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A photonic artificial intelligence chip is based on an optical neural network (ONN), low power consumption, low delay, and
strong antiinterference ability. +e all-optical diffractive deep neural network has recently demonstrated its inference capabilities
on the image classification task. However, the size of the physical model does not have miniaturization and integration, and the
optical nonlinearity is not incorporated into the diffraction neural network. By introducing the nonlinear characteristics of the
network, complex tasks can be completed with high accuracy. In this study, a nonlinear all-optical diffraction deep neural network
(N-D2NN) model based on 10.6 μmwavelength is constructed by combining the ONN and complex-valued neural networks with
the nonlinear activation function introduced into the structure. To be specific, the improved activation function of the rectified
linear unit (ReLU), i.e., Leaky-ReLU, parametric ReLU (PReLU), and randomized ReLU (RReLU), is selected as the activation
function of the N-D2NNmodel.+rough numerical simulation, it is proved that the N-D2NNmodel based on 10.6 μmwavelength
has excellent representation ability, which enables them to perform classification learning tasks of the MNIST handwritten digital
dataset and Fashion-MNIST dataset well, respectively. +e results show that the N-D2NN model with the RReLU activation
function has the highest classification accuracy of 97.86% and 89.28%, respectively.+ese results provide a theoretical basis for the
preparation of miniaturized and integrated N-D2NN model photonic artificial intelligence chips.

1. Introduction

Deep learning is a branch of machine learning that has been
successfully used in various applications, such as image
classification [1], natural language processing [2], and
speech recognition [3]. Generally, deep neural networks
have a remarkable layer, a connection with many parame-
ters, making it highly capable of learning better feature
representation [4]. Although the training phase for learning
network weights can be completed on the graphic processing
units (GPU), large models also require enough power and
storage during inference because of millions of repeated
memory references and matrix multiplication. Optical
computing has high bandwidth and speed, inherently par-
allel processing, and low power compared with digitally
implemented neural networks. A variety of methods for

optical neural networks (ONN) have been proposed, in-
cluding Hopfield networks with LED arrays [5], optoelec-
tronic implementation of reservoir computing [5, 6], spiking
recurrent networks with micron resonators [7, 8], and fully
connected feedforward networks using Mach–Zehnder in-
terferometers (MZIs) [9]. ONN uses optical methods to
construct the neural network, which has many inter-
connected linear layers, and has the unique advantages of
parallel processing, high-density wiring, and direct image
processing. It can be realized by free-space optical inter-
connection (FSOI) and waveguide optical interconnection
(WOI).

FSOI can be implemented ONN by a spatial light
modulator (SLM), microlens arrays (MLA), and holographic
element (HOE). HOE is an optical element made according
to holography, which is generally formed by a photosensitive
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film [10, 11]. Many researchers have explored diffractive
optical element (DOE) based on the principle of diffraction.
Bueno et al. introduced a network consisting of up to 2025
diffraction photonic nodes and formed a large-scale re-
cursive photonic network. A digital micromirror device
(DMD) is used to realize reinforcement learning with sig-
nificant convergence results. Network consists of 2025
nonlinear network nodes, and each node is an SLM pixel.
Moreover, DOE is used to implement a complex network
structure [12]. Sheler Maktoobi et al. investigated diffraction
coupled photonic networks with 30000 photons and de-
scribed its extensibility in detail [13]. Lin et al. from UCLA
realized the all-optical diffraction deep neural network
(D2NN). +ey moved the neural network from the chip to
the real world in 2018, and the chip relies on the propagation
of light and achieves almost zero consumption and zero
delays in deep learning [14, 15]. +e physical model consists
of an input layer, 5 hidden layers, and an output layer. A
terahertz band light source illuminates the input layer, and
the phase or amplitude of the input surface encodes optical
information. +e incident light is diffracted through the
input layer, and the hidden layer modulates the phase or
amplitude of the light. An array of photodetectors at the
output layer detects the intensity of the output light and
identifies handwritten digits based on the difference in light
intensity of 10 different areas. +e updated phase models the
diffraction grating produced by 3D printing. However, this
scheme has some defects. Except for the lack of miniatur-
ization and integration, the 3D-printed diffraction grating
layer cannot be rapidly programmed in real-time. In 2019,
the team proposed a wideband diffraction neural network
based on the above architecture [16]. +e requirements of
the model for the light source are no longer limited to
monochromatic coherent light, and the application scope of
the framework is extended. However, the experimental
environment is limited by using terahertz light sources, the
large size of the diffraction grating goes against integration,
and in the D2NNmodel, the author stated that no activation
function was added in the simulation state; so the nonlinear
representation ability and generalization ability of the model
need to be improved. +us, a phase grating was used in our
previous work to replace the 3D-printed diffraction grating.
+e carbon dioxide laser is used to emit a 10.6 μm infrared
laser, and HgCdTe detection array is used to detect the light
transmitted from the output layer. +e size of each neuron
can be reduced to 5 μm, so that a 1mm× 1mm phase grating
can contain 200× 200 neurons. +us, this kind of diffraction
grating will obtain a wider range of applications [17]. +e
advantage of this diffraction grating is that it has the size of
1mm× 1mm, which is conducive to miniaturization and
integration of all-optical D2NN architecture.

At present, a complex-valued neural network [18] has
been successfully used for various tasks [19–27], such as
processing and analysis of complex numerical data and tasks
with intuitive mapping to complex numbers. Image and
signal transformation in waveform or Fourier transform has
been used as input data of complex numerical neural net-
works [28]. In the ONN, due to the complexity of the phase
value of light, the phase and amplitude of light need to be

widely considered. If only a real-valued neural network is
used, ignoring imaginary parameters, part of the informa-
tion would omit [29, 30]. +erefore, it is necessary to apply
complex-valued neural networks to optical computing.

Nonlinear activation functions are widely used in var-
ious neural networks. It plays a crucial role in neural net-
works by learning the complex mapping between input and
output. If there is no activation function in the neural
network and nomatter howmany neural networks there are,
the output is a linear combination of inputs. +is means that
the system lacks a hidden layer, resulting in a low nonlinear
representation ability of the model. At present, nonlinear
activation functions mainly include sigmoid, tanh, and
ReLU. +ereinto, ReLU is the most common ones for three
reasons: (1) solving the so-called explosion and gradient
disappearance, (2) accelerating convergence [31], and (3)
making the output of some neurons 0, which leads to the
sparse network. ReLU activation function includes Leaky-
ReLU, PReLU, and RReLU. +ese functions improve the
speed and accuracy of classifying different datasets. ReLU
activation function allows the network itself to introduce
sparsity. +is method is equivalent to the pretraining of
unsupervised learning and greatly shortens the learning
cycle.

In this study, an all-optical diffraction deep neural
network (N-D2NN) model with nonlinear activation func-
tions based on a 10.6 μm wavelength is proposed. Com-
paring with the work investigated by UCLA [14, 15], the
characteristic size of the neural network is reduced by 80
times, and the classification accuracy of the model is verified
by simulation. Our model provides a theoretical basis for the
future research of the N-D2NNmodel framework in 10.6 μm
wavelength and lays a foundation for the further realization
of large-scale integrated and miniaturized photonic com-
putation chips.

In summary, the main contributions of this study are as
follows: (1) an N-D2NN framework with nonlinear activa-
tion functions based on 10.6 μm wavelength is proposed by
combining ONN and complex-valued neural networks. (2)
+e representation ability of N-D2NN with ReLU im-
provement activation functions is evaluated in the experi-
mental simulation state, and the detailed evaluation process
is given.

+e rest of this study is organized as follows.+emethod
used in our research is described in Section 2. Section 3
presents the experimental results. +e discussion is reported
in Section 4. Finally, conclusions are given.

2. Materials and Methods

+is part introduces the basic theory and improved dif-
fraction deep neural network method based on a 10.6 μm
laser wavelength. First, the optical calculation theory of
N-D2NN based on 10.6 μm wavelength is introduced. +en,
the network model structure is explained in detail. Finally, to
improve the nonlinear representation ability of N-D2NN, an
improved method of N-D2NN is given by adding the
nonlinear activation function into the N-D2NN model.
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2.1. Optical Computation. Figure 1 shows the structure of
N-D2NN. Light passing through each grating is modulated
by grating grids of different thickness, and it is then received
by all grating pixels on the secondary grating. +is network
connection mode is similar to the fully connected neural
network. +e first layer of grating receives input images and
corresponds to the input layer in the neural network
structure. +e middle layers of gratings correspond to the
hidden layers in the neural network structure, and the de-
tection plane corresponds to the output layer in the neural
network structure. +e phase modulation effect of the input
light is different from the height of different gratings, which
corresponds to different weights in the neural network
structure.

According to the Rayleigh–Sommerfeld diffraction
equation, the neurons in each layer of N-D2NN can be
calculated by the secondary wave source equation, and the
formula is as follows [32, 33]:

wli(x, y, z) �
z − zi
r2

1

2πr
+ 1

jλ
( )exp j2πr

λ
( ), (1)

where l represents the lth layer of the network, i represents
the ith neuron of layer l, r represents the Euclidean distance
between l layer node i and l+ 1 layer node, and j �

���
−1

√
. +e

input plane is the 0th layer, and then, for lth layer (l≥ 1), the
output field can be expressed as

nli(x, y, z) � w
l
i(x, y, z) · g, (2)

where nli(x, y, z) represents the output of the ith neuron at
the lth layer (x, y, z), g represents the nonlinear activation
function in the neural network whose function is to transmit
the modulated second-wave neurons to the next layer
through the nonlinear unit, and g � ϕ[tli(xi, yi, zi) ·∑knlk
− 1(xi, yi, zi)] � ϕ[wli(x, y, z) · |A| · ejϕ

l
i ]. tli denotes the

complex modulation, i.e., tli(xi, yi, zi) � |A|exp(jϕli(xi,
yi, zi)), |A| � ali(xi, yi, zi) is the relative amplitude of the
secondary wave, and ϕli(xi, yi, zi) represents the phase delay
increased by the input wave ∑knl−1k (xi, yi, zi) and the
complex-valued neuron modulation function tli on each
neuron. For N-D2NN structure with the only phase, the
amplitude ali(xi, yi, zi) is considered a constant, and the
ideal state is 1 when the optical loss is ignored.

2.2. /e Architecture of N-D2NN. To simplify the repre-
sentation of the forwardmodel, equation (1) can be rewritten
as

nli,p � w
l
i,p · g,

ml
i �∑

k

nl−1k ,

tli � a
l
i exp jϕli( ),

g � ϕ ml
i · t

l
i( ),


(3)

where i refers to a neuron of the lth layer, and p refers to a
neuron of the next layer, connected to neuron i by optical
diffraction. +e input pattern h0k is located at layer 0. It

generally has a complex-valued quantity, which can carry
information in its phase and amplitude channels. +e dif-
fraction wave function generated by the interaction between
illumination plane wave and input light can be expressed as

n0k,p � w
0
k,p · h

0
k. (4)

When the input light is diffracted through a multilayer
grating, a result image will be output on the detection plane.
+e detector detects the detection area in the generated
image and obtains the network classification result. +ere-
fore, it is necessary to process the data labels in the parameter
training stage, and the corresponding labels are designed in
the resulting images of different labels. As shown in Figure 2,
by judging the region with the highest light intensity in the
detection region of the generated image, the label repre-
sented by the generated image can be obtained. To match
input data of different lengths, the resulting image corre-
sponding to the label is also scaled.

After the input light is diffracted by multilayer grating, a
result image will be output in the detection plane. +e
detector probes the detection area in the resulting image to
obtain the network classification results. +erefore, it is
necessary to process the data labels in the parameter training
stage and design different labels to correspond to the marks
in the resulting image, as shown in Figure 2. +e label
represented by the resulting image can be obtained by
judging the region with the highest light intensity in the
detection region of the resulting image. +e resulting image
corresponding to the label needs to be scaled to match input
data of different lengths.

For N-D2NN containing N hidden layers, the light in-
tensity of its output layer can be expressed as

IN+1i � mN+1
i

∣∣∣∣∣ ∣∣∣∣∣2. (5)

+e intensity measured by the detector on the output
plane is normalized so that they are located in the interval (0,
9) of each sample. Il is used to represent the total amount of
optical signals incident on the detector in the output layer l,
and the normalized intensity Il′ is

Il′ �
Il

max Il{ } × 10. (6)

2.3. /e Proposed Method. Based on a previous research, Lin
et al. did not consider adding nonlinearity to the D2NN
framework. +erefore, in the classification task, D2NN is weak
in nonlinear representation. In this study, an N-D2NN model
architecture is proposed, as shown in Figure 3. Assume that a
neuron is physically equivalent to a grid of ONN, and the
modulated secondary wave neurons are transmitted to the next
layer through the nonlinear unit, as shown in Figure 3.

2.3.1. Complex-Valued Neural Network. According to
equation (3), the phase factor in the complex form of the
wave function contains the spatial phase factor exp(jϕli), so
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the product of the amplitude and the spatial phase factor is
tli � x + jy � ali exp(jϕli). tli can be represented by two real
numbers: the real part Re(tli) � x, and the imaginary part
Im(tli) � y. Any complex-valued function of multiple

complex variables can be represented by two functions:
f(tli) � f(x, y) � f(ali, ϕli).

Although directly used and represented in neural net-
works, complex numbers define the interaction between two
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Figure 1: Schematic diagram of the N-D2NN structure. (a) System physical model. (b) Optical path model. (c) Neural network model.
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parts. Using Euler’s constant ejϕ
l
i � cos(ϕli) + j sin(ϕli) as the

equivalent representation in the form of polarity,

tl1it
l
2i � al1ie

−jϕ
1l
i( ) al2ie

−jϕ
2l
i( ), (7)

tl1i + t
l
2i � al1i cos ϕ1li

( )( + al2i cos ϕ2li
( )

+ j al2i sin ϕ2li
( ) + al1i sin ϕ1li

( )( ). (8)

Because more operations are required, complex pa-
rameters increase the complexity of the neural network.
+erefore, equations (7) and (8) can be used according to the
selected implementation mode and representation, which
can significantly reduce the computational complexity. +e
product of input tli and complex numerical weight matrix wli
is calculated as follows:

tliw
l
i �

Re tli( ) −Im tli( )
Im tli( ) Re tli( )
  Re wli( )

Im wli( )
  � Re tli( )Re wli( ) − Im tli( )Im wli( )

Im tli( )Re wli(( ) + Re tli( )Im wli( )
 . (9)

So this exchange means that the model design needs to
be rethought to simplify the structure. A deep learning
framework that performs poorly under real-valued pa-
rameters may be suitable for complex-valued parameters.
According to the experimental results in [34], real-valued
data do not require this structure. +e imaginary part of
Im(tli) is zero, so equation (9) can be simplified as

Re tliw
l
i( ) � Re tli( )Re wli( ),

Im tliw
l
i( ) � Re tli( )Im wli( ). (10)

For training, this means that the real parts Re(tli) and
Re(wli) dominate the overall classification of the real-valued
data points.

2.3.2. Activation Function. +e activation function can
enhance the representation ability of nonlinearity and
perform a complex task of deep learning. However, in some
nonlinear activation functions, such as sigmoid and tanh,

they have two disadvantages: (1) when performing back-
propagation to calculate the error gradient and calculating
the activation function (exponential function), the deriva-
tion involves division, so the computation is relatively large,
and (2) when the sigmoid is close to the saturation region,
the transformation is too slow, and the derivative tends to
zero.+is situation will cause information loss. In all of these
nonlinear activation functions, the most notable one is the
rectified linear unit (ReLU) [35]. It is generally believed that
the excellent performance of ReLU comes from sparsity
[36, 37]. It reduces the interdependence of parameters and
alleviates the occurrence of overfitting problems. +ere are
also some improvements to ReLU, such as leaky rectified
linear (Leaky-ReLU), parametric rectified linear (PReLU),
and randomized rectified linear (RReLU), namely, ReLU
family functions. +ese ReLU family functions improve the
speed and accuracy of neural network training. In this
section, the three kinds of rectified units are introduced:
Leaky-ReLU, PReLU, and RReLU. +ey are illustrated in
Figure 4.
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Figure 3: (a) Schematic diagram of neurons in the diffraction mode with nonlinear activation. (b) N-D2NN blueprints with optical
nonlinear materials.
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Figure 4(a) shows the mathematical model of ReLU,
which is first used in restricted Boltzmann machines. It is a
piecewise linear function that cuts the negative part to zero
and keeps the positive part. After passing with ReLU, ac-
tivation is sparse. Formally, rectified linear activation is
defined as

f ml
i · t

l
i( ) � ml

i · t
l
i, if ml

i · t
l
i ≥ 0,

0, if ml
i · t

l
i < 0,

 (11)

where input signalml
i · tli < 0 and output is 0; when the input

signal ml
i · tli ≥ 0, the output is equal to the input signal.

Figure 4(b) shows the mathematical model of Leaky-
ReLU and PReLU. ReLU sets all negative values to zero. In
contrast, leaky rectified linear unit (Leaky-ReLU) assigns a
nonzero slope to all negative values. Leaky-ReLU activation
function is first proposed in the acoustic model [38]. It is
mathematically defined as

f ml
i · t

l
i( ) � ml

i · t
l
i, if ml

i · t
l
i ≥ 0,

aim
l
i · t

l
i, if ml

i · t
l
i < 0,

 (12)

where ai is a fixed parameter in range (0, 1). In this study, ai
in the Leaky-ReLU function is selected as 0.2.

PReLU is proposed by He et al. [39]. +e authors re-
ported that its performance is much better than ReLU in
large-scale image classification tasks. In the PReLU function,
the slopes of the negative part are learned from the data
rather than defined in advance. PReLU function learns ai
through back propagation during training in equation (12).

Figure 4(c) shows the mathematical model of RReLU,
which is the randomized version of Leaky-ReLU. It is first
proposed and used in the Kaggle NDSB competition. +e
highlight of RReLU is that in the training process, aji is a
random number sampled from a uniform distribution
U(l, u). +e mathematical terms are defined as

f ml
i · t

l
i( ) � ml

i · t
l
i, if ml

i · t
l
i ≥ 0,

ajim
l
i · t

l
i, if ml

i · t
l
i < 0,

 (13)

where aji is an arbitrary constant in the intervalU(l, u), l< u,
and l, u ∈ [0, 1). Suggested by the NDSB competition win-
ner, aji is sampled from U (3, 8). In this study, the same
configuration is used.

2.3.3. Model Training. +e forward propagation model
compares the result of the physical output plane with the
training target of the diffraction network, and the error
propagation generated is updated iteratively to each layer of
the diffraction network. Based on the reports [15], the cross-
entropy function is adopted as the loss function for
N-D2NN, which significantly improves the classification
accuracy of the MNIST dataset [40] and Fashion-MNIST
dataset [41], respectively. +e output results of N-D2NN are
compared with the input values. +e error backpropagation
is used to iterate the grating parameters, and the loss
function is defined according to the output of N-D2NN
based on the target characteristics. +e cross-entropy
function is used as the loss function in the neural network.
According to the following formula, define the cross-entropy
function as

H(p, q) � −∑K
l

pli(x)log q
l
i(x), (14)

where pli(x) � eI
′/∑Kl eI′ represents the output value of the

Softmax layer in the neural network, and Softmax regression
can be thought of as a learning algorithm to optimize
classification results. qli(x) represents the actual image
output value, and eI′ represents the normalized intensity of
the output plane. To train the N-D2NN model into a digital
classifier, the MNIST handwritten digital dataset and
Fashion-MNIST dataset are used as the input layers.

In Figures 5(a) and 5(b) are, respectively, the grayscale and
RGB images of the diffraction grating height distribution of
each layer after the training of the MNIST dataset in the
simulation state, and (c) and (d) represent the output grayscale
images and RGB images of each layer of the diffraction grating.
To judge accuracy of the resulting image, the influence of the
detection area on the background information should be re-
moved first. +en, to obtain the prediction label, the detection
area template is used to extract the resulting image. After the
incident light passes through the input grating and grating layer
L1-L6, the region with the largest light intensity in the final
grating result image is consistent with the location of the
detection area label 7 in Figures 5(c) and 5(d). In Figures 5(e)
and 5(f) are, respectively, the grayscale and RGB images of the
diffraction grating height distribution of each layer after the
training of the Fashion-MNISTdataset in the simulation state,
and (g) and (h) represent the output grayscale images and RGB

l l
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Figure 4: Mathematical models of (a) ReLU, (b) Leaky-ReLU/PReLU, and (c) RReLU functions.
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images of each layer of the diffraction grating. After the in-
cident light passed through the input grating and grating layer
L1-L6, the area with the highest light intensity in the final
grating result image was consistent with the position of the
detected area label 9 (ankle boot) in Figures 5(g) and 5(h).

N-D2NN was performed using the Python (3.6.4) and
TensorFlow (v1.10.0, Google Inc.) framework. +is model
was trained on a desktop computer with a GeForce GTX
TITAN V graphical processing unit (GPU) and Intel (R)
Core (TM) i7-8700K CPU at 3.70GHz and 64GB of RAM,
running Windows 10 operating system (Microsoft). +e
training time and the inference time of the N-D2NN model
using three RELU activation functions on theMNISTdataset
and Fashion-MNIST dataset are shown in Tables 1 and 2,
respectively. From Tables 1 and 2, it can be seen that the
N-D2NN model with the RReLU function takes the least
training time and inference time compared with other ac-
tivation functions on the MNIST and Fashion-MNIST
datasets. In the training phase, the model with Leaky-ReLU
and PReLU achieves the same training time on the datasets.
However, the inference time of the model with Leaky-ReLU
is faster than the one with PReLU. In the Kaggle NDSB
competition, it is reported that aji in the RReLU function is
favorable due to its randomness in training, and overfitting
can be reduced. +erefore, no matter in reasoning time,
training time, or recognition accuracy, RReLU function has
advantages. +e ai in the Leaky-ReLU function is fixed, and
the ai in the PReLU function changes based on the data;
thus, the inference time of the PReLU function is slightly
longer than that of the Leaky-ReLU function.

3. Experimental Results

To test the performance of the N-D2NN structure, the
MNIST dataset and Fashion-MNIST dataset are introduced
in Section 3.1. Section 3.2 shows the evaluation method.
Performance evaluation is reported in Section 3.3. Section
3.4 discusses the comparison with the representation ability
results of a neural network framework without nonlinear
activation functions.

3.1. MNIST Dataset and Fashion-MNIST Dataset. In this
study, the MNIST handwritten digital dataset and Fashion-
MNISTdataset are used as the training digital classifier at the
input layer based on the 10.6 μmN-D2NN model. +e
MNISTdataset is a handwritten digital dataset composed of
numbers 0–9. +e dataset comprises four parts: training set
image, training set label, test set image, and test set label. +e
MNIST dataset comes from the National Institute of Stan-
dards and Technology (NIST). +e training and testing sets
are a mixture of handwritten numbers from two databases,
one from high school students and the other from the
Census Bureau. +e MNIST handwritten dataset contains a
training set of 60,000 samples and a test set of 10,000
samples. Each image in the MNIST dataset contains 28× 28
pixels, and these numbers are normalized and fixed in the
center.

+e Fashion-MNIST dataset is a ten-category clothing
dataset that replaces the MNIST handwritten number
dataset. It has the same number of training sets, test sets, and

L6Input L1 L2 L3 L4 L5

(a)

Input L1 L2 L3 L4 L5 L6

(b)

Figure 5: +e height distribution images of each layer of diffraction grating and the output images of each layer of diffraction grating are
obtained. (a) Label 7 in the MNIST dataset. (b) Label 9 in the Fashion-MNIST dataset.

Table 1:+e training time of the N-D2NNmodel using three ReLU
activation functions for the MNIST dataset and Fashion-MNIST
dataset.

Training time (h)

MNIST Fashion-MNIST

Leaky-ReLU 28.1 28.2
PReLU 28.1 28.2
RReLU 27.9 28.0

Table 2: +e inference time of the N-D2NN model using three
ReLU activation functions for the MNIST dataset and fashion-
MNIST dataset.

Inference time (s)

MNIST Fashion-MNIST

Leaky-ReLU 0.12 0.14
PReLU 0.13 0.16
RReLU 0.11 0.13
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image resolutions as the MNIST dataset. However, different
from the MNIST dataset, the Fashion-MNIST dataset is no
longer an abstract number symbol, but a more specific
clothing type. Each training sample and test sample in the
MNIST dataset and Fashion-MNIST dataset are labelled
according to the category in Table 3.

3.2. Evaluation Method. +e confusion matrix with ten
classes is listed in Table 4. First, each category Hi (i� 0–9)
needs to compute ten in one confusionmatrix [42].+en, for
a single class, the evaluation method is defined by TPi, FNi,
TNi, and FPi. +e following formula can express accuracy of
the proposed classifier:

Accuracy � TPi + TNi

TPi + TNi + FPi + FNi

, (15)

where TPi � χii represents the totality of the predicted
sample is true, and the true sample is true for Hi;

TNi � ∑9
j�0
j≠i

∑9
k�0
k≠ i

χjkrepresents the totality of the predicted

sample is false, and the true sample is false for Hi;

FPi � ∑9
j�0
j≠ i

χji represents the totality of the predicted

sample is true and the true sample is false for Hi; and FNi �∑9
j�0
j≠ i

χij represents the totality of the predicted sample is

false, and the true sample is true forHi, and the totality of test
samples is represented by N.

3.3. Performance Evaluation. In this study, the hyper-
parameters in the N-D2NN model based on 10.6 μm
wavelength are selected, as shown in Tables 5 and 6.

+e grid search method is used to select the hyper-
parameters of the neural network, so the number of grating
layers belongs to the hyperparameters of the neural net-
work. In the simulation state, each batch of data in the
network model is selected to be 100. To reduce the sim-
ulation time, the number of cycles is 10, the pixel scale is
28 × 28, the loss function is the cross-entropy function, and
the optimizer is the Adam optimizer, and the learning rate
is chosen as 0.01.

+e number of grating layers in N-D2NN based on
10.6 μm wavelength will influence the final classification
result, which is also the unique advantage of this neural
network compared with other linear networks. Figure 6
shows the recognition accuracy of different grating layers
in N-D2NN models with various activation functions.
When the number of grating layers is ≤5, the classification
accuracy of the neural network model increases with the
number of grating layers. When the number of grating
layers is >5, the classification accuracy reaches saturation.
In general, the deeper the neural network is, the stronger
its feature representation ability will be. Furthermore, the
neural network could have a better performance on the
image classification task. However, the selection of the
layer number of the neural network also largely depends
on the dimension of the input data features. If the feature

dimension of the input data is low and the layer number of
the neural network deeper, it is easy to cause the loss and
saturation of the feature information during the training
process. +erefore, its classification accuracy tends to be
saturated or even decreased. +erefore, in the simulation
experiment environment, the number of grating layers is
selected as 6.

After determining the number of grating layers in the neural
network model, the pixel scale and the spacing of diffraction
gratings in the hyperparameters of the model are optimized,
among which the number of grating layers is 6. In the N-D2NN
model, pixel sizes and classification accuracy corresponding to
the three activation functions, Leaky-ReLU, PReLU, and
RReLU, are shown in Tables 7–10, respectively.

Table 3: Label number and category of the MNIST dataset and
fashion-MNIST dataset.

Label
number

MNIST dataset
category

Fashion-MNIST dataset
category

0 0 T-shirt
1 1 Trousers
2 2 Pullover
3 3 Dress
4 4 Coats
5 5 Sandal
6 6 Shirt
7 7 Sneaker
8 8 Bag
9 9 Ankle boot

Table 4: Confusion matrix of ten-class classification.

Predicted

0 1 2 . . . 8 9

True

0 χ00 χ01 χ02 . . . χ08 χ09
1 χ10 χ11 χ12 . . . χ18 χ19
2 χ20 χ21 χ22 . . . χ28 χ29
. . . . . . . . . . . . . . . . . . . . .

8 χ80 χ81 χ82 . . . χ88 χ89
9 χ90 χ91 χ92 . . . χ89 χ99

Table 5: Physical parameters of neural network grating.

Grating parameter Numerical

Wavelength 10.6 μm
Cell size 5 μm
Grating spacing 30 λ

Table 6: Neural network training parameters.

Training parameter Numerical

Grating layer 6
Number of neurons per layer 100×100
Batch size 100
Epoch 50
Learning rate 0.05
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Figure 6: Classification accuracy corresponding to the number of raster layers with standard, Leaky-ReLU, PReLU, and RReLU activation
function models.

Table 7: +e classification accuracy in the N-D2NN model adding the Leaky-ReLU activation function corresponds to pixel size and
diffraction grating spacing.

Accuracy (%)
Pixel size

30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 90× 90 100×100

Spacing (λ)

30 93.16 94.98 95.20 95.83 96.30 96.01 96.51 96.58
40 90.40 94.13 95.39 95.86 95.95 95.96 96.35 96.55
50 80.79 93.74 95.04 95.64 95.79 95.98 96.35 96.55
60 77.74 92.52 94.00 95.51 95.63 95.83 96.21 96.44
70 68.84 89.87 93.73 95.16 95.42 96.03 96.10 96.25

Table 8: +e classification accuracy in the N-D2NN model adding the PReLU activation function corresponds to pixel size and diffraction
grating spacing.

Accuracy (%)
Pixel size

30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 90× 90 100×100

Spacing (λ)

30 92.54 94.97 95.41 95.71 95.92 96.25 96.55 96.67
40 90.02 94.51 95.02 95.67 95.88 96.23 96.41 96.44
50 86.49 93.46 94.67 95.64 95.69 95.93 96.21 96.46
60 77.18 92.72 94.43 95.42 95.38 96.12 96.16 96.48
70 69.05 90.49 94.11 95.06 95.69 95.77 96.00 96.19

Table 9: +e classification accuracy in the N-D2NN model adding the RReLU activation function corresponds to pixel size and diffraction
grating spacing.

Accuracy (%)
Pixel size

30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 90× 90 100×100

Spacing (λ)

30 93.10 94.93 95.08 95.81 96.06 96.15 96.35 96.78
40 90.45 94.16 95.19 95.81 95.71 96.05 96.43 96.47
50 85.01 93.78 95.12 95.39 95.90 95.99 96.28 96.23
60 84.44 92.85 94.43 95.24 95.59 96.06 96.14 96.35
70 68.88 91.27 93.71 95.03 95.49 95.67 95.85 96.08
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As can be seen from Tables 5–8, when the spacing of
diffraction gratings in the neural network model is fixed,
accuracy generally increases with pixel size. When the pixel
size of the diffraction grating in the neural network model is
fixed, its precision generally decreases with the increase of
the spacing of the diffraction grating. When the model
selects RReLU activation function, the pixel size is 100×100,
and the spacing of diffraction gratings is 30 λ; the neural
network has the highest recognition accuracy.

Finally, the learning rate of the Adam optimizer in the
model is optimized. Figure 7 shows the classification ac-
curacy of the N-D2NN model with RReLU added to the
MNIST dataset. Among them, the selection learning rate is
0.01, 0.025, 0.05, and 0.075. It can be seen from Figure 7 that
the classification accuracy of the model is the highest when
the learning rate is 0.05.

+e selected hyperparameters of the Fashion-MNIST
dataset evaluated by the N-D2NN model are optimized by
the above method, and the selected hyperparameters are
consistent with the models in the MNIST dataset. +e ac-
tivation function is not added into the standard N-D2NN
model based on 10.6 μm wavelength, and the classification
accuracy of the MNIST (Fashion-MNIST) dataset obtained
under the simulation state is 86.78% (81.10%).

As shown in Figure 8(a), the classification accuracy of the
standard N-D2NN model for each label in the MNIST
dataset is not the same, and the classification accuracy of the
model for label 1 is as high as 98%. However, the classifi-
cation accuracy of the model to label 8 is only 73%. In
Figure 8(b), the classification accuracy of the standard
N-D2NN model for each number in the Fashion-MNIST
dataset is not the same, and the classification accuracy of the
model for label 8 is as high as 95%. However, the classifi-
cation accuracy of the model to label 6 is only 35%. It can be
seen that the nonlinear fitting ability and generalization
ability of the standard N-D2NN model without the activa-
tion function is weak. According to the accuracy curve, when
the epoch is 50, the accuracy of model recognition tended to
be saturated.

3.4. Comparison with the N-D2NN Framework.
Comparison with the test results of the N-D2NN structure
with ReLU family nonlinear activation functions is pre-
sented in Section 3.3. Experimental simulation results show
that N-D2NN frameworks with different nonlinear activa-
tion functions have significantly improved representation
ability. +e necessity of nonlinear activation function in the
N-D2NN framework is proved. Leaky-ReLU, PReLU, and

RReLU functions are selected as the activation functions in
the N-D2NNmodel.+e classification accuracy results of the
MNIST dataset and Fashion-MNISTdataset obtained under
simulation are shown in Table 11.

Among them, the neural network with the RReLU
function for the MNISTdataset has a classification accuracy
of 97.86%. Comparing with the results shown in the [14, 15],
the classification accuracy of the N-D2NN model based on
10.6 μm is improved by 0.05%. +e neural network with
PReLU and RReLU function for the Fashion-MNISTdataset
has a classification accuracy of 89.28%. +is theory proves
the correctness of introducing ReLU family activation
functions into the model. Figure 9 shows the accuracy and
confusion matrix images of N-D2NN with different acti-
vation functions.

According to the accuracy image, when epoch is 50 in the
model, the recognition accuracy region of the model is
saturated. Confusion matrix reveals that the classification
accuracy of each label in the MNIST dataset of the neural
network with three activation functions is above 94%.
Among them, the recognition accuracy of the model with
three activation functions to the label 0 and the label 1 is as
high as 99%. However, the classification ability of the model
to the label 9 is slightly worse, with accuracy rates of 94%,
97%, and 94%. +is may be due to the high similarity be-
tween label 9, label 4, and label 8, so the model misclassified
label 9 into other labels. Figure 10 shows the recognition
accuracy rate of various neural network models to various
labels in theMNISTdataset. It can be seen that in theMNIST
dataset, the recognition accuracy for each label of the model
with three ReLU family activation functions is higher than
that of the standard model without activation function.

According to the accuracy image, when epoch is 50 in the
model, the recognition accuracy region of the model is also
saturated. Confusion matrix reveals that the classification
accuracy of each label in the Fashion-MNIST dataset of the
neural network with three activation functions is above 80%,
except for label 4 and label 6. Among them, the recognition
accuracy of the model with three activation functions to the
label 8 is as high as 98%, 96%, and 97%, respectively.
However, the classification ability of the model to the label 6
is slightly worse, with accuracy rates of 58%, 66%, and 62%,
respectively. +e low recognition accuracy of the model for
label 6 (shirt) may be because it is mistakenly divided into
label 0 (T-shirt), label 2 (pullover), and label 4 (coat).
Figure 11 shows the recognition accuracy rate of various
neural network models to various numbers in the Fashion-
MNIST dataset. It can be seen that the recognition accuracy
for each label of the model with three ReLU family activation

Table 10: +e classification accuracy in the standard N-D2NN model corresponds to pixel size and diffraction grating spacing.

Accuracy (%)
Pixel size

30× 30 40× 40 50× 50 60× 60 70× 70 80× 80 90× 90 100×100

Spacing (λ)

30 84.27 86.42 87.36 86.94 86.64 86.56 86.52 86.50
40 82.18 86.23 87.07 87.44 86.67 86.61 86.94 86.77
50 75.45 86.14 85.94 87.59 87.12 86.72 86.83 87.03
60 64.99 83.27 87.10 87.14 87.41 86.94 86.80 86.97
70 61.90 83.04 86.83 87.65 86.96 86.88 86.75 86.59
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Figure 7: Classification accuracy of the MNIST dataset by the RReLU function N-D2NN model with different learning rates.
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Figure 8: (a) Accuracy rate and confusion matrix of the standard all-optical diffraction deep neural network for the MNIST dataset.
(b) Accuracy rate and confusion matrix of the standard all-optical diffraction deep neural network for the Fashion-MNIST dataset.

Table 11: Classification accuracy rates of N-D2NN with different activation functions.

Activation functions
Accuracy (%)

MNIST Fashion-MNIST

Leaky-ReLU 97.76 89.24
PReLU 97.68 89.28
RReLU 97.86 89.28
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Figure 9: Continued.
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Figure 9: (a) Accuracy rate and confusion matrix of the MNISTdataset by the neural network with the Leaky-ReLU function. (b) Accuracy
rate and confusion matrix of the MNIST dataset by the PReLU function neural network. (c) Accuracy rate and confusion matrix of the
MNISTdataset by the RReLU function neural network. (d) Accuracy rate and confusion matrix of the Fashion-MNISTdataset by the neural
network with the Leaky-ReLU function. (e) Accuracy rate and confusion matrix of the Fashion-MNIST dataset by the PReLU function
neural network. (f ) Accuracy rate and confusion matrix of the Fashion-MNIST dataset by the RReLU function neural network.
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functions in the Fashion-MNIST dataset is higher than that
of the standard model without activation function.

4. Discussion

Nonlinear activation function can improve the represen-
tation ability of traditional deep learning. However, in a
previous work, optical nonlinearity is not incorporated into
deep optical network design, so it is not proved whether the
nonlinear effect could improve the representation ability of
the N-D2NN framework. In this study, the nonlinear acti-
vation function is added to the N-D2NN framework. +e
represent abilities of the nonlinear N-D2NN framework and
the linear N-D2NN framework are analyzed, and it is proved
that the nonlinear activation function can improve the
representation ability in the N-D2NN framework.
+e proposed theory can also be extended to any laser with
the required wavelength, that is, the diffraction grating
suitable for the all-optical D2NN model.

In practice, there are three kinds of methods to realize
the nonlinear activated function. +e first one is nonlinear
material, including crystal, polymer, or semiconductor. Any
third-order nonlinear material, which has a strong third-
order optical nonlinearity χ (3), can be used to form a
nonlinear diffraction layer: glass (As2S3, for example, of
metal nanoparticles doped glass), polymer (poly two acet-
ylene, for example), organic thin-film, semiconductor (for
example, gallium arsenide, silicon, and CdS), and graphene.
+e second method is saturable absorbent materials, such as
semiconductors, quantum dot films, carbon nanotubes, and
even graphene films, that can be used as nonlinearity ele-
ments for N-D2NN. Recently, a material with the strong
optical Kerr effect [43, 44] brings light to the deep diffraction
neural network architecture. +e third method is that the
optical nonlinearity can be introduced into the layers of
N-D2NN by using the direct current electrooptical effect.
+is is an all-optical operation that deviates from the device,
and each layer of the diffraction neural network has a direct
current field. +is electric field can be applied externally to
each layer of N-D2NN.

Since, graphene and cadmium sulfide (CdS) have
achieved a series of important research results in the field
of nonlinear optics. In the following work, the nonlinear
saturation absorption coefficient of the above materials
will be used to fit the optical limiting effect function,
which is used as the activation function in the minia-
turized nonlinear diffraction deep neural network. In the
simulation state, the classification accuracy of the
N-D2NN model for nonlinear optical materials will be
verified. One is the method of material coating, that is, a
layer of graphene or CdS material is plated on the dif-
fraction grating of germanium material to achieve the
physical establishment of the N-D2NN model. Another
approach is to directly fabricate diffraction gratings using
nonlinear materials such as graphene and CdS.

5. Conclusions

In this study, an N-D2NN structure based on 10.6 μm
wavelength nonlinear activation function is proposed based
on the optical neural network and complex-valued neural
network, and the simulation proves its correctness. +e
experimental results show that using three ReLU functions,
the N-D2NN framework of classification performance is
better than that without using a nonlinear activation
function N-D2NN framework. +is proves the necessity of
nonlinear activation function in N-D2NN framework. It can
improve recognition accuracy. Comparing with the D2NN
model in literature [14, 15], the N-D2NN model using
RReLU function can improve the identification accuracy of
MNIST dataset by 0.05%. However, there are still two
challenges: one is to find the corresponding nonlinear op-
tical materials in the physical model. +e other is that there
may be a better nonlinear activation function in the
N-D2NN framework. +ese two points are the works that
should be completed in the future. In the follow-up study,
the neural network model will be further optimized. +e
nonlinear activation function more suitable for N-D2NN
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Figure 10: Recognition accuracy of MNIST dataset by N-D2NN.
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will be further searched, which provides a theoretical basis
for realizing the N-D2NN physical system of 10.6 μm
wavelength.
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