

to satisfy the following stabilization conditions:

z3 [α3s2 − α̇2u] ≤ ξ2 (37)

z3α3s2 ≤ 0. (38)

Hence the robust term α3s2 is designed as

α3s2 =
−h2

2ξ2
z3 (39)

where ξ2 is a positive design parameter which is able to

be arbitrarily small, h2 is any smooth function meeting the

following conditions

h2 ≥

∥

∥

∥

∥

∂α2

∂x2

∥

∥

∥

∥

2 ∥

∥

∥
M−1
a (x1)

∥

∥

∥

2
‖ϕ(x2)‖

2 ‖θM‖2

+

∥

∥

∥

∥

∂α2

∂x2

∥

∥

∥

∥

2 ∥

∥

∥
M−1
a (x1)

∥

∥

∥

2
δ21 (40)

Substituting the formulas (36) and (37) into (33), we have

ż3 = z4 − k3z3 + α3s2 − α̇2u. (41)

Step 4: In this step the actual control law for u will be

proposed. Considering the equations (15) and (23), differen-

tiating z4 with respect to time, then

ż4 = ẋ4 − α̇3 = W4u−W5x4 + 1(t) − α̇3 (42)

where α̇3 = α̇3c + α̇3u, α̇3c = ∂α3
∂x1

x2 + ∂α3
∂x2

ẋ2 + ∂α3

∂θ̂

˙̂
θ + ∂α3

∂t
is

the known and computable part which will be applied in the

controller design; α̇3u = ∂α3
∂x2

M−1
a (x1)

[

ϕ(x2)
T θ̃ + d(t)

]

is the

unknown and incalculable part which will be suppressed by

certain robust feedback.

According to the structure of (42), on account of the adap-

tive robust design program [40]–[42], the ARC controller can

be obtained through

u = ua + us, us = us1 + us2 (43)

ua = W−1
4 [W5x4 + α̇3c], us1 = W−1

4 (−k4z4) (44)

where k4 is a positive feedback gain. In (44), ua is an

adjustable feedforward control law which is employed to

achieve an improved model compensation through parameter

adaptation (19); us is a robust control law where us1 is a

linear robust feedback law for stabilizing the nominal model

of the system and us2 is a nonlinear robust term to handle the

approximate model error in (42).

In order to the robust design, we set the robust term us2
as arbitrarily continuous function that satisfies the following

conditions:

z4 [us2 + 1(t) − α̇3u] ≤ ζ3 (45)

z4us2 ≤ 0 (46)

where ξ3 is a positive design parameter that can be any arbi-

trarily small. Based on (42), the robust term us2 is designed as

us2 = −
h3

2ξ3
z4 (47)

where h3 is an arbitrary smooth function according with the

following conditions:

h3 ≥ (

∥

∥

∥

∥

∂α2

∂x2

∥

∥

∥

∥

∥

∥

∥
M−1
a (x1)

∥

∥

∥
‖ϕ(x2)‖ ‖θM‖

+

∥

∥

∥

∥

∂α2

∂x2

∥

∥

∥

∥

∥

∥

∥
M−1
a (x1)

∥

∥

∥
δ1)

2 + δ22 (48)

Substituting the resulting ARC controller u into (42), we have

ż4 = −k4z4 + us2 + 1(t) − α̇3u. (49)

D. MAIN RESULTS

Theorem 1: If the unmodeled disturbance d(t) =0 and

the approximate model error 1(t) = 0, the system only

exists backlash nonlinearity, flexible nonlinearity of the trans-

mission shaft and parametric uncertainties of the nonlin-

ear frictions. According to the projection type adaptation

law (19), then the adaptation function can be achieved as

τ = ∂α2
∂x2

M−1
a (x1)ϕ(x2)z3+ ∂α3

∂x2
M−1
a (x1)ϕ(x2)z4−ϕ(x2)z2 and

selecting feedback gains k1, k2, k3 and k4 large enough such

that the following defined matrix 3 is positive definite, (50),

as shown at the bottom of the next page

Hence, the presented control law (43) ensures the follow-

ing two aspects, the boundedness of all signals in the closed-

loop system and the asymptotic output tracking performance,

i.e., z1 → 0 as t → ∞.

Proof: See Appendix A.

Remark 1: It is clear from the theorem that, in the presence

of parametric uncertainties, unmodeled disturbances, friction,
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backlash and flexible nonlinearity of the transmission shaft,

the presented controller achieves perfect asymptotic tracking

performance and tracking error converges to zero. In addition,

increasing the gains k1, k2, k3 and k4 can enhanced the con-

vergence rate. This asymptotic output tracking performance

can effectively improve the high performance motion control

of the tank servo system.

Theorem 2: If the unmodeled disturbance d(t) 6= 0 and

the approximate model error 1(t) 6= 0, then the presented

control law (43) ensures the boundedness of all signals in

the closed-loop system, and the Lyapunov function which is

positive definite expressed as follows

V2(t) =
1

2
zT1 z1 +

1

2
Ma(x1)z

T
2 z2 +

1

2
zT3 z3 +

1

2
zT4 z4 (51)

is bounded by

V2(t) ≤ V2(0) exp(−ϑ t) +
ξ

ϑ
[1 − exp(−ϑ t)] (52)

where ξ = ξ1+ξ2+ξ3,ϑ = 2λmin(3)min
{

1,M−1
a (x1), 1, 1

}

,

λmin(3) represents the minimum eigenvalue of 3.

Proof: See Appendix B.

Remark 2: It is shown from Theorem 2 that even when

the tank servo system contains unmodeled disturbance and

approximate model error, the proposed adaptive controller

also guarantees the tracking error to be bounded. Simultane-

ously, the (52) shows that the transient performance and the

final tracking error can be adjusted freely by certain controller

parameters in a foregone form: the ϑ is the converging rate

which can be arbitrarily large, and
ξ
ϑ
, the bound of V (∞)

(the index of the final tracking errors), can be made wantonly

small through augmenting gains k1, k2, k3 and k4 and/or

reducing controller parameters ξ1, ξ2 and ξ3.

IV. COMPARATIVE SIMULATION RESULTS

In order to fully verify the accuracy of the nonlinear compre-

hensive dynamic model for coupling loads between axes of

tank servo system established in this paper, and the availabil-

ity of the adaptive robust controller designed. In the simula-

tion, the following four controllers are used for comparison.

1) ARC: This is the adaptive robust controller (43) pre-

sented in this paper. The system parameters are: A11(q) =

2547 + 5400 cos2(q2) − 2 sin(q2)› cos(q2) + 224 sin2(q2),

A12(q) = A21(q) = 2.8 cos(q2) + 13.7 sin(q2), A22(q) =

5443, B12(q) = [10350 cos(q2) sin(q2) + 1.5(cos2(q2) −

sin2(q2))]q̇1 − (13.7 cos(q2) − 2.8 sin(q2))q̇2, B21(q) =

−2B12(q), B22(q) = [1.5 sin(q2) − 6.8 cos(q2)] q̇1, h1 =

0.6m, h3 = 5m; the driving end of the azimuth sub-

system parameters are Lm1 = 0.05H, Rm1 = 2.6�,

TABLE 1. Performance indices during the whole time history for azimuth
subsystem.

ku1 = 1.11N.m/A, Jm1 = 1.16 × 10−4kg.m2, G1 = 5 ×

106N/m, n1 = 200, Ke1 = 0.64 V.s/rad; the driving end of

the pitch subsystem parameters are Lm2 = 0.0107H, Rm2 =

1.93�, ku2 = 0.55N.m/A, Jm2 = 6.04 × 10−4kg.m2, n2 =

550, Ke2 = 0.5V.s/rad, G2 = 5 × 106N/m, L1 = 0.5m, L2 =

2.8m, L3 = 1.2m, L4 = 4.5m, l = 0.025m, m2 = 200kg,

η = 0.85. The control gains are set as: k11 = 100, k21 = 10,

k31 = 1000, k41 = 1, k12 = 200, k22 = 200000, k32 = 10,

k42 = 500. The initial estimate of θ is given as θ̂ (0) =

[200, 100, 50, 200, 100, 50]T . Parameter adaptation rates

are selected as Ŵ = diag {62.5,0.6,1.7,182,6.7,45}.

2) PI: This is a traditional proportional-integral controller.

The controller gains carefully adjusted by the trail-and-error

method are Kp1 = 90000, Ki1 = 300 and Kp2 = 60000,

Ki2 = 300.

3) AC: This is the conventional adaptive controller which

neglects the unmodeled disturbance d(t) and the approximate

model error 1(t). There is no discrepancy between the AC

and the ARC except that it has no nonlinear robust control

law. To insure that the comparison between them is quite

enough, the AC controller and the ARC controller select the

same control gains.

4) FLC: This is the feedback linearization controller. The

main difference between it and the AC controller is that there

is no parameter adaptation. The parameter adaptation rates

in the FLC are given as their primary values, i.e., θ̂ = θ̂ (0)

and Ŵ = 0. The remaining controller parameters of FLC

are no different from the corresponding parameters of the

ARC controller. The method can testify the availability of the

parameter adaptation law integrated from this paper.

To effectively compare the quality of each controller, based

on the tracking errors the following three evaluation indices

maximum Me, average µ, and standard deviation σ [43] are

applied to assess the quality of each control arithmetic.

The four controllers are first tested for a smooth normal

motion trajectory, i.e., in which the azimuth subsystem and

the pitch subsystem are respectively: x1d1(t) = 0.5arctan

[1 − e−t
3
] rad and x1d2(t) = 0.25arctan[1 − e−t

3
] rad.

3 =









k1 − 1
2
I 0 0 0

0 k2 − 1
2
I − 1

2
‖W1‖ I − 1

2

∥

∥Ṁa(x1)
∥

∥ I 0 0

0 0 k3 − 1
2

‖W1‖ I − 1
2
I 0

0 0 0 k4 − 1
2
I









(50)

23392 VOLUME 9, 2021



S. Yuan et al.: Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems

FIGURE 2. Position tracking of ARC for azimuth subsystem and pitch
subsystem.

FIGURE 3. Compared tracking errors for azimuth subsystem.

TABLE 2. Performance indices during the whole time history for pitch
subsystem.

The performance of controller ARC based on azimuth sub-

system and pitch subsystem is shown in Figure 2 respec-

tively. The tracking performance of the four controllers for

the azimuth subsystem and the pitch subsystem are shown

in Figures 3-4 respectively. Tables 1-2 respectively collect

the performance indexes of the four controllers compared

in the whole cycles, which can clearly reflect their tracking

performance.Whether it is the azimuth subsystem or the pitch

FIGURE 4. Compared tracking errors for pitch subsystem.

FIGURE 5. Friction level parameter adaptation of ARC for normal motion.

subsystem, all the results show that the designed ARC con-

troller is feasible and is better than the other three controllers

in terms of transient and final tracking error. By comparing

the tracking effects of the ARC and AC controllers, it can

be found that the nonlinear robust control law has a non-

negligible effect on the performance of the controller. This

is why the ARC controller is superior to the AC, and it

also verifies the anti-interference capacity of the nonlinear

robust term for the ARC controller. It can be found from the

Figures 3-4 that the tracking error of the FLC controller is

larger than the AC controller because the advantage of the

AC controller lies in the use of flexible model compensation

through parameter adaptation. Therefore, the availability of

the synthetic adaptive laws in the article is verified. The effect

of the PI is better than that of the FLC, which is the effect of

the stronger feedback gain of the PI. However, the tracking
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FIGURE 6. Control input of azimuth subsystem and pitch subsystem.

FIGURE 7. Comparative position tracking of ARC for azimuth subsystem
and pitch subsystem.

TABLE 3. Performance indices during the whole time history for azimuth
subsystem.

performance of the ARC and the AC perfectly surpasses the

PI, which illustrates the superiority of the design method

based on the nonlinear model. The convergence of parameter

estimation of ARC is presented in Figure 5. The control input

of azimuth subsystem and pitch subsystem for the ARC con-

troller are shown in Figure 6. They are all regular, bounded

and continuous.

FIGURE 8. Compared tracking errors for azimuth subsystem.

FIGURE 9. Compared tracking errors for pitch subsystem.

TABLE 4. Performance indices during the whole time history for pitch
subsystem.

To further verify the dynamic tracking performance of the

ARC controller proposed in this paper, the position track-

ing of the ARC controller of the azimuth subsystem and

the pitch subsystem are shown in Figure 7 respectively.

The main difference is that they are gradually switched to

sinusoidal instructions after 3 seconds, i.e., 0.8 sin(t − 3)
[

1 − e−(t−3)
]

rad and 0.4 sin(t − 3)
[

1 − e−(t−3)
]

rad, which

better reflect the dynamic tracking performance of the pro-

posed control strategy. The comparative tracking errors are

presented in Figure 8 and Figure 9 respectively. The per-

formance indexes of the azimuth subsystem and the pitch

subsystem for whole cycles are given in Table 3 and Table 4.

Visible, the ARC controller proposed in this paper still
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FIGURE 10. Control input of azimuth subsystem and pitch subsystem.

achieves the most perfect tracking performance in all perfor-

mance indicators. For the azimuth subsystem and the pitch

subsystem, FLC has obtained more unsatisfactory tracking

performance than AC. This further testifies the superiority

of the parameter adaptation law for the tank servo system.

The PI controller still exceeds FLC in every system with its

formidable feedback gain. By comparing the results of ARC

and AC, it can be found that ARC eliminates the adverse

effects of the gap nonlinearity, friction nonlinearity, and drive

shaft flexibility nonlinearity of the tank servo system with

the nonlinear robust control law, and obtains better tracking

performance. The control input of azimuth subsystem and

pitch subsystem for the ARC controller are presented in

Figure 10 which are all inerratic, bounded and continuous.

Under different motion conditions, it can be clearly found

that there is a certain difference between the Figure 6 and

Figure 10, which is mainly due to the change of control input

caused by the different motion states of the tank servo system.

V. CONCLUSION

In this paper, an adaptive robust controller is proposed for

high performance precision pointing control of tank servo

system with dynamic coupling nonlinearity between link-

age parts, frictional nonlinearities, backlash nonlinearities,

drive shaft flexible nonlinearities, nonlinearity of the mech-

anism in the electric cylinder, parametric uncertainties and

unmodeled disturbances. Based on the established compre-

hensive dynamic model of tank servo system, the continuous

differentiable friction model is adopted to compensate the

friction nonlinearities reasonably and effectively. A nonlin-

ear model of structural flexibility and transmission back-

lash is constructed to describe the nonlinear characteristics

considering the backlash and flexible coupling between the

input and output axes of tank servo systems. Combining

with the size of the articulated mechanism of the electric

cylinder, the nonlinear relationship between the displacement

of the electric push rod and the rotation angle of the tank

barrel is established. Parametric uncertainties are disposed

via adaptive laws integrated in the backstepping design and

unmodeled disturbances are handled by certain robust feed-

back. The stability of the closed-loop system is guaranteed

by the Lyapunov method, which shows that the proposed

controller can achieve asymptotic tracking performance in

the presence of parameter uncertainties and multiple non-

linearities, and also ensures that robustness of the existing

unmodeled disturbances and approximate modeling errors.

Comparative simulation results have been achieved to illus-

trate the effectiveness of the presented control strategy.

As future works, it is of great significance to think out the

advantages of adaptive robust controllers in output feedback

forms for tank servo systems. In addition, because the tank

servo system is a complex electromechanical coupling sys-

tem, designing a model-based control strategy requires high

precision modeling, the model free control strategies [44] can

be introduced in future research, which is more suitable for

practical application.

APPENDIX A

Proof of Theorem 1: In this case, define d(t) =
[

d1(t) d2 (t)
]T

=
[

0 0
]T
, 1(t) =

[

11(t) 12(t)
]T

=
[

0 0
]T
,and consider the following Lyapunov function:

V1 =
1

2
zT1 z1 +

1

2
Ma(x1)z

T
2 z2 +

1

2
zT3 z3 +

1

2
zT4 z4

+
1

2
θ̃TŴ−1θ̃ (A1)

Based on (22), (35), (41), (49), then we can have

V̇1 = zT1 (z2 − k1z1)+z
T
2 (W1z3 + ϕ(x2)θ̃ − k2z2) +

1

2
Ṁa(x1)

·zT2 z2 + zT3 (z4 − k3z3 − α̇2u) + zT4 (−k4z4 − α̇3u)

+θ̃TŴ−1 ˙̂
θ (A2)

Integrating its definition and property from (35) according to

the adaptation function τ , we can set the upper bound (A2) as

V̇1 ≤ |z1| |z2| − k1z
2
1 +W1 |z2| |z3| − k2z

2
2

+
1

2
Ṁa(x1)z

2
2 + |z3| |z4| − k3z

2
3 − k4z

2
4

≤ −(k1 −
1

2
I )z21 − (k2 −

1

2
I −

1

2
W1I −

1

2
Ṁa(x1)I )z

2
2

−(k3 −
1

2
W1I −

1

2
I )z23 − (k4 −

1

2
I )z24 (A3)

Noting the defined matrix 3 is positive definite, then the

upper bound according to the above equation (A3) can be

written as

V̇1 ≤ −zT3z ≤ −λmin(3)zT z = −W < 0 (A4)

where z = [|z1| , |z2| , |z3| , |z4|]
T , λmin(3) represents the

minimum eigenvalue of the matrix 3 and W is a positive

function. Therefore, V1 ∈ L∞,W ∈ L2 and the error signals z

are bounded. From the assumption 1, it can be derived that x

is bounded. From assumption 2 and assumption 3, we can

guarantee that all the estimated parameters are bounded,
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and deduce that the control input u is bounded. Hence, all

signals in the closed-loop system are bounded. According to

the equation (22), (31), (41), (49) can verify that the time

derivative of W is bounded, which also indicates that W is

uniformly continuous. Employing Barbalat ,s lemma [43],

W → 0 as t → ∞, which generates the results in Theorem 1.

APPENDIX B

Proof of Theorem 2: If the system includes time-

variant unmodeled disturbances and approximate model-

ing errors, d(t) =
[

d1(t) d2 (t)
]T

6=
[

0 0
]T
, 1(t) =

[

11(t) 12(t)
]T

6=
[

0 0
]T
, the time derivative of V2 defined

in (51) is

V̇2 = zT1 (z2 − k1z1) + zT2 (W1z3 + ϕ(x2)θ̃ + α2s2 − d(t)

−k2z2) +
1

2
Ṁa(x1)z

T
2 z2 + zT3 (z4 − k3z3

+α3s2 − α̇2u) + zT4 (−k4z4 + us2 − α̇3u + 1(t))(B1)

Then we can make the following reasonable derivation:

V̇2 ≤ |z1| |z2| − k1z
2
1 +W1 |z2| |z3| − k2z

2
2 + |z2| (ϕ(x2)θ̃

+α2s2 − d(t)) +
1

2
Ṁa(x1)z

2
2 + |z3| |z4| − k3z

2
3

+|z3| (α3s2−α̇2u)−k4z
2
4+|z4| (us2−α̇3u+1(t)).(B2)

Based on the equations (27), (37), (45), we can upper

bound (B2) as

V̇2 ≤ −zT3z+ ξ. (B3)

Considering that the matrix 3 is positive definite, so

V̇2 ≤ −λmin(3)(z21 + z22 + z23 + z24) + ξ ≤ −ϑV2 + ξ. (B4)

which will lead to (52) by applying the comparison

lemma [43]. Hence, the error signal z is bounded. Similar to

the proof of Theorem 1, the boundedness of all signals can be

deduced to prove.
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