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Abstract

The degree of interdependence between intracranial electroencephalographic (EEG) channels was investigated in epileptic

patients with temporal lobe seizures during interictal (between seizures) periods. With a novel method to characterize nonlinear

cross-predictability, that is, the predictability of one channel using another channel as data base, we demonstrated here a

possibility to extract information on the spatio-temporal organization of interactions between multichannel recording sites.

This method determines whether two channels contain common activity, and often, whether one channel contains activity

induced by the activity of the other channel. In particular, the technique and the comparison with surrogate data demonstrated

that transient large-scale nonlinear entrainments by the epileptogenic region can be identified, this with or without epileptic

activity. Furthermore, these recurrent activities related with the epileptic foci occurred in well-defined spatio-temporal patterns.

This suggests that the epileptogenic region can exhibit very subtle influences on other brain regions during an interictal period

and raises the possibility that the cross-predictability analysis of interictal data may be used as a significant aid in locating

epileptogenic foci. c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The existence of spatial patterns from neuronal ac-

tivity is usually studied by mapping amplitudes or

spectral powers in a given frequency band [1]. While

such topographic maps represent the regional distri-
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bution of the neural activities, they do not make full

use of the information available in the multivariate

data structure corresponding to the interdependences

between spatially separated recording sites. This in-

formation is essential for understanding how the brain

integrates simultaneously distributed and divergent ac-

tivities into globally coherent patterns [2–4]. In the

present paper we propose an approach to study two

related questions: (1) When specific patterns of neu-

ronal activities occur simultaneously in two brain re-

gions, do the two regions have close active couplings
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with each other, and (2) is one of the two regions the
“driving force” of the activities of the other?

The most common methods of studying interac-

tions between several simultaneously recorded neu-

ronal signals are the cross-correlation in the time do-

main [5], and cross-spectrum (or coherence) in the fre-

quency domain [6] that measure the linear relationship

between two variables. Nevertheless, the components

of complex extended coupled systems rarely display

only linear interdependences. In particular, the com-

plex nonlinear character of the neuronal networks at

various levels [7] strongly emphasizes the nonlinear

nature of interaction processes. In fact, deviations from

linearity are commonly encountered between neuronal

recordings [8–10]. Furthermore, the development of

techniques for nonlinear analysis has made it possible

to investigate the neuronal signals as the realization

of a dynamical system of relatively great complexity

and containing highly nonlinear elements [11–13]. In-

deed, the quantification of the nonlinear structure of

neuronal activity was shown to be useful for identify-

ing and characterizing brain states [14–16]. In order to

surpass the limitation of linear approaches, more gen-

eral methods to quantify dynamical interactions have

to be developed and applied in electroencephalogra-

phy. Recently, a method of mutual nonlinear predic-

tion, i.e the prediction of one system based on the

knowledge of the other system, was introduced [17]

and applied [18] to characterize dynamical interdepen-

dences among nonlinear systems. With this method,
the components of complex coupled systems were then
demonstrated to show mutual interdependences when
standard analysis with linear cross-correlation might
fail [18].

We focus in this paper on the possibility to use this

new nonlinear method to gain some knowledge about

the interaction between recording channels of neuronal

activity. We have investigated intracranially recorded

multichannel electroencephalographic (EEG) obtained

from a group of epileptic patients undergoing preoper-

ative evaluation for intractable temporal lobe epilepsy.

For these patients, the seizures are thought to originate

from a localized region of the brain, the epileptogenic

focus, and rapidly propagate to more normal regions.

The use of intracranial electrodes provides records

which have much better spatial resolution compared to

scalp EEG recordings and where the noise and artifact

contamination effects are minimized. In practice, elec-

troencephalographers visually inspect the EEG record-

ings selected to encompass the epileptic seizures and

identify the location of the epileptogenic focus as the

zone where the seizure is originated. In a different

way, the principal objective of the present paper is not

to investigate the EEG recordings during seizures but

during interictal periods (i.e. between seizures), and

ask if the use of nonlinear signal processing techniques

provide some valuable information about the epilep-

togenic regions. Thus, following an earlier study [10],

we analyzed the cross-predictabilities between all pos-

sible pairs of channels for segments of interictal in-

tracranial EEG recording. We discuss the usefulness

of this information in lateralizing and localizing the

epileptogenic structures.

The organization of this paper is as follows. In

Section 2, we present the nonlinear cross-prediction

algorithm and show with numerical examples that

this technique can provide some knowledge about

the causality between two systems. In Section 3, we

describe the intracranial EEG recordings and some

computational parameters. In Section 4, we present

the results of the cross-predictabilities for several

EEG segments and attempt to relate these characteri-

zations to the clinical status of the patient. In Section

5, the clinical and theoretical implications of these

results are discussed.

2. Nonlinear cross-predictability

Consider two dynamical systems X and Y in a gen-

eral sense. The question to be answered is whether we

can detect the existence of a functional relation F re-

lating states between the phase spaces X and Y , i.e.,

X
?= F(Y ).

To have an explicit numerical example showing a com-

plicated functional relationship between two systems,

we consider the responses of a Lorenz system Y when

it is driven by a chaotic signal from a Rössler system

X. In our case the drive system X and the response

system Y are given by the following equations:

Rössler system X:

ẋ1 = −α{x2 + x3},

ẋ2 = α{x1 + 0.2x2},

ẋ3 = α{0.2 + x3(x1 − 5.7)},
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Lorenz system Y:

ẏ1 = 10(−y1 + y2),

ẏ2 = 28y1 − y2 − y1y3 + Cx2
2 ,

ẏ3 = y1y2 − 8/3y3,

where C is the strength of the unidirectional cou-

pling and α is introduced to control the characteristic

timescale of the driving system (α = 6). The pertur-

bation Cx2
2 is applied only to the second equation of

the Lorentz system and does not contain any feedback

term. Fig. 1 shows for a strong coupling (C = 8) the

projection onto the (x1, x2) plane of the driving at-

tractor X and the projection onto the (y1, y2) plane

of the response attractor Y . We can see that the driv-

ing severely distorts the trajectory of the Lorenz at-

tractor. The projection onto the (x1, y1) plane of the

driving-response system is plotted in Fig 1 and in-

dicates that a complex submanifold of the full joint

phase space X ⊕ Y is being occupied. This shows

that, for essentially different chaotic systems, the full

phase space does not contain any trivial invariant ob-

jects to which one can expect a collapse of the over-

all evolution. Since the relationship between the drive

and response dynamical variables are in this case very

complicated, the central question is how can we detect

the existence of the synchronization condition X =
F(Y ). A practical algorithm was suggested by Abar-

banel et al. [19] based on the fact that if there exists

some map F between X and Y then the response sys-

tem Y becomes a passive system, i.e. it “forgets” its

initial conditions. Suppose then that we can construct

an auxiliary response system Y ′ identical with Y and

link it to the driving system X in the same way as

Y is linked to X. Clearly, when the synchronization

X = F(Y ) occurs, then the vector fields in the phase

spaces of the response and auxiliary systems are iden-

tical and the systems evolve on identical attractors. In

the case of our numerical example, the functional re-

lationship X = F(Y ) can be easily detected with the

help of an auxiliary response system. Fig. 2 shows

the projections of the response–auxiliary system onto

the (y1, y
′
1) planes for various values of the coupling

strength C. For C ≥ 3, it can be observed that the

synchronization manifolds are projected onto the di-

agonal y1 = y′
1. Therefore, we can conclude that the

drive–response systems are then functionaly related.

Although this auxiliary system method can be eas-

ily implemented in the numerical simulations, this

method cannot be used in real experimental situations.

Recently, Rulkov et al. [17] suggested another ap-

proach based on the assumption that F is a smooth

map. In fact, if a smooth functional relation exists be-

tween the trajectories {XXXn} in the phase space X of

the driving system X and {YYY n} in Y of the response

system Y , this implies that two close states in X cor-

respond to two close states in the space Y . To exploit

this information contained in the point relationships,

we can define [17,18] a mutual neighbor XXXj of Yi as

a point in X that bears the same time index j as some

neighbor YYY j of YYY i . Similarly, we can define a mutual

neighbor YYY j of YYY i in Y . If a function exists that maps

the values XXXi to YYY i , this further implies the ability

to predict the next state of YYY i by its mutual nearest

neighbors. Let us fix a length scale ǫ. For each YYY n, we

want to make a one-step prediction of one component

Yn+1 of YYY n+1 using the mutual neighbors in X . We

may define

Ŷn+1 = 1

|Vǫ(XXXn)|
∑

j :XXXj ∈Vǫ(XXXn)

Yj+1,

where Vǫ(XXXn) = {XXXn′ : |XXXn′ − XXXn|) < ǫ} is an

ǫ-neighborhood of XXXn. |Vǫ(XXXn)| denotes the num-

ber of elements in that neighborhood. The cross-

predictability is then defined as 1 minus the root mean

square prediction error 1 :

PredX→Y = 1 −

√

√

√

√

1

N

N
∑

n=1

(Ŷn+1 − Yn+1)2.

Let us illustrate the method of cross-predictability with

the previous numerical example of a Lorenz system

driven by a Rössler system. We used a neighborhood

of radius ǫ = 0.2 (at unit root mean square amplitude)

and several segments of length N = 4096 for different

values of the coupling C. Fig. 2 shows the results

of the mutual nonlinear cross-predictabilities versus

the strength of coupling coefficient C (varying from

0 → 9). One can see that the predictibilities PredX→Y

1 Note that this statistical test is different from other cross-

prediction algorithms which evaluate the closeness between two

attractors [31–33]. We investigate here the existence of a mapping

between the trajectories of two attractors. See Section 5.
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Fig. 1. Top: The projections of the original Lorentz attractor (driver X) and driven Lorentz attractor (response Y ). The coupling parameter

is C = 8 and the systems are coupled as indicated in the text. Note that neighbor points in the phase space of Y (circles) are not always

neighbors in the phase space of X characterized by the same time index. Indeed, the noninjectivity of the mapping between X and Y

induces that separate parts of the phase space of X are glued together. Bottom: The projection of the coupled dynamics X vs Y shows

that a complex submanifold of the full joint plane is occupied.

increase monotonically with C and that a strong level

dynamical relationship is reached for C ≈ 3.

Interestingly, we can further observe that the mutual

nonlinear predictabilities are asymmetric PredX→Y >

PredY→X, particularly at strong levels of the coupling.

This can be explained taking into consideration that Y

is a single-valued function of X, but X is not a single-

valued function of Y (e.g. no injectivity, see arrows in

Fig. 1) which means that Y does not contain enough

information to predict all points in X [20]. This is an

important property because an investigation of the de-

gree of symmetry can give insight into the nature of

the relationship between two systems. In particular, in

our specific situation where a subsystem X drives an-

other one Y without being strongly influenced by the

latter, the crucial feature of the relationship is the abil-
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Fig. 2. Top: For several coupling strengths, projections of the state space of the response-auxiliary system from which the stability of the

functional relationship between the drive–response system follows. For C ≥ 3, it can be observed that the synchronization manifolds are

projected onto the diagonal y1 = y′
1. Therefore, we can conclude that the drive–response systems are then functionaly related. Bottom:

Cross-predictabilities between the system X and Y vs. the coupling parameter C. Note the asymmetry in the cross-predictabilities of Y

using X and X using Y due to the fact that the mapping between X and Y are not injective.

ity to predict the response Y from observation of the

driver X alone [17,21]. Therefore, it can be assumed

that each state Y is necessarily a single-valued func-

tion of X, but each state of X is not always a single-

valued function of Y . In this case, a large asymmetry

PredX→Y ≫ PredY→X provides a strong evidence of

unidirectional interaction X → Y , where the system

X has a strong contribution in the activities Y .

3. Experimental setup

Temporal lobe epilepsies are the most predom-

inant medically intractable epilepsies and patients

suffering from these refractory epilepsies are more

frequently considered for surgical treatment [22].

Epilepsy surgery requires then the exact delineation

and localization of the epileptogenic zone (i.e. the



M. Le Van Quyen et al. / Physica D 127 (1999) 250–266 255

brain area that generates the seizure). Consequently,

intracranial recordings of continuous depth EEG ac-

tivity by chronic multi-contact electrodes are some-

times needed to locate this epileptogenic “focus”. For

the patients investigated here, two depth electrodes,

insulated wires with eight contacts (of 1 mm diameter

and 8 mm apart), were inserted stereotaxically under

MRI control along a posterior trajectory to sample the

mediotemporal and occipital cortical structures (see

bottom of Fig. 3). Additional intracerebral or sub-

dural electrodes with eight contacts 1 cm apart were

added to explore the other suspected cortical struc-

tures (see top of Fig. 3). The raw data were passed to

a 32-channel amplifier system with band-pass filter

settings of 0.5–99 Hz using an external reference over

linked ears. The data recordings were digitized at a

rate of 200 Hz, with 12 bit resolution. For this study,

we selected a group of four patients. Their seizures

originated unilaterally from mesial structures of the

temporal lobe. According to a visual assessment of

the recording, we took long-duration artifact-free

EEG samples during interictal periods (at several

hours from a seizure). The patients were awake in

bed, watching television. Regarding the temporal

characteristics, the EEG signals are intrinsically non-

stationary phenomena. Nevertheless, the recordings

can be subdivided into short epochs where the sta-

tionarity hypothesis is nearly accomplished. The EEG

recordings were here divided into adjacent segments

of 5.12 s (N = 1024 pts) duration. Segmentation of

the same order of magnitude has been used by others

[12,15,23]. Fig. 4 (patient 1) illustrates different EEG

segments regarded as quasi-stationary and selected

for subsequent quantitative analyses presented in this

paper.

Let the EEG voltage measurements of a given elec-

trode be denoted by vi (i = 1, . . . , N ). Each time se-

ries will be normalized to unit variance and zero mean.

Using the method of time delay embedding, we can

reconstruct a trajectory {xxxi} in a D-dimensional space

using D measurements with an appropriately chosen

time lag τ ,

xxxi = (vi, vi−τ , . . . , vi−(D−1)τ ).

For each of the EEG segments, an optimal time lag τ

was defined by a reconstruction expansion technique

[24]. To determine the number D of coordinates re-

quired to unfold the dynamics, one examines the num-

Fig. 3. Usual MRI locations of two intracranial electrodes in

the right temporal lobe. Bottom: The depth electrode has four

contacts (1–4) in the medial temporal structures (amygdala and

hippocampus), four contacts in the temporo-occipital junction (5–6)

and the lateral occipital cortex (7–8). Top: The subdural temporal

electrode explores the external temporal neocortex along the long

axis of the temporal lobe (9–15). Other subdural and intracerebral

electrodes are usually placed in other sites (not shown). The size of

the contacts is highly magnified here and is in reality 1 mm wide.
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Fig. 4. Two distinct 32-channel EEG segments of 5.12 s duration recorded from patient 1 during an interictal period. Note that no clear

epileptic activities are present. The denomination “Hippoc.” in the figure actually describes the amygdalo-hippocampal complex defined

by the amygdala (right: channel 1 and left: channel 25) and hippocampus (right: channels 2–6 and left: channels 26–30).
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ber of self-crossings of the trajectories in the recon-

structed state space by the method of false nearest

neighbors [25]. The idea behind this test is to check

whether nearest neighbors in the reconstructed state

space are neighbors due to the dynamics or rather

due to the projection of the original state space into a

space of inappropriately low dimension. To this end,

one looks for nearest neigbors in a d-dimensional

space and calculates the distance of these points in

a (d + 1)-dimensional space. If the distance in the

higher-dimensional space is very large, we have found

a false nearest neighbor (FNN) since the two points

are close in d dimensions only due to the too low-

dimensional projection. The percentage of FNN over

all pair of neighbors tested should go to zero when

we have found a good embedding. We analyzed sev-

eral EEG channels and segments with this algorithm

(threshold sizes of Rtol = 10 and Atol = 2, see [25]

for details). In most cases, there is a sharp drop to zero

at dimension 4–5 after which the percentage of FNN

remains small (around 5 %). This provides suggestive

evidence that the dimension 4–5 is able to capture most

of the EEG dynamics and that additional dimensions

for the data space may not be required. Furthermore,

recent work has shown that accurate prediction based

on the reconstructed self-intersecting attractor is pos-

sible for small enough size of neighborhood [26]. This

result might justify modeling of the EEG dynamics in

a low-dimensional space which permits to use a suffi-

cient computation speed. In conclusion, an embedding

dimension of 4 was used for the subsequent compu-

tations in this paper and is also consistent with other

studies [12,23].

4. Cross-predictability between EEG signals

For each selected time window, the nonlinear mu-

tual predictabilities were determined between all pos-

sible pairs of channels. The neigborood radius ǫ is

chosen to be 0.1 (at unit rms amplitude) as other stud-

ies [12,13] to retain benefits of computational speed.

Fig. 5(A) illustrates for the window depicted in Fig.

4(A) the matrix of nonlinear cross-predictibilities be-

tween all the pairs of the 32 channels. For this pa-

tient, the most anterior contacts of the depth electrodes

were in the amygdala (numbered 1 for the right elec-

trode and 25 for the left electrode), the next three in

Fig. 5. The nonlinear cross-predictability matrices between all the

pairs of the 32 EEG channels estimated for the two segments A

and B of Fig. 4 (patient 1). Note the high cross-predictabilities

values throughout the entire column above the channels 1–4 (ar-

row) in the matrix for B. The denomination “Hippocampus” in

the figure actually describes the amygdalo-hippocampal complex

defined by the amygdala (right: channel 1 and left: channel 25)

and hippocampus (right: channels 2–6 and left: channels 26–30).

the hippocampus (numbered 2–4 and 26–28) and the

last few in the temporo-occipital junction or lateral oc-

cipital cortex (numbered 5–8 and 29–32). Other sub-

dural electrodes (channels 9–24) were placed on the

temporal neocortex either basal or external. This pa-

tient presented an epileptogenic area in the right hip-

pocampus. In Fig. 5 the predictabilities are encoded

as linear gray scales. The examination of the column

above each channel on the origin axis reveals the pre-
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dictability of all channels (test) using the given chan-

nel as data base (reference). A bright value indicates

that two channels contain a common pattern of activ-

ity. The examination of the matrix in Fig. 5(A) indi-

cates that the various anatomical structures (right, left

amygdalo-hippocampal complex, and neocortex) re-

flected strong degrees of internal interactions. These

interdependences decline with the distance, and dis-

tinct anatomical regions are only weakly interdepen-

dent. However, a slight interdependence between the

two hippocampi can be seen. Interestingly, differences

in the interaction patterns within each region can be

observed: the interdependencies between the adjacent

channels in the neocortical structures (central region

of the matrix) often reveal local discontinuities, and

show, over large domains, a mosaic of local high and

low interactive patches. In addition, the analysis of

successive windows shows that the interactions be-

tween cortical networks are highly variable in time. On

the contrary, the interdependencies in each amygdalo–

hippocampal complex reveal a spatial homogeneous

and more temporally stable distribution of the interac-

tions. There are also differences between left and right

mediotemporal structures: the interdependencies in the

left non-epileptogenic amygdalo–hippocampal com-

plex (channels 25–28) demonstrated more stronger
and distributed patterns of functional interactions than
the homologous epileptogenic contralateral structures

(channels 1–4).
Other significant dissimilarities between the two

hippocampi was the transient occurrence of distant in-

teractions originating from the epileptogenic region.

An example is given by the cross-predictability ma-

trix of Fig. 5(B) corresponding to the window shown

in Fig. 4(B). In this figure, signals from specific elec-

trodes exhibit strong cross-predictabilities throughout

the entire column above their locations in the matrix.

Here the most prominant effects are generated by the

first channel in the amygdala and the adjacent ones

located in the right hippocampus.
As previously commented, the asymmetry of the

cross-predictability matrix can provide valuable
insights into the direction of relationship between

two systems. Here, an investigation of the degree of

symmetry shows that PredCi→Cj
≫ PredCj →Ci

for

i =1–4 and j =1–32. These asymmetries can be

better visualized in Fig. 6(B) where the matrix of the

differences γi,j = PredCi→Cj
− PredCj →Ci

are plot-

ted. Indeed, prominent values for i =1–4 was clearly

Fig. 6. Matrix of the differences (γi,j = PredCi→Cj
− PredCj →Ci

)

for the two EEG segments A and B of Fig. 4. The arrow in B

indicates the existence of a strong asymmetry for the channels 1–4.

apparent for this segment (data B in Fig. 4). Further-

more, the difference matrix of the cross-predictability

for the first segment (data A in Fig. 4) is similarly

depicted in Fig. 6(A) and shows in this case no clear

asymmetry patterns.

As pointed out before, the strong asymmetrical

cross-prediction patterns suggest driving effects.

In our case (data B), specific sources in the right

amygdala (channel 1) and hippocampal structures

(at channels 2–4) transiently appear as predominant

driving activities of large portions of the brain. We

have not discerned comparable strong interactions

from the contralateral channels 25–28. Moreover, the
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comparison between these locations and the results

of presurgical evaluation confirmed that these sources

are in the epileptogenic area generating the seizures.

Thus, this phenomenon demonstrates that widespread

entrainments of brain activities by the abnormal

epileptogenic structures were present even during

the interictal period. In particular, single generators

could be localized as primarily responsible for these

entrainments (here the first four channels in the case

of the patient 1). Moreover, no prominent epilepti-

form activities (like interictal spikes) were present in

the EEG segment under examination. This suggests

that the epileptogenic region can exhibit very subtle

influences on other brain regions even during an in-

terictal period without epileptic activity and that the
cross-prediction algorithms used in this paper give a
detailed characterization of these effects.

The nonlinear cross-predictabilities may indicate

interactions that the linear methods could not account

for. To investigate whether the multichannel time

series involve nonlinear structures, we use here the

technique of surrogate data [27,28]. For several multi-

channel EEG segments, we generated artificial signals

which will preserve both the autocorrelations of each

time series and the cross-correlation between them,

but nonlinear relationships between channels are lost.

Fig. 7(B1) shows the matrix of cross-predictabilities

for one surrogate set computed for the same EEG seg-

ment as in Fig. 5(B). These two matrices can then be

compared to characterize the nonlinear phenomena.

In the matrix of the surrogate datasets, the local in-

teractions between anatomical structures demonstrate

a high degree of coupling, especially on the left-hand

side and to a less degree on the right epileptogenic

side. These results were globally similar to those
found in the original data, and indicate that the nature
of the local functional links are mostly linear. It can

be further seen that the differences between original

and surrogate computation was most apparent in the

interdependencies between distant structures. In par-

ticular, the strong widespread cross-predictabilities

from the epileptogenic sources identified in the origi-

nal data can no more be established in the surrogate

data set. Furthermore, no asymmetries can be seen in

the matrix. The presence of these differences suggests

that the process of the large-scale entrainment induced
by the epileptogenic regions most likely involves
nonlinear functional couplings between neuronal
sources.

Fig. 7. (B1) Cross-predictability matrix for one surrogate

set of EEG segment B (Fig. 4). Strong and asymmetric

cross-predictabilities generated by the channels 1–4 can not be

observed. (B2) Matrix of nonlinear significance for the same seg-

ment. Note the high significance values throughout the entire col-

umn above the channels 1–4 (arrow) in the matrix. S > 3 is here

in gray colored.

A precise estimation of the statistical significance of

nonlinear structures was defined as follows [27,12,13]:

19 surrogate data sets for several multichannel EEG

segments were generated. The predictions of time se-

ries between k and l (k, l = 1, 32) were calculated for

the original time series and the surrogate time series,

i.e. Predraw
k,l and Predsur

k,l . Let 〈Predsur
k,l 〉 and SDsur

k,l de-

note the mean and the standard deviation of the distri-

bution of the surrogate predictabilities. The measure
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Fig. 8. One 32-channel EEG segment of 5.12 s duration recorded from patient 2 during an interictal activity. The window shows that a

clear epileptiform potential (spike) is present in most of channels. An examination suggests that this pattern originated from channels 1–4

and spread to other distant channels.

of significance S was then defined by the difference

between the original and the mean surrogate value,

devised by the standard deviation of the surrogate val-

ues:

Sk,l =
Predraw

k,l − 〈Predsur
k,l 〉

SDsur
k,l

A significance S greater than 3 represents at least a 3

standard deviations effect, and indicates then a signif-

icant difference between Predraw and 〈Predsur〉 at the

p = erfc(S/
√

2) = 0.05 level [27]. This level is con-

sidered here as statistically significant for nonlinear in-

terdependencies. If the significance is lower, the orig-

inal and the surrogate data are identical in the sense

that both can be well described by a linear model.

Fig. 7(B2) shows the matrix of nonlinear significance

{Sk,l}k,l=1,32 computed for the segment B of Fig. 4.

Any gray value indicates a significance S greater than

3 and shows that the corresponding coupling is non-

linear. In a consistent way with the previous observa-
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Fig. 9. (A) Cross-predictability matrix between all the pairs of EEG channels for the time segment of Fig 8. (B) Matrix of nonlinear

significance for the same segment.

tions, the matrix indicates that most of the significant

nonlinear couplings are induced by the epileptogenic

region (channels 1 and 2).

Comparable results were obtained in the EEG

recordings of another patient (patient 2). The place-

ment of the multicontact electrodes was similar as

previously (see Fig. 8), and the clinical analysis of the

seizure recordings indicated for this patient an epilep-

togenic focus in the left temporal structure. In Fig. 8,

we display a particular time segment of the EEG sig-

nals where interictal epileptiform activity was present

(see arrow in the selected window). According to the

visual clinical analysis, those infrequent, morpholog-

ically variable transient patterns (e.g. sharp waves,

spikes, spikes and slow waves) present in many chan-

nels are associated with the epileptogenesis and give

often partial insights in the spatial spread of epilepti-

form activity. The clinical assessment of the spike of

Fig. 8 by an electroencephalographer (CA) showed

that this event seems to originate from sources at

the channels 1–4 in the left hippocampus and prop-

agate to the corresponding neocortex, but not to the

right-hand side of the hemisphere. The presurgical

evaluation confirmed that the sites 1–4 are the leading

generators during seizures.

Fig. 9(A) shows the corresponding cross-pre-

dictability matrix. Note that the segment under con-

sideration is strongly nonstationary. Nevertheless, the

localizations of high values and their clear asym-

metry confirm the presence of widespread driving

activities by the first channels 1–4 (left amygdala–

hippocampus), and to a lesser degree, other cortical
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Fig. 10. Top: Several cross-predictability matrix of successive EEG segments from patient 2. Bottom: Solid line with circles – Time course

of the global driving capacity of the left epileptogenic region (channels 1–4) and Dotted line with crosses – Time course of the global

driving capacity of right contralateral regions (channels 23–26).

channels (in particular 8–12 in the left frontal cor-

tex). Thus, the result of the cross-predictabilities

was in good agreement with the visual clinical in-

terpretation of the EEG tracings and detected further

interactions not suspected on the naked EEG (like

the distant drivings by the left epileptogenic structure

of the hippocampus and temporal neocortex in the

right hemisphere). Fig. 9(B) shows the corresponding

nonlinear significance matrix and here, again, these

significances clearly demonstrate the strong nonlin-

ear character of the epileptiform phenomena. Several

cross-predictability matrices of successive EEG seg-
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ments from patient 2 are shown in Fig. 10. The visual

inspection revealed that the focal entrainments of

channels 1–4 and other adjacent channels were go-

ing in and out in an intermittent manner. In order to

quantify the degree of this large-scale entrainment

of brain activity by one region R, we can define the

global driving capacity 1R of region R as the mean

cross-predictabilities of the p recording channels Ci

located in R predicting all other channels:

1R = 1

p

∑

Ci∈R

1

N − 1

∑

j 6=i

PredCi→Cj
,

where N is the total number of channels. In the bottom

of Fig. 8, we display the time course during 9 minutes

of the global driving capacity of the left epileptogenic

region (the amygdala and hippocampus) and the right

contralateral region. It can be observed that the fre-

quent entrainments by the right hippocampal deriva-

tions are uniformly higher than for the left hippocam-

pal channels. For this patient the durations of the most

prominent magnitudes were widely distributed from 5

to 60 s and visually evidenced no clear temporal struc-

tures. A precise analysis of these evolutions is under

investigation.

Further comparable observations for the other pa-

tients of the defined group confirm our principal re-

sult. Indeed, recurrent nonlinear entrainments were

frequently observed and their generators can be pre-

cisely located in the hemisphere of the brain where

the epileptogenic region is situated. This localization

for a given patient and electrode are remarkably sta-

ble. In contrast, there is considerable variation among

different patients, this consistently with the clinical di-

agnoses. Again, these phenomena can be observed in

EEG recordings which do not contain a clear epilep-

tiform activity. We conclude that the nonlinear pre-

diction techniques gives a picture about the spatio-

temporal patterns during the interictal period which

can be very useful for the localization of the epilep-

togenic foci and the characterization of epileptiform

propagation patterns.

5. Conclusions

The principal result of our work demontrates that

the nonlinear cross-prediction technique can be used to

measure the degree of interdependence between EEG

channels, so that physiologically meaningful interpre-

tations can be made. This suggests that the presented

method, already successfully used for studying small

in vitro neuronal ensembles [18], can be readily ex-

tended to large-scale study of the cerebral cortex. We

showed that this method can be used for the determi-

nation of synchronizations between the activities from
different electrode sites. This determination may be
useful to help to understand how widely distributed
neuronal ensembles can be engaged in a global and

large-scale dynamics [36]. In fact, the high degree

of reciprocal interconnections in the brain makes it

reasonable to look for synchronous phenomena and

their specific topographic characteristics. Several lin-

ear methods have been used with this aim. Here the

nonlinear cross-prediction allows one to take a much

broader view of synchrony than pure linear couplings

which could also be used in situation where the EEG

signals were nonlinearly related in a complex way.

This method opens up the question of where nonlinear

dynamical interdependence could identify new func-

tional relations among the nervous system.
The nonlinear cross-prediction method is closely

related to other recent techniques which evaluate the
closeness between dynamical systems (for example

the normalized cross-correlation sum of [29,30] or

cross-prediction error of [31–33]). In these statistics,

the purpose is to investigate the similarity between two

time series by quantifying a distance between the two

underlying dynamics or attractors. Thus, these meth-

ods sensitively depends on any nonlinear transforma-

tion of one data set with respect to the other. Fur-

thermore, the two related time series might be out of

phase with each other. In this paper, we investigate a

close but different question, the existence of a mapping

between the trajectories of two reconstructed sys-

tems. Here, as illustrated by our numerical example,

the functional relationship between pair of signals is

directly investigated. Moreover, finding evidence of a

dynamical interdependency between two sets implies

that their temporal evolutions were “synchronized”

even if the interaction is not always characterized by

the perfect equality of the variables [17]. Another test

in the same context is given by a mutual false nearest

neighbor technique developed in [17]. However, this

test requires longer segments and a low noise level in
order to obtain stable results. It is further well known
that global nonlinear predictions with locally constant

approximations yield good results for rather short seg-
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ments [34,35], and is then much better adapted to the

data segmentation of EEG recordings [32,33].

If a function exists that maps the value from one at-

tractor to another, this implies the ability to predict one

system through the knowledge of the other [17,21].

This is the case of the situation where a subsystem,

X, drives another one, Y , without being strongly influ-

enced by the latter. In fact, the crucial feature is here

the ability to completely predict the response Y from

an observation of the driver X alone. Thus, by calculat-

ing the cross-predictabilities in both directions (X →
Y , Y → X) we may obtain some knowledge about the

causality between the two systems by the asymmetry

of the relationship. These considerations are of prac-

tical importance in neurophysiology when one wishes

to characterize the relationship between different brain

signals. Indeed the type of nonlinear interactions that

can be expected between different brain areas is a

transfer function with single or double rectification as

seen in neuronal membranes. This is a specific case of

strong nonlinear function which is not single-valued.

In this way, by calculating the cross-predictabilities in

both directions between pairs of brain signals, one can

expect that the identification of strong values with a

large asymmetry can be interpreted as corresponding

mainly to an unidirectional coupling.

Nevertherless, two weaknesses of the method

should be noted:

1. The cross-prediction does not take account the

possibility of a time delay between the driving

and responding system. Delay may be expected

due to axonal transport and synaptic processes but

the existence of considerably longer delays has

been demonstrated in the literature, in particular

during the spread of epileptiform activity [37]. In

the case of a longer delay between two systems

(greater than the sampling time, in our recordings

of 5 ms), the cross-predictability method may not

detect a significant interaction. According to the

present work, we propose the following extension

of our procedure to take into account the existence

of time delay. The nonlinear cross-predictability

can be calculated for a range of time shifts τ be-

tween pairs of signals, i.e. PredX(t+τ)→Y (t) and

PredY (t+τ)→X(t). The time shift in which the as-

sociation value reached a maximum can be used

to measure the degree of interdependence, and can

also give an estimate of time delay between two

EEG signals. The sign of the delay can also be

used to gain further knowledge about the causal-

ity between the signals [9].

2. The validity of inferring causality from an asym-

metry in the cross-prediction must be discussed.

In fact, it is extremely difficult in real situations

to clearly prove driving influences between two

subsystems. A thorough discussion of causality

and driving in electrophysiology is given in [38].

A particular ambiguous case is where an asso-

ciation between two systems is induced only by

a third system and not by a mutual causality. In

this case the mutual predictability may (falsely)

detect a driving influence. Nevertheless, in our

work we have taken a rather pragmatic point of

view and mostly focused our attention on cross-

predictabilities in relation to the epileptogenic re-

gions (that are unambiguously localized during

the clinical investigations). In this case, entrain-

ments by the focus of other brain regions can be

expected. The identification of asymmetries in the

cross-predictability provides here a least ambigu-

ous way of characterizing the causality between

brain signals. However, further theoretical work

to develop the concept of causality using delay

coordinate embedding would be useful.

Despite these weaknesses, the usefulness of the pro-

posed nonlinear cross-predictability measure was here

confirmed by quantifications of interdependences in

intracranial EEGs from patients with temporal lobe

epilepsy. Perhaps the most important of our findings

is that the epileptogenic region can be distinguished

from the more normal areas during interictal peri-

ods and without the contribution of epileptic activ-

ity. Recurrent drivings of large brain parts were ob-

served to occur in spatio-temporal patterns related to

the location of the epileptogenic focus. Furthermore,

the comparison with multivariate surrogate data shows

that prominent nonlinearities were present in these

large-scale entrainments generated by the epilepto-

genic mesiotemporal structures. This suggests that the

process of entrainment coming from the epileptogenic

areas involves widespread nonlinear functional link-

ages toward distant neuronal sources. A similar con-

clusion is reached by an experimental animal model of

epilepsy (limbic kindling) [39,40] that shows the oc-

currences of transient high nonlinear interactions be-

tween neuronal structures. Our results are also con-
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sistent with the recent observations by Casdagli et al.

[12,13] showing that prominent nonlinearities exist in

intracranial EEG recordings generated by the epilep-

togenic structures during the interictal period and from
patients with temporal lobe epilepsy.

For a comparable group of patients, we suggest
here that the use of analytic techniques designed to
detect and characterize nonlinearities between record-

ing channels may be proved to be useful in detecting

epileptogenic foci during interictal periods. Thus the

use of the present analysis could be complementary to

the visual assessment of the EEG and contribute to im-

prove the accuracy of presurgical diagnostic purpose.

These conclusions must of course be verified on a large

sample of patients before being applied in a clinical

setting. Furthermore, our data are drawn from a well-

defined population of patients suffering from medial

temporal lobe epilepsy. Our goal was here explicitly

to demonstrate the existence and usefulness of nonlin-

ear interdependencies in a model of human epilepsy.

But we expect that the functional properties retrieved

in this model are applicable to other types of partial

epilepsies. Furthermore, it remains to be seen whether

or not these techniques can be successfully applied to

the analysis of noninvasive (scalp) recordings of the

EEG. It is possible that the skull and scalp attenuate

or distort (filter out) nonlinearities that are detectable
with subdural and depth electrode recordings. These
questions will be addressed in further studies.

From a clinical point of view, the observation of re-

current drivings suggests that subtle facilitation of new

abnormal pathways of connections from an epilepto-

genic region can be related with the epileptic process,

as has been already suggested in [41]. These facilita-

tions would be present in an intermittent fashion and

may perhaps subserve the transition towards a seizure

onset. In this perspective, the occurrence of a seizure

may not be considered as an abrupt event, but as a phe-

nomenon that emerge from a progressive facilitation

of the pathways already seen in interictal periods. This

finding raises then the possibility that the detection of

subtle recruitment states give insights into the dynam-

ics of the neuronal synchronization before a epileptic

seizure, and perhaps may predict the onset of a seizure

before its manifestation on the EEG tracings. Indeed, it

is notoriously difficult to predict the onset of seizures
more than a few seconds in advance from a visual
inspection of the EEG. Analyses based on linear au-

toregressive models [42] also indicate that changes in

the EEG may be detectable for few seconds before the

actual seizure onset. Our ongoing research is devoted

to the characterization of subtle nonlinear pre-seizure

neuronal entrainments that would enable the identifi-

cation of precursors to seizure onset [15,23,43].
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