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A nonlinear modelling strategy is introduced to drive online optimisation-based controllers for trajectory tracking

and stabilization of very flexible aircraft. This is achieved thanks to a compact residualised modal projection of the

aeroelastic equations of motion, including large (geometrically-nonlinear) wing deflections, that is used to describe

the vehicle dynamics. We show that a model-predictive control system can then be built with an internal model

based on successive linearisation of the equations of motion around the instantaneous vehicle geometry. Significant

improvements in stability against large disturbances and manoeuvrability are demonstrated on numerical simulations

of a very flexible flying wing when geometrically-nonlinear effects are included in the internal model of the controller.

Nomenclature

C: Sectional compliance matrix

e1: Unit vector (1; 0; 0)
⊤

f : Sectional internal force vector

H: Number of time steps in control time horizon

g: Graviational acceleration vector

M: Sectional mass matrix

m: Sectional internal moment vector

q: Aeroelastic states in modal basis

Q: Nonlinear operator in state-space aeroelastic system

R,R†: Similarity transformation matrices for order re-

duction

r: Displacement in inertial axes

r0: Reference-node displacement in inertial axes

s: Curvilinear coordinate describing beam location

s: Reduced-order states

t: time

T : current time step

T: Rotation matrix from inertial to local frame

u: Control input vector

V∞: Forward-flight velocity

v: Local velocity vector

W: MPC weighting matrices

y: Measurement vector

η: Generalised (modal) forces on the aircraft

γ: Sectional force strain

κ: Sectional moment strain

ξ: MPC internal state variable

φ1: Linear/angular velocity description of mode shape

φ2: Internal force/moment description of mode shape

ψ: Euler angles at the reference node

ω: Local angular velocity vector

•′: Derivative w.r.t. s (distance along the beam)

•̇: Derivative w.r.t. t (time)

•̃: Cross-product operator
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I. Introduction

Air vehicles with very high aspect-ratio, but also highly flexible, wings are increasingly considered in order to

achieve ambitious targets in aerodynamic efficiency. Their design and analysis has been facilitated by the development

of coupled flight dynamic/aeroelastic vehicle models that fully account for geometric nonlinearities, which can play a

key role in the vehicle’s static and dynamics characteristics [4]. Such models are typically built using composite beam

representations of the structures with either thin-strip unsteady aerofoil theory [5, 29] or, more recently, unsteady

vortex lattice aerodynamics [32, 19, 10]. A rather comprehensive review of the state of the art in very flexible aircraft

dynamic modelling has been recently carried out by Afonso et al. [1], and the reader is referred there for further details

on the options for computer simulations to support airframe design and performance prediction. The interest here is

in the development of model-based guidance and control strategies, specifically tailored to this class of vehicles, that

can take advantage of this new nonlinear modelling capability.

Two control problems are particularly relevant for very flexible aircraft. First, noting that such vehicles are highly

sensitive to atmospheric conditions, “aggressive” strategies for gust load alleviation can be critical. To date, the

focus has been on linear control methods (potentially with gain scheduling [2]) for disturbance rejection that are

built on linearisations of the vehicle dynamics around (nonlinear) aeroelastic equilibrium reference conditions [7,

6, 31]. The second problem is trajectory tracking, which may be affected by large changes of wing shape (and the

corresponding changes of aerodynamic derivatives) due to the manoeuvre loads. This has been mostly addressed so far

using the common assumption of scale separation between an outer navigation loop and an inner (linear) stabilization

loop [27, 25, 9]. It is also worth remarking that novel control challenges may be encountered when considering specific

mission profiles for very flexible aircraft. For example, trajectory optimization of large solar-powered aircraft defines

a resource-constrained problem, in which the available on-board power depends on the instantaneous orientation of

the vehicle [18, 16].

All of the previous control strategies were based on linearisation of the vehicle dynamics. Even without encounter-

ing saturation, the nonlinear response of very flexible aircraft limits the amplitude of the atmospheric disturbances that

can be accommodated by the linear control system in those cases. This has been investigated in a previous work by the

authors [31], in which the performance of a linear disturbance rejection controller was studied in response to “1-cos”

excitations of very flexible flying wing. For each gust length a maximum gust intensity was found at which the closed-

loop system became unstable. Due to the high flexibility and slow speed of the vehicle, this threshold implied that

flight was permitted only for severely restricted weather conditions, thus highlighting the need for control strategies

that exploit knowledge of the nonlinear vehicle dynamics. While most nonlinear control methodologies are, in general,

problem-specific and depend on the structure of the nonlinearities in the system model [28], this work will investigate

model-predictive control (MPC), as it poses relatively few requirements on the underlying system [14]. As a result,

MPC has been applied to a wide class of nonlinear problems, although its implementation may be computationally
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costly if it is to be applied in real time to high-dimensional, rapidly-varying, nonlinear systems. Similar to classical

optimal control techniques, the control law in MPC is solved as an optimisation problem. However, this is carried

out on-line as opposed to through a predefined gains. Linear MPC with constraints has already been demonstrated on

trajectory control of flexible aircraft [13], and gust alleviation using Lidar preview [12].

Nonlinear MPC has also seen wide application in problems with known geometrical nonlinearities, including or-

bital dynamic control [17, 3] and robotic arm manipulation [11]. However, nonlinear MPC has not been explored

for very flexible aircraft, as the existing nonlinear models contain a much larger number of states than the systems

described before. To overcome this, in this work, we propose a computationally-efficient strategy for nonlinear aeroe-

lastic simulation of the aircraft dynamics that builds the internal model for the MPC using a successive linearisation

approach. This will be achieved through a modal projection of the flexible aircraft dynamic equations, in which the

structural geometrical nonlinearities, as well as the aerodynamic and flight dynamic forces are expressed as quadratic

nonlinear couplings [30, 31]. The re-linearisation method is selected due to its computational efficiency, where the

quadratic form of the nonlinearity in the internal model will also reduce the computational cost associated with the

re-linearisation and, although not explicitly sought in the current implementation, enable the proposed MPC to run in

real-time. The formulation contains a geometrically-nonlinear intrinsic beam model and a 2D (strip-based) aerody-

namic formulation, as well as a flight dynamics model that includes thrust, gust, gravity and control surface effects.

Section II outlines the main features of the resulting flexible vehicle dynamics model, in particular, those needed by

the nonlinear MPC formulation. Finally, numerical results will be presented in section IV on the application of the

nonlinear model-predictive control scheme to a representative flying wing, comparing its performance in disturbance

rejection and trajectory tracking with an equivalent linear model-predictive controller.

II. Aeroservoelastic modelling

Consider a flexible airframe with high-aspect ratio wings, fitted with conventional trailing-edge control surfaces

and variable engine thrust. All primary structures will be modelled using geometrically-nonlinear composite beams,

with lifting surfaces that deform with the structure and that will be modelled here by strip theory with 2-D unsteady

aerodynamics. We will neglect aerodynamic forces on nonlifting bodies. The beam dynamics are described by intrinsic

variables, as proposed by Hodges [15], along a reference line, with s being the corresponding curvilinear coordinate

defined along the main load paths of the undeformed vehicle. The intrinsic variables are the local inertial velocities

(linear, v(s, t) ∈ R
3, and angular, ω(s, t) ∈ R

3, velocities) and beam sectional forces (internal force f(s, t) ∈ R
3

and moment m(s, t) ∈ R
3). They are all defined in terms of their components in the local (deformed) reference

frame at location s, and shown schematically in Figure 1. Control surfaces are modelled by modifying the local

aerodynamic lift, drag and moment coefficients of the lifting surfaces and are described by a vector uδ(t) containing

individual control surface deflection angles. The thrust of the engines is finally included as point follower forces

of commanded value, which is given by a vector ut(t) containing individual engine thrust settings. Details of this
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nonlinear aeroservoelastic description can be found in a recent work by the authors [31] and only the main features of

the formulation, as well as any changes that were necessary to build the internal models for the MPC, will be outlined

here.

Figure 1. Degrees of freedom used in the aeroelastic formulation in this work.

A. Geometrically-exact beam dynamics in modal coordinates

The geometrically-nonlinear structural dynamics will be described using the linear normal modes of the undeformed

and unconstrained airframe beam model in vacuum. This does not introduce a priori any additional limitation in

the description of the vehicle deformations and kinematics, other than the truncation in modal space associated

to a finite-state realisation. The mode shapes are written in terms of the intrinsic variables, that is, the distribu-

tion of linear/angular velocities and of internal forces/moments corresponding to a given mode shape in displace-

ments/rotations [30]. This will defined a dual set of basis functions φ1j(s) ∈ R
6 and φ2j(s) ∈ R

6, for the inertial

velocities and internal forces, respectively, each associated with a natural frequency ωj . Picking the first N modes

(with ωj ≤ ωk if j < k), the intrinsic variables are then projected as







v(s, t)

ω(s, t)






=

∑

j

φ1j(s)q1j(t), (1a)







f(s, t)

m(s, t)






=

∑

j

φ2j(s)q2j(t). (1b)

The structural state vector will be then defined as the modal amplitudes, qs = (q11, q21, . . . , q1j , q2j , . . . )
⊤

. We
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choose a convention denoting φ1j(s), for j = 1, . . . , 6, as the six rigid body modes. Since there are no internal forces

associated to such modes, it is therefore φ2j(s) = 0 for j = 1, . . . , 6 and, consequently, the corresponding amplitudes

q2j are removed from qs. The intrinsic beam equations, in terms of these modal coordinates, take the form [31]

q̇s = Aqs + Γ(qs)qs + ηa + ηg + ηp. (2)

Here, the geometrically-nonlinear rigid-body/flexible dynamics of the vehicle is described by a matrix A (whose

coefficients contain the natural frequencies of the undeformed aircraft) and a linear coupling operator Γ that describes

all geometrically nonlinear and gyroscopic terms [20]. No structural damping is included in the model. The generalised

forces in (2) are the modal projection of the aerodynamic, ηa, gravitational, ηg , and propulsion, ηp, forces, which will

be described in the following sections.

From the distribution of inertial velocities we can now obtain, by integration in time from a initial reference shape,

the local orientation and position (with respect to an inertial frame) of the reference line as it deforms. The resulting

rotation matrix, T(s, t) ∈ R
3×3, and displacement vector, r(s, t) ∈ R

3, are [30]

Ṫ(s, t) = T(s, t)ω̃(s, t),

ṙ(s, t) = T(s, t)v(s, t),

(3)

where •̃ indicates the skew-symmetric (or cross-product) operator. In practice, we will only need to integrate (3) at a

single reference point to track the flight path. For convenience, we pick that point to be the origin for the curvilinear

coordinate s = 0. If we define T0(t) = T(0, t) and r0(t) = r(0, t), substitution of (1) into (3) gives

Ṫ0 =T0N1(qs),

ṙ0 =T0N2(qs),

(4)

where N1 and N2 are linear operators on the q1j components of the structural state vector whose coefficients are the

modal amplitudes at s = 0, φ1j(0).

B. Gravitational forces

The components of the modal projection of the gravitational forces in (2) can be written as

ηg,j =

∫

φ1j(s)
⊤M(s)







T⊤(s, t)g

0






ds, (5)

where g is the gravity acceleration vector and M(s) ∈ R
6×6 is the cross-sectional inertia matrix, which may also

include lumped masses. Therefore, as the airframe is assumed to undergo large deformations, it is necessary to com-
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pute the local orientation with respect to the Earth axis, T(s, t) (the same situation occurs for gust loads). In our

previous work [31], Eq. (3) was solved at multiple locations along the reference line, to keep the nonlinearity of the

overall description second-order. However, this was at the expense of introducing a large number of additional dis-

placement/rotation variables into the state vector, which would hinder the development of real-time control strategies.

In this work the instantaneous deformed shape of the aircraft will be obtained, instead, from the spatial integration of

the internal forces, which are already computed in (2). For that purpose, we define the moment strains, κ(s, t) ∈ R
3,

and force strains, γ(s, t) ∈ R
3, as the energy conjugates of the sectional resultant forces and moments [15], that is,







γ

κ






= C







f

m






=

∑

j

Cφ2j(s)q2j(t), (6)

where C(s) ∈ R
6×6 is the known cross-sectional compliance matrix, which, in general, is a full (symmetric) matrix.

The instantaneous position and orientation is obtained from the spatial equivalent (via Kirchoff’s analogy) to (3) as

T′(s, t) = T(s, t)κ̃(s, t), (7a)

r′(s, t) = T(s, t)(γ(s, t) + e1), (7b)

where e1 = (1, 0, 0) and •′ indicates the derivative along the beam running direction s. Note that if inextensionality

was assumed, that is, γ = 0, then Eq. (7b) would correspond to the definition of the tangent vector along the deformed

beam axis. Substituting (6) into (7), and integrating from s = 0 using a piecewise-constant discretisation of the

structure [21], we have

T(s) = F(s,qs)T0, (8a)

r(s) = r0 +G(s,qs)T0, (8b)

where the functions F and G are algebraic relations that can be efficiently evaluated at each time step. Substituting

(8a) into (5) gives the gravitational forces as a function of the instantaneous aircraft orientation, T0(t), and modal

amplitudes. Note that this representation is also used by strain-based beam theories [4, 8], although here it is only

needed to project gravitational (and gust) loads onto the local deformed reference frame. As will be seen later, this

will justify the approximation of (8), which has infinite-order nonlinearities, using a Taylor expansion.

C. Unsteady aerodynamics

The unsteady aerodynamics are obtained from thin aerofoil theory, using the local velocities of the airframe (v,ω)

with respect to still air to compute the local lift, drag and pitching moment along the reference line in lifting surfaces.

Aerodynamic states (λ(s) in Figure 1) are introduced to track the unsteady lift history of each aerofoil [24] and are
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also projected on the velocity modes. This results in generalized aerodynamic forces given as [31]

ηa =H1(qs)qs + V∞H2(qa)qs +
∑

k

H3,k(qs)qsuδk, (9a)

q̇a =P1qs − V∞P2qa, (9b)

where the modal projection of the aerodynamic loads have been described by the linear operators H1 and H2, which

depend on the structural and aerodynamic states, respectively. Additionally, the local freestream velocity is approxi-

mated by the local forward velocity at the reference point (s = 0), which is known from (4), and is referred to as V∞.

The aerodynamic parameters of the lifting surfaces, including lift and drag coefficients, as well as the air density, are

incorporated into both operators. The aerodynamic lags are associated to the amplitude of the velocity modes through

two constant matrices, P1 and P2, in (9b). A third term H3 is finally included in (9a) to describe the aerodynamic

forcing from control surface deflections. It assumes that each individual control surface deflection produces a instan-

taneous (quasi-steady) linear change in the local aerodynamic lift, drag and moment coefficients. This simple model

can easily accommodate atmospheric gusts, as shown in Ref. [31], but that will not be used here.

D. Thrust

The only remaining applied forces on the airframe are the engine thrust forces. Assuming Np engines, each one

will generate a thrust vector given by a prescribed time history of follower point forces fp,k and moments mp,k, for

k = 1, . . . , Np, on a particular airframe location sk. The components of the corresponding generalized force in (2)

will be then

ηp,j =
∑

k

φ1j(sk)
⊤







fp,k(t),

mp,k






= Hpup(t) (10)

where Hp is a constant matrix and up is the vector of individual thust settings. The nonlinear ODEs defined by (2),

(4), (5), (9), and (10) will be used as a basis for the subsequent model reduction and model-predictive control design,

as well as for the numerical simulation of the dynamic response of the flexible aircraft.

III. Nonlinear Model Reduction and Control Design

A. Model Order Reduction

Even with a description on modal coordinates, the (nonlinear) flexible aircraft model formulated above requires a

relatively large number of states (typically of order 103) for converged time-domain simulations. However, models

of much smaller sizes, but that still retain key nonlinear couplings, can also be constructed for the purpose of control

synthesis. This will indeed be critical for the success of a MPC architecture, that relies on computationally-efficient

internal models of the flexible aircraft dynamics. We first need to re-formulate some parts of the model to better
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suit the requirements of order reduction, and subsequently we will derive a small-order description of the nonlinear

aeroservoelastic system.

The model-order reduction will be investigated around a trim equilibrium condition. It is defined as the solution

the flexible aircraft dynamics such that q̇s = 0, q̇a = 0, Ṫ0 = 0, and, assuming that the direction of flight is along the

y-axis, ṙ01 = 0 and ṙ03 = 0. This gives reference values for the structural and aerodynamic states, and for the vehicle

orientation, as qse, qae and T0e, respectively, as well as for the inputs, uδe and ute. Following this, the orientation

of the reference node T0 is expressed by its relative rotation from the trim equilibrium orientation T0e using Euler

angles, ψ, as T0 = Tr(ψ)T0e where Tr = I at trim. Effectively, for the purpose of derivation of the reduced-order

models, the rotation equation in (4) is replaced by

ψ̇ = f(ψ,qs), (11)

which will be approximated using a Taylor expansion of order two. We remark that this approximation is only used

for the internal model of the controller. The vehicle dynamics are still described by the full-order system of section II.

We can now define the aeroelastic state vector and the control input vector, relative to the trim level, as

q =

[

(qs − qse)
⊤ (qa − qae)

⊤ ψ

]⊤

, (12a)

u =

[

(uδ − uδe)
⊤

(ut − ute)
⊤

]⊤

. (12b)

Lastly, to make the MPC problem computationally tractable, we retain only quadratic terms in the gravity forces

(5) and ignore the quadratic coupling between structural states qs and aerodynamic control inputs uδ in (9a) so that

the control input acts on the system only linearly. It will be seen through numerical examples that both approximations

on the nonlinear internal model of the MPC do not hinder its performance. Under these assumptions, the aeroelastic

system given by (2), (4), and (9), written in terms of the new variable q effectively reduces to

q̇ = (SA +Q(q))q+ SBu, (13)

with Q a linear operator. Additionally, we define sensor measurements involving either velocities, forces and strains

at different locations along s, as well as rotations or displacements of the body-fixed reference frame, modelled as a

linear combination of the states q according to (1) and will result in the measurement matrix SC and the output vector

y,

y = SCq. (14)

Equations (13) and (14) form a closed-form description of the dynamics of a HALE aircraft with quadratic non-
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linearities






q̇

y






=







SA +Q(q) SB

SC 0













q

u






. (15)

The next step is to reduce the dimension of this nonlinear dynamic model so that it can be implemented as an

on-line optimisation scheme. This process starts by carrying out a balanced transformation of the linear system at the

reference conditions (where Q(q) = 0). This results in a similarity transformation that will be written as

R : RNq → R
Ns , q 7→ Rq, (16)

where Ns ≪ Nq , and R is the projection matrix with pseudo-inverse R† satisfying RR† = I. This linear transforma-

tion is then applied to the nonlinear state equations (15), which results in







ṡ

y






=







RSAR
† +RQ(R†s)R† RSB

SCR
† 0













s

u






=:







SrA +Qr(s) SrB

SrC 0













s

u






, (17)

where s ∈ R
Ns is the reduced-order state, which provides an approximation of the full system via q ≈ R†s. Further-

more, the nonlinear term in (17) can be efficiently expressed if we write Q(q)q = Qijkqjqk to give

Qr(s)s = RQ(R†s)R†s = RimQmnsR
†
njsjR

†
sksk =

(

RimQmnsR
†
njR

†
sk

)

sjsk, (18)

where, noting that the size of Qr will be small, the coefficients in the parenthesis can be precomputed at only a

moderate cost. For a time step ∆t, a discrete-time linear approximation of the nonlinear reduced-order system (17)

with states (si, ui, yi) is formed by linearising the quadratic nonlinearity about si and fixing the control input u(t) ≡ ui

over each time step t ∈ [i∆t, (i+ 1)∆t] to give

si+1 =
[

I + Ã(si)
−1

(

e∆tÃ(si) − I
)

(SrA +Qr(si))
]

si + Ã(si)
−1

(

e∆tÃ(si) − I
)

SrBui, (19)

where Ã(·) : R
Ns → R

Ns×Ns is the linear operator such that Ã(x)y = SrAy + Qr(x)y + Qr(y)x for any

x,y ∈ R
Ns . Consequently, we can write the linearised discrete time approximation in the form







si+1

y






=







SrA,i SrB,i

SrC 0













si

ui






, (20)

where SrA,i :=
[

I+ Ã(si)
−1

(

e∆tÃ(si) − I
)

(SrA +Qr(si))
]

and SrB,i := Ã(si)
−1

(

e∆tÃ(si) − I
)

SrB .
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B. Model-Predictive Control Formulation

The model-predictive control scheme considered in this work is a time-invariant receding-horizon control law uT :=

K(sT ,y
ref (·|T ),uref (·|T ),uT−1) which defines, at each control time step T ≥ 1, the control input uT based upon

knowledge of the current state sT = Rq(T∆t) and chosen reference valuesa

yref (·|T ) = {yref (i|T )}T+H
i=T , uref (·|T ) := {uref (i|T )}T+H−1

i=T ,

of the output and input over a prediction horizon of length H ∈ N. In particular, uT := ν∗T is defined in terms of the

solution to the on-line optimization problem

min
ξi,νi

T+H−1
∑

i=T

∣

∣

∣

∣SrCξi − yref(i|T )
∣

∣

∣

∣

2

W1

+
∣

∣

∣

∣νi − uref (i|T )
∣

∣

∣

∣

2

W2

+ ||νi − νi−1||
2
W3

(21a)

+
∣

∣

∣

∣SrCξT+H − yref(T +H|T )
∣

∣

∣

∣

2

W4

subject to

ξi+1 = SrA,T ξi + SrB,Tνi, i = T, . . . , T +H − 1, (21b)

ξT = sT , (21c)

νT−1 = uT−1, (21d)

with weighting matrices for outputs W1, inputs W2, input rates W3 and terminal cost W4 where ||v||
2
W

= v⊤Wv.

We note that the output cost (weighted by W1) is equivalent to a state cost of S⊤
rCW1SrC in a standard MPC problem.

Information is retained between subsequent MPC optimizations via imposition of the constraint νT−1 = uT−1 which

appears in the input-rate component of the cost function. The evolution of states at each time step, i.e. the internal

model, is described by (21b) which is given by evaluating Eq. (20) at the current time step, T . Initial knowledge of the

reduced states at the current time is given in equation (21c), where full-state feedback is assumed, meaning that we do

not consider state estimation in this work, and that the full specification of the MPC problem consists of (16) and (21).

Effectively, this specification of MPC assumes that the re-linearised state transition relation at each time T , SrA,T ,

can be used to approximate the dynamics for the duration of the optimisation window. The optimisation itself is

typically solved as a convex optimisation problem [26], however, in this exploratory work it will be further assumed

that the saturation limits are never reached (which will be checked a posteriori in the numerical examples below). This

removes the need for inequality constraints and, as a result, the optimal solution can be solved via a one-step quadratic

programme. Despite the assumption of full-state feedback, it is nonetheless convenient to penalise only particular

chosen outputs SrCξi of the state in the cost (21a). The rationale for this choice is that a desired output trajectory

yref(·|T ) must also be calculated at each time T and that output trajectories are significantly simpler to compute than

aThe notation (·|T ) indicates a quantity that is defined at time T to emphasise that reference trajectories may be time-dependent.
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full-state trajectories. This will be further discussed through relevant examples in the next section.

IV. Numerical Results

A. Test Case Description

A nonlinear aeroelastic vehicle in free flight is now considered to demonstrate MPC control design and closed-loop

nonlinear dynamic simulation. The aircraft is the 72m-span high-aspect ratio flying wing model originally defined by

Patil and Hodges [23] and subsequently used by other studies [32, 29, 31], for which the main geometrical features

are shown in Figure 2 and the main properties are shown in Table 1. The airframe has a flat, straight midsection and

an outer section with 10◦ dihedral. Three vertical fins are placed below the midsection and thrust is provided by five

propellers mounted forward of the wing. In this work, a payload of 227 kg is placed at the central pod, for which the

open-loop configuration is dynamically unstable at sea level and the nominal airspeed, 12.2 m/s [31].

Figure 2. Geometric configuration of the flying wing.

Elastic/reference axis 25% chord

Aerodynamic centre 25% chord

Centre of gravity 25% chord

GJ 1.65× 105Nm2

EI2 1.03× 106Nm2

EI3 1.24× 107Nm2

m 8.93kg/m

I11 4.15 kg m

I22 0.69 kg m

I33 3.46 kg m

Wing clα 2π
Wing clδ 1

Wing cd0 0.01

Wing cm0 0.025

Wing cmδ -0.25

Pod clα 5

Pod cd0 0.02

Pod cm0 0

Table 1. Relevant properties of the flying wing [29].
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A standard (linear) finite-element beam model is built to obtain the linear normal modes of the airframe. It contains

20 elements for each side of the central section, 10 elements for the outer section and a single rigid element each for

each of the three fins under the wing. The mode shapes are then transformed [30] into intrinsic variables to obtain

the basis φ1 and φ2 used in (2). The aerofoil coefficients in Table 1 and the five follower forces at the engines lead

finally to the influence coefficients, H, defined in Eqs. (9) and (10). The resulting full-order system has 1966 states.

A comparison against the literature of full-model results for this configuration can be found in our previous work [31].

B. Nonlinear Reduced-Order Aeroelastic Model

The full-order system is first cast into the form of (13), with the six control inputs and ten measurement channels

specified in Tables 2 and 3, respectively. Figure 3 shows the combinations of flap deflections and thrust that define

each of the input channels in Table 2. All measurements are taken at the centre node (i.e. located at the midpoint,

directly above the central pod) of the flying wing and all inputs and measurements are defined by their incremental

value with respect to trim.

Figure 3. Control inputs on the flying wing.

Ranking the balanced states of the linear aeroelastic system using their Hankel singular values, as few as 15

states can be seen to be necessary to capture the main linear input/output dynamics (including both longitudinal and

lateral dynamics). The transformation (16) is then carried out and Figure 4 shows two characteristic Bode plots of the

resulting system: first, the response in rigid-body normal velocity v3 (in body-fixed axes) to uniform flap input, δs, (a

longitudinal response); and, second, the response to yaw rate, ω3, to antisymmetric flap input, δa (as an example of
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# Definition Symbol Units

1 Uniform flap deflection δs rad

2 Differential flap deflection δd rad

3 Uniform thrust action Fs N

4 Differential thrust action Fd N

5 Antisymmetric flap deflection δa rad

6 Antisymmetric thrust action Fa N

Table 2. Control input channels on the flying wing model.

# Definition Symbol Units

1 Symmetric root bending moment M2 kNm

2 Body-fixed longitudinal velocity v2 m/s

3 Body-fixed normal velocity v3 m/s

4 Body-fixed pitch rate ω1 rad/s

5 Rigid-body pitch (in z − y′ − x′′ Euler angle) ψ1 rad

6 Antisymmetric root torsion moment M1 kNm

7 Body-fixed sideslip velocity v1 m/s

8 Body-fixed roll rate ω2 rad/s

9 Body-fixed yaw rate ω3 rad/s

10 Rigid-body roll (in z − y′ − x′′ Euler angle) ψ2 rad

Table 3. Measurement channels on the flying wing model.

lateral response). Both indicate that low-frequency dynamics in the bandwidth of interest (below 1 rad/s) are indeed

well preserved with the first 15 balanced states. The poles of the linear parts of the full- and reduced-order system

with 15 states can be finally seen in Figure 5, where the unstable pair corresponds to the phugoid mode.

a) δs to v3 (symmetric) b) δa to ω3 (antisymmetric)

Figure 4. Sample Bode plots of for full linear system and reduced-order system with 15 balanced states.
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Figure 6. Flap input profile for the open-loop test cases.

Once the linearised system at the trim conditions has been characterised, the corresponding reduced-order nonlin-

ear aeroelastic model (20) is obtained. Two nonlinear reduced-order models are considered, a first one with 15 states,

which was seen to be sufficient for linear analysis, and a larger one with the first 50 states obtained in the linear bal-

ancing process. Comparisons are made between the time-domain open-loop response to symmetric and antisymmetric

flap excitations of both reduced-order models and the full-order system to explore the effect of system size. The time-

history of the flap inputs is always as shown in Figure 6. First, a symmetric excitation in flap input, δs in Figure 3, with

δmax = 2 deg is given to the aircraft in its trim state, for which the response is shown in Figure 7 in terms of in-plane

and out-of-plane velocity components at the midpoint of the wing, as well as the instantaneous pitch angle and bend-

ing moment resultant at that point. Results compare the full-order and reduced nonlinear systems, as well a reduced

linear system with the same 15 states. The response from the linearised full-order system is indistinguishable from

the 15 state linear system and it is not shown. Clearly, the symmetric response is dominated by the unstable phugoid

oscillations. The nonlinear ROMs demonstrate better agreement with the full model than the linear ROM, with the

15-state model capturing well the rigid-body dynamics, and the 50-state model improving the characterisation of the

structural effects. Indeed, the results with 50 states match very well those obtained from the full-system simulations.

Figure 8 shows the response to antisymmetric flap excitation, δa, defined as in Figure 3 and with δmax = 10

deg. The vehicle displays here a nonlinear coupling between its antisymmetric and symmetric dynamics, which is
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Figure 7. Dynamic response of full- and reduced-order models to a symmetric flap input δs with profile shown in Figure 6 and δmax = 2◦.

not captured by the linear model. First, note that the lateral response (yaw and roll angles are presented in Figure

8) is captured well by all models, as it is dominated by the linearised dynamics – noting that the linearisation was

done around the deformed aircraft in trim, which displays a high effective dihedral angle. As the vehicle rolls, there

is a change in lift that introduces a (nonlinear) coupling with the longitudinal aircraft dynamics, which then grows

in amplitude because of the unstable phugoid. This is shown by the two longitudinal components of the velocity at

the wing midpoint in body-fixed axes, also included in Figure 8. The linearised ROM, however, does not capture

the symmetric-antisymmetric coupling and no response is seen in the those symmetric measurements. The 50-state

nonlinear ROM captures the coupling with the smallest error of all the monitored variables, whereas the 15-state ROM

also captures the coupling but with a larger error. In what follows, we will consider that the 50-state description

is suitable for simulation (although, unless otherwise state, all our flight simulations are carried out on the full-size

model), and that the 15-state is suitable as internal model for control. A further exploration on a large range of flight

scenarios would provide tighter bounds for the size of both models, but this was deemed sufficient to highlight the

features of the method in this work.
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Figure 8. Dynamic response of full- and reduced-order models to an asymmetric flap input δa with profile shown in Figure 6 and

δmax = 10◦.

C. MPC Closed-Loop Performance

1. Design and Implementation

The model-updating MPC described in Section III.B is now implemented for disturbance rejection on the flying wing

model. First, the size of the reduced-order nonlinear internal model needs to be chosen, which is done through a trade-

off between accuracy, in particular, the ability to capture the dominant nonlinear couplings in the vehicle response, and

computational performance, so as to allow solution of the optimization at a faster rate that the full-system simulation.

We note that our current implementation of the control algorithm has not been optimized for performance and a real-

time solution has not yet been attempted. From the results in the previous section, a 15-state reduced-order nonlinear

model was chosen and will be used throughout this section. Further gains against linear control schemes would still

be possible with a further optimized controller architecture and a larger internal model.

The internal model of the MPC is therefore the 15-state model defined above, with a time step ∆t = 0.2 s and a

3-second horizon (H = 15 in (21a)). The controller itself is also assumed to operate at an interval of 0.2 s (i.e. the

same as the internal time step) with a zero-order hold, whereas the full-order model operates with an adaptive time step

defined by the Runge-Kutta solver (typically in the order of 0.01 s). The nonlinear internal model is used to compute an

updated linear model only at each new time step where the MPC is evaluated, and each MPC optimization is performed

using a fixed linearized model for the duration of the prediction horizon. Full-state feedback is assumed, with the cur-

rent reduced-order states sT computed from the full system state q(T∆t) via the constant projection matrix R in (16).

After a numerical investigation, the weighting matrices have been chosen as W1 = 20 diag(1, 1, 1, 1, 10, 1, 1, 1, 1, 10)

on the outputs, W2 = 1
3 diag(1, 1, 0.1, 0.1, 1, 0.1) on the inputs, W3 = 3 diag(20, 20, 0.05, 0.05, 20, 0.05) on the input

rates, and terminal constraints W4 = 300W1, with input and output channels defined as in Tables 2 and 3, respectively

(e.g., the larger weights in the output channels are on the instantaneous pitch and roll angles).
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2. Disturbance Rejection

The closed-loop disturbance rejection characteristics are first investigated. To allow a direct characterization of the

nonlinear effects, the excitation will be introduced as a change of the initial conditions. In particular, an initial ampli-

tude of the unstable phugoid mode is defined, with magnitude varying from q11(0) = 0.2 (for which nonlinear effects

are small) to q11(0) = 2.0, which corresponds to a 1.2 m/s change in forward velocity (a 16.4% change from the ref-

erence velocity). The regulation characteristics of the nonlinear MPC are compared against an equivalent linear MPC

(i.e., where the state transition matrix SrA,0 obtained at the trim linearisation, and all other settings in the controller,

remain unchanged).
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a) Nonlinear MPC (qmax = 2.0) b) Linear MPC (qmax = 0.6)

Figure 9. State variables (normalised by corresponding linear response) at wing midpoint for q11(0) from .2 (darker) to qmax (lighter).

Dashed lines: linearised vehicle model.

Figure 9 compares the closed-loop response of the full-order model when driven by either the linear and nonlinear

controllers. Results are presented in terms of body-fixed velocities at the wing midpoint, the instantaneous pitch

angle at that point, and wing root bending moment. For the nonlinear controller, results correspond to q11(0) =

{0.2, 0.3, · · · 1.0, 1.5, 2.0}, while for the linear controller they are limited to q11(0) = {0.2, 0.3, · · · 0.6}, as the

closed-loop system with this controller diverges for higher amplitudes of the excitation. Only results up to the stability

limit are shown. To facilitate the comparison with increasing initial amplitudes, all results have been normalised

by the maximum value in the corresponding linear closed-loop system (that is, with both linear system and linear

control). As a reference, the linear-system results have been included, and the vertical axes are normalised such that
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the maximum amplitude in that problem is 1. This normalisation allows for direct observation of the nonlinear effects

in the closed-loop system. In all cases, nonlinear effects are initially negligible, but they soon start to create differences

in performance between the linear and nonlinear controllers. As it can be seen, the body-fixed longitudinal velocity

(v2) with the nonlinear controller scales nearly linearly until q11(0) = 1, while the linear controller (for which results

are shown for a smaller range of initial conditions) has a large overshoot before it is brought down. Similar behaviour is

observed in the time-history of the pitch angle. The body-fixed vertical shows even starker behaviour, as the nonlinear

controller reduces up to 50% the peak values observed on the corresponding linear system. The linear controller on

the nonlinear system is not able to achieve this. Finally, it is worth noting that root bending moments remain rather

similar for both controllers, thus suggesting that dynamic loads in this configuration are mostly dominated by the

linear system response.

Figure 10 shows the corresponding time-history in all four longitudinal input control channels for both controllers

under the same set of initial conditions. As before, the results are normalised with the peak value of the corresponding

linear simulation (linear controller with linear model, for which the results are also included in the figures with dash

lines). Unit value in the y axes therefore corresponds to the maximum obtained the corresponding linear model and the

differences between continuous curves and the dash curve therefore quantify the effects of the system nonlinearities

as the amplitude increases (for linear models they would collapse to the dash line). It is also important to monitor the

absolute values of the input signals, to ensure that are within realistic bounds. In particular, for q11(0) = 1, which is a

very large excitation, the maximum and minimum values for the control inputs on the nonlinear MPC (Figure 10a) are

−16.0◦ < δs < 0.4◦, 8.1◦ < δd < 0.4◦, −3.2N < Fs < 31.0N and −10.7N < Fd < 0.8N. As it was discussed, no

saturation has been included in the controller, but, as it can be seen, all results up to q11(0) = 1 are within the normal

bounds of physical actuators.

From a comparison between both sets of results, it can be seen that, for a given excitation, the closed-loop dynamic

response from the nonlinear MPC is substantially less dependent on the strength of initial excitation, that is, the

deviation from the linear results occurs more gradually as the amplitude increases. As a result, the nonlinear MPC is

able to stabilise the aircraft when subjected to much larger initial disturbances. This is quantified in Figure 11, which

shows the stability regions of both the linear and nonlinear MPC when subject to simultaneous initial excitations in

longitudinal velocity (v2) and root bending moment (M2). The stability of the nonlinear system is established here by

decreasing oscillation amplitudes in the last half of a 25-s simulation. Again, a significant expansion of the parameter

space corresponding to stable closed-loop dynamics is seen when model re-linearisation is used within the MPC

optimization problem. Typically, the nonlinear stability boundary is the result of the differences between the reduced-

order and full models, which become more significant as the system moves away further from equilibrium. While the

convergence of the nonlinear system would be somehow reduced for the larger amplitudes if control input saturation

was implemented (although all inputs were checked to be within acceptable bounds in our simulations), some redesign
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a) Nonlinear MPC (qmax = 2.0) b) Linear MPC (qmax = 0.6)

Figure 10. Normalised control actions in response to initial conditions on q11(0) from .2 (darker) to qmax (lighter). Dashed lines:

linearised vehicle model.

of both actuator geometry and controller weights could also be carried out to further improve performance. Either way,

it is clear that the MPC with re-linearisation, which uses a very small system description and with low computational

cost in the updating process, offers very substantial advantages with respect to linear control architectures based on

vehicle characteristics at the reference conditions.

We remark finally that the full-state feedback assumption should be replaced by a suitable observer of the modal

amplitudes based on limited measurements. While this would affect both linear and nonlinear control strategies, the

extent to which estimation of the nonlinear couplings may be affected by the estimation algorithm is an open question.
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Figure 11. Stability regions of linear (black) and nonlinear (red) MPC when subject to combined initial excitations in longitudinal velocity

and wing root bending moment.

3. MPC Trajectory Planning Results

In the previous section we have demonstrated that updating the internal model via successive re-linearisation can

substantially increase the performance of the closed-loop system for large-amplitude disturbance rejection. We will

investigate here the performance, and potential advantages, of the proposed nonlinear MPC for trajectory tracking.

Two additional assumptions will be introduced to simplify the study. First, it will be assumed that there are no

atmospheric disturbances; second, a relatively simple guidance algorithm will be used [22], which is schematically

described in Figure 12: Given a reference trajectory, at every controller time step (as before, chosen here as ∆t=0.2 s),

the guidance algorithm identifies first a target point P at a given distance Rg along the trajectory. Then it commands

a flight trajectory defined to be a circular arc projected in the horizontal plane and constant climb angle in the vertical

plane, which intersects the reference trajectory at a target point P . This trajectory is then used to calculate a target

angular velocity in the horizontal plane ωT = 2V∞ sin θT /dT , where θT is the angle in the horizontal plane between

P and the aircraft heading angle, as shown in the figure, and dT is the horizontal distance between P and the aircraft.

The prescribed climb rate is vT = V∞hT /dT where hT is the altitude difference between P and the aircraft, as shown

in Figure 12. This simple two-part algorithm is selected as representative of that typically employed by a HALE-type

aircraft [25]. Once the target horizontal angular velocity ωT (which is limited to be below 0.1 rad/s) and climb rate

vT have been identified, they are converted to reference output and input trajectories (ωT , vT ) 7→ {yref ,uref} to

be employed in the MPC optimization (21) at current control time step T . The reference values yref and uref for
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steady turns with fixed climb rate is obtained from a library of steady-state solutions to Eq. (2), and we note that the

simplicity of the target trajectories renders such an approach practically feasible.

dT

Rg

Figure 12. Guidance algorithm: The target ωT and vT are computed based on the relative position of the target point P relative to the

plane’s current location.

For comparison, a nonlinear six-degrees-of-freedom (6DOF) MPC is developed based on a simplified internal

model, which is obtained by retaining only the first six (rigid-body) modes in (2). Note that this model still includes

nonlinear terms from the gyroscopic couplings and the gravitational forces, however, aeroelastic degrees of freedom

are absent. Finally, as in the disturbance rejection problem studied above, a linear MPC, built around the reference

trim condition, but without re-linearisation during the simulation, is also used to compare the performance of the

re-linearisation technique.

In the numerical studies, the flight speed V∞ is again set to 12.2m/s and the guidance radius Rg is set to 200

m, which defines a minimum turning radius of 100 m. Figure 13 shows the performance of the three different MPC

controllers (nonlinear, linear, and nonlinear with 6DOF plant), in tracking circular horizontal trajectories with radii

of 1000, 600, 400, 300, 250, 200 and 150m (the final case for the NL MPC only). For a large turning radius, the

performance of all three controllers is identical as the response remains in the linear regime and with negligible

aeroelastic effects. As the turning radius decreases, the nonlinear MPC manages to track the desired trajectory. The

increasing differences between the actual and the reference trajectory are linked to the fixed value ofRg in the guidance
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algorithm. The linear MPC controller, Figure 13b, overshoots the target turn rate as the radii become smaller. This

initially has the effect of providing better tracking of the desired trajectory, but the vehicle eventually becomes unstable

at a turn radius of 200 m. Finally, the 6DOF nonlinear MPC, Figure 13c, remains stable for all trajectories considered,

however, it flies off-course for radii below 300 m. This can be linked to the absence of (nonlinear) aeroelastic couplings

in the internal model.
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Figure 13. Tracking performance of MPC controllers of decreasing complexity for horizontal circular trajectories with radii ranging from

150 to 1000 m. (red: reference trajectories; blue: actual trajectories)

The ability of the nonlinear MPC to carry out tighter turns is further demonstrated in Figure 14, which shows

a nominal and executed trajectory with the same initial conditions as above. The nominal trajectory is a square of

side-length 1500 m in the horizontal plane. The trajectory is closely followed by the vehicle with a nonlinear MPC

defined with a guidance radius Rg = 200 m, as before. Figure 15a provides a detailed view of the first commanded

turn, which is also compared to the trajectory followed with the linear and 6DOF nonlinear MPC controllers.The

commanded and actual horizontal turn rates (the angular velocity ωT defined above) during this first turn are shown

in Figure 15b for the three controllers. Finally, Fig. 16 shows all six input channels during the first commanded turn.

As it can be seen, the linear and the 6DOF MPCs follow the same initial trajectory as the nonlinear MPC at the start

of the turn, but perform poorly afterwards. In particular, the linear MPC, as it was seen for the previous case (Figure

13b), is not able to keep the vehicle stable as it enters the turn and the airframe eventually enters a divergent mode.

The 6DOF MPC, on the other hand, includes rigid-body nonlinearities but not aeroelastic effects. This is sufficient

to stabilise the phugoid even as the structure deforms, but the controller does not have sufficient information of the

vehicle dynamics to effectively track the commanded trajectory. As it can be observed in Figure 15b, the commanded

rate for this controller saturates as the aircraft turns and recovers only very slowly after that. The actual turn rate for

the 6DOF MPC shows higher-frequency oscillations as the relatively fast turn excites the aeroelastic modes which are

not known to the controller. Overall, the trajectory-tracking performance of the 6DOF has substantially degraded from
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that of the proposed nonlinear MPC.

We should finally highlight that we have obtained the flight dynamics aerodynamic derivatives through a simple

aerodynamic model and therefore the trajectory predictions will build cumulative errors, particularly in displacement

and heading. The modal description, however, specifically identifies the states associated the rigid-body modes and

corrections would be possible in the appropriate entries of the aerodynamic matrices in (9) if, e.g., flight test data were

available.
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Figure 14. Trajectory of the flying wing being guided along a square path (red) of size 1500m, controlled by the nonlinear MPC commanded

by the trajectory-following algorithm.

a) Reference and actual trajectories. In grey, the projection of the trajec-

tories on the horizontal plane.

b) Commanded and actual horizontal turn rate, ωT .

Figure 15. Details of trajectory and angular velocity achieved by all three controllers during the first turn.

V. Conclusions

We have demonstrated a strategy for nonlinear aeroservoelastic analysis of very flexible aircraft, which relies, first,

on the effective generation of reduced-order models of the nonlinear flight dynamic/aeroelastic system, and, second, on

an optimization-based controller that updates its internal model as the system evolves in time. By picking a structural
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Figure 16. Input time histories for all three controllers during the first turn.

dynamics model that uses time and and spatial derivatives (velocities and internal forces) instead of displacements,

the geometrically-nonlinear response has been represented with quadratic terms without any approximations. Further-

more, the formulation in velocities provides directly the instantaneous wall boundary conditions for the aerodynamic

model. While a simple aerodynamic model has been chosen in this first implementation, more general modal-based

unsteady aerodynamics descriptions (e.g. a doublet-lattice lifting surface model) could be easily integrated in the cur-

rent description. It has been shown that a two-stage projection, first, on linear normal modes and, then, on balanced

states, of the resulting nonlinear aeroelastic equations can characterise the main dynamics of the full aircraft with very

few degrees of freedom. With improved aerodynamics, particularly for rigid-body aerodynamic derivatives, and a

more computationally efficient implementation (the current implementation was built in Matlab), this framework may

constitute a suitable platform for real-time flight simulation of very flexible aircraft.

A nonlinear model-predictive control based on rapid on-line re-linearisation of this reduced-order nonlinear model

has been implemented and it has been demonstrated on a very flexible flying wing already investigated in the literature.

In numerical test cases, the controller with a nonlinear plant model was able to achieve improved performance over an

equivalent linear MPC in disturbance rejection and trajectory tracking scenarios. To facilitate this initial investigation,

it has been assumed that the controller has full-state feedback and that all control inputs are below admissible thresh-

olds without having to enforce saturation constraints in the optimization model. A rather simple navigation algorithm

was also utilized. While removing either assumption will likely increase the computational demands on the online

optimization, the nonlinear internal system required by the controller is of such small size that a successful real-time
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implementation of the control system is still very likely to require only very modest computational resources. How-

ever, the physical implementation of the basic control scheme in this paper still requires the development of suitable

observers of the nonlinear system dynamics.
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