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Nonlinear Analysis of Breathing Pulses in a Synaptically Coupled Neural Network*

Stefanos E. Foliasf

Abstract. We analyze the weakly nonlinear stability of a stationary pulse undergoing a Hopf bifurcation in a
neural field model with an excitatory or Mexican hat synaptic weight function and Heaviside firing
rate nonlinearity. The presence of a spatially localized input inhomogeneity I(z) precludes the 0
eigenvalue related to translation invariance of the pulse. Consequently, in the spectral analysis of
the linearization about the stationary pulse U(z), there are two spatial modes, either of which can
undergo a Hopf bifurcation in the Mexican hat network to produce a periodic orbit that either
expands/contracts (breather) or moves side-to-side (slosher). We derive the normal form for each
mode becoming critical in the Hopf bifurcation by (i) the method of amplitude equations and (ii)
center manifold reduction, which are shown to agree. Importantly, the critical third order coefficient
of the normal form is found to be in strong agreement with numerical simulations of the full model,
particularly when the bifurcation switches from super- to subcritical. The motivation of this work
is to establish the framework for a perturbative analysis of the breather in a neighborhood of the
Hopf bifurcation point to study weakly interacting breathers analytically.
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1. Introduction. The study of spatiotemporal dynamics in synaptically coupled neuronal
firing rate models is a growing field of research that continues to establish an understanding
of the basic patterns of activity arising from synaptic interactions within large, spatially dis-
tributed populations of neurons [71, 25, 28, 51, 55, 57, 13, 56, 32, 96, 98, 84, 31, 30, 58, 50,
95, 75, 102, 97, 20, 64, 74, 5, 4, 35, 9, 10, 39, 40, 87, 19, 18, 7, 34, 63, 81, 89, 33, 12, 22, 17, 8§,
11, 104, 24, 65, 66, 49, 103, 67, 88, 79, 80, 100, 93, 41, 15, 78, 77, 76, 27, 52, 26, 59, 1]. First
introduced by Wilson and Cowan [101], these neural field models are systems of nonlocal inte-
grodifferential equations that treat the neural tissue as a continuum and describe the activity
of the populations in terms of mean neuronal firing rates. Though such models ignore the
intricate dynamics captured in neuronal spiking models, it is believed that neural field models
can provide a foundation for studying large populations of interacting neurons that facilitates
analytic tractability and is numerically less intensive. Already some models have been shown
to relate to propagating waves generated in in vitro slice preparations [85, 82, 48, 79].

Given the ubiquity of intrinsic and stimulus-evoked oscillations in the brain, this paper
concerns the study of localized patterns of oscillatory activity induced by localized stimulus
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inputs or regions of increased excitability. In previous work [33, 11], we considered the exis-
tence and linear stability of a stationary pulse induced by a spatially localized input in the
excitatory firing rate neuronal network model introduced by Pinto and Ermentrout [79, 78]
to study disinhibited (w(z) > 0) cortical tissue:

T%($,t) = —u(x,t) — pn(x,t) + /Rw(x —y)f(u(y,t)) dy + I(z),
(1.1) %%(x,t) = 4u(x,t) — n(z,t).

We concentrated on the response of system (1.1) to a time-independent, excitatory input,
localized in space, by taking advantage of the analytically tractable simplification introduced
by Amari [1], wherein the sigmoidal neuronal firing rate function f is taken to be a Heaviside
function with firing threshold x so that f(u) = H(u — k). Our analysis showed that, for
sufficiently strong adaptation p and sufficiently strong input amplitude I,, the system is
attracted to a stationary pulse solution which can undergo a Hopf bifurcation leading to
stable periodic oscillations if the input amplitude I, is decreased. The periodic oscillations
took the shape of an expanding/contracting or breathing pulse, and, although there is no
synaptic inhibition, local negative feedback mediated by n is capable of balancing the recurrent
excitatory synaptic feedback.

Breathing pulses were initially found in one-dimensional reaction-diffusion systems by
Koga and Kuramoto [60], in which a stationary localized pattern destabilized in a Hopf bifur-
cation leading to a “breathing motion.” Hopf bifurcation was first described in the Hodgkin—
Huxley equations by Gurel [38] and analyzed for the space-clamped axon (spatially uniform)
by Troy [94] (see also [42]). The bifurcation to periodic orbits was studied in the context of spa-
tially nonuniform solutions induced by a time-independent, d-function input in the spatially
extended FitzHugh-Nagumo equations (as a reduction of the Hodgkin—Huxley equations) to
represent the axon of a neuron being stimulated by an electrode [86]. In this case, a Hopf
bifurcation of a spatially attenuated equilibrium solution gave rise to both nonpropagating
localized oscillations as well as outward propagating periodic impulses. More recently, in a
variety of neural networks of nonlocal integrodifferential equations, stationary and traveling
pulses have been shown to bifurcate into periodic breathing pulses or other types of periodic
solutions when the network is driven by a time-independent input [11, 33, 34, 87, 35, 70, 51]
as well as in the absence of any input [77, 103, 19, 7, 16, 64, 55, 57|, and in some cases periodic
wave emission is also exhibited [33, 34, 57, 56].

In this work, we extend the linear analysis in [33, 11] for the neural field (1.1) with
Heaviside firing rate by developing the weakly nonlinear stability analysis of a stationary pulse
solution in the vicinity of a Hopf bifurcation. While the linear analysis correctly describes
the stability of stationary pulses (equilibria), nonlinear analysis is necessary to describe the
stability and characteristic dynamics of the periodic orbit that emerges in the Hopf bifurcation.
The motivation for this analysis is to develop the perturbative framework for the analysis of
weakly interacting breathers. The local linear feedback mechanism and the solitary nonlocal
term perhaps make (1.1) the simplest neural field of Wilson-Cowan type to develop this
analysis, and, furthermore, it may naturally be adapted to other neural field models that
similarly use a Heaviside firing rate and include analogous spatial integrals. Depending on the
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specific interpretation of the neural field variables, a breather can be interpreted abstractly
as an oscillation in the average activity of a local population of neurons.

We begin by reviewing and extending the existence and linear stability analysis of station-
ary pulses in [33, 11] to the case of the Mexican hat synaptic weight function (local excita-
tion/lateral inhibition). Mexican hat networks have been used as effective representations of
excitatory-inhibitory networks in equilibrium, but, with regard to the temporal dynamics, one
underlying assumption that can be used to justify the use of the Mexican hat weight function
is that the temporal dynamics of the inhibitory population are in a quasi-steady state with
respect to all other variables [36]. However, whether this assumption accurately reflects the
dynamics in real neural tissue remains to be seen. Our use of the Mexican hat weight function,
instead, is to demonstrate that it is possible to generate a different type of periodic orbit that
arises from a Hopf bifurcation in (1.1) and, in particular, one that is found to occur in more
complicated neural field models whose weight functions do not change sign [36]. This further
supports our notion that (1.1) serves as the simplest neural field for this nonlinear analysis
as it captures the two basic types of periodic orbits that emerge in the two-variable neural
fields. The periodic orbits arise from the destabilization of one of two spatial eigenmodes of
the linearized system, and, in the Mexican hat network, either mode is capable of destabilizing
the stationary pulse, with the Hopf bifurcation giving rise to a time-periodic modulation of
the pulse that, in one case, expands and contracts (breathers) while, in the new case, moves
side-to-side (sloshers) as a consequence of broken translation invariance due to the input.
This is analogous to (1.1) with Heaviside firing rate on a two-dimensional domain wherein the
Mexican hat weight function is capable of destabilizing nonradially symmetric modes [35].

An alternative approach to studying linear stability of a stationary pulse was introduced
by Amari [1] and considers the perturbative dynamics of the threshold boundaries of the pulse
as an ODE-reduction for the spatial model. Blomquist, Wyller, and Einevoll [7] attempted to
extend the Amari ODE-reduction to a two-variable excitatory-inhibitory neural field model
but found a mismatch with the linear stability analysis of the full model. We investigated
a similar ODE-reduction (results not included) for (1.1) and found that the conditions for
linear stability agree identically with those for the point spectrum in the full model. The
deficiency in the analysis of [7] is not due to the Amari ODE-reduction but is instead due to
their restriction that the dynamics of two threshold boundaries evolve with even symmetry
rather than independently. The same conclusion was reached independently by Venkov [98].
Although the ODE-reduction would considerably simplify the nonlinear analysis of breathing
pulses in the full model (1.1), an inherent difficulty is that the higher order terms in the
expansion of the spatial gradient d,u(x,t) are not evident a priori. Blomquist and coauthors
carried out such an analysis, ignoring these higher order terms in their ODE-reduction, and
found it to match the numerics of the full model in some cases but not all cases [7]. After
a thorough investigation, we have found that ignoring the higher order terms produces a
normal form which is in utter disagreement with numerical simulations of the full model (1.1)
regarding whether the bifurcation is sub/supercritical and, in particular, where the switch
occurs. We conjecture that any Amari ODE-reduction that does not extend the expansion of
Oyu(x,t) past lowest order will be mismatched with the full model. Hence, we develop the
nonlinear analysis in the full model and examine the ODE-reduction in a subsequent paper
with the analysis herein serving for comparison.
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In section 3, we pursue the nonlinear analysis for the Hopf bifurcation by two different
approaches: (i) amplitude equations and (ii) center manifold reduction. The approach using
amplitude equations originated with the ideas of Landau [68, 69] and the work of Stuart [92]
and Watson [99]. The center manifold approach is rooted in the ideas of Poincaré [83] and
the work of Andronov [2] and Hopf [45, 46] as well as many others. We follow the approach
described in [43], which uses projections to obtain the dynamics on the center manifold. (For
some additional references regarding higher order analysis for a Hopf bifurcation, see [53, 61,
47,44, 91, 37, 21, 62, 23, 72, 14, 6].) Due to the prevalence of each approach within different
research areas, we present both approaches to make the results more widely accessible. In this
treatment, both methods rely on the same set of operators and core calculations, allowing for
a direct comparison of the approach and the results of each without considerable additional
work (see Appendices A-E). Moreover, the comparison serves as a check on the resulting
bifurcation formulae since the results of the two approaches should be related. Finally, the
critical coefficient, at third order of the normal form, that determines whether the bifurcation
is supercritical or subcritical, is shown to be in strong agreement with numerical simulations
of (1.1).

2. Existence and linear stability of a stationary pulse U5. The basic mechanism for the
generation of a stimulus-induced breathing pulse is through a Hopf bifurcation of a stationary
pulse [11, 33]. In sections 2.1 and 2.2 we begin by briefly reviewing and expanding our previous
analysis of this mechanism by considering the additional case of a Mexican hat weight function
which has an important implication for the destabilization of a stationary pulse induced by a
localized input.

2.1. Existence of a stationary bump. Consider the neural field equation (1.1), where
u(x,t) is a neural field that represents the local activity of a population of neurons at position
x € R, while n(x,t) represents a local negative feedback mechanism, such as spike frequency
adaptation or synaptic depression, with p, v determining the relative strength and rate of feed-
back, respectively. 7 denotes the membrane time constant, and f denotes a neuronal output
firing rate function. Following Amari [1], we consider f(u) = H(u — k), where H denotes
the Heaviside function and k the threshold for firing. And, without loss of generality, we
take 7 = 1. We have additionally included in (1.1) an excitatory current input inhomogeneity
I(xz) = I, G(z) with amplitude I, > 0 and an even-symmetric, Gaussian-like spatial profile
G(x) > 0 that satisfies G(z) — 0 monotonically as x — +00.

The synaptic weight function w(x — y) defines the strength of the synaptic connections
in terms of the distance between neurons at =z and y; the integral term effectively sums over
the inputs to x from all neurons connected to it, weighting them by w. We assume that
w € C®(R,R) is even-symmetric with a bounded integral over R and satisfies w(0) > w(x)
for all x # 0 with w(z) — 0 as © — +00. The weight functions are either excitatory (w(z) > 0)
or have Mexican hat form (locally positive, laterally negative), e.g., by taking o; > 0. and
w; < w, for w in (2.1). In general, we take w, I € C*°(R,R), and, for numerical calculations,
we take w and I to be of the form

(2]_) w($) — \/r[ﬁ—ee_(ﬂf/aeﬂ _ \/’lﬁ—ie—(aj/gi)2’ I($) _ IO e_(x/a)2‘
7T0'e 7T0'i
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An even-symmetric, stationary pulse solution centered about x = 0 and having a station-
ary pulse half-width @ > 0 satisfies u(z,t) = n(z,t) = U(x), where

U(z) > k, x € (—a,a), U(+a) =

U(z) < k, x € (—o0,—a) U (a, oo), U(+o0) =
Under the above assumptions and defining W (z fo y)dy, (1.1) becomes
(2.2) Ua(z) = ﬁ (W +a) - W —a)+ 1),

where the profile Uz (z) of the stationary pulse is parameterized by the half-width a which is
determined by imposing the self-consistency condition Uz(a) = k, i.e.,

(2.3) (14+p)s = W(2a) +I(a) = N(a).

This guarantees the existence of a stationary pulse Uz(z) provided it crosses threshold
exactly once. Importantly, it determines the nonlinear dependence of the half-width a on all
other parameters, particularly the input strength I,.

In the case of zero input (I, = 0), Amari [1] showed that a network with a Mexican hat
weight function can support a stable/unstable pair of bumps over a range of thresholds k.
However, the network here is contrasted with that of Amari in that stability of the stationary
pulse additionally depends upon the dynamics of the adaptation variable n. In particular,
as we shall show, if v < p with I, = 0, all stationary pulses are unstable. Stable stationary
pulses in the scalar model of Amari extend to this model only in the case that v > p, which
does not produce Hopf bifurcations. Therefore, we assume that the network operates in the
v < p regime, and, consequently, in the absence of any input, there are no stable stationary
bumps.

Figure 1 illustrates typical existence curves for stimulus-induced (I, > 0) bumps in the case
of the Mexican hat weight function (2.1) relating the half-width a to I, using (2.3). Reflecting
the graph in Figure 1(b) across the line a = I, produces Figure 1(c), which alternatively
illustrates the dependence of I, on the half-width a, a relationship we denote by I,(a). This
alternative perspective turns out to be useful in both the linear and nonlinear analyses of the
Hopf bifurcation.

We now determine an important relationship to aid the stability analysis in section 2.2.
Consider I, to be dependent on a as in Figure 1(c), and differentiate (2.3) with respect to a
to obtain

d _ _ _ _ = ! /= _
0= [W(za) +1(a)] — 2w(2a) + I.(a) (' (@) + I'(a) G(a).
This implies that

I'(a
/(2 N'(a) . . '—’(L
(2.4) Ii(a) = — G0 where N'(a) = 2w(2a) + I,(a) G'(a) .

Since G(a) > 0, then I/(a) > 0 implies that N’(a) < 0 (and vice-versa), which allows us to
relate the geometry of the curves in Figures 1(c) to stability condition (2.14).
Note that, to avoid confusion with notation, we equate I'(x) = I,G'(z) = I,(a)G'(z).
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Figure 1. Bifurcation curves for the Mexican hat weight function illustrating the dependence of the station-
ary pulse half-width a on I, in (a) for p < v and in (b) for v < p. Black (gray) denote stability (instability)
of the stationary pulse. SN denotes a saddle-node bifurcation, and He and He denote Hopf bifurcations with
respect to the sum and difference modes, respectively. The graph in (c) is that of (b) reflected across the line
I, = a. The Mezican hat weight function w(x), inset in (c), is given by ae =1, 0e = 1, a; = 0.4, s; = 2. Other
parameters are Kk = 0.3, p =1, v = 0.025, 0 = 1.2.

2.2. The linearized operator Mz and its spectrum. The linear stability of a station-
ary pulse Ug(z) with half-width @ is studied by expressing u(z,t) = Ua(z) + ¢(z,t) and
n(z,t) = Uz(x) + 1 (z,t), where ($, 1)) represents a small arbitrary perturbation to the pulse.

Expanding (1.1) to first order in (¢, )" leads to the formal linearization

[e.e]

%(g;,t) = —p(x,t) — pi(x,t) + /_Oow(a: —y) H' (Ua(y) — k) ¢(y,t) dy,

199 - .
2. - = — .
@5 %1 = i) + ¢l
Accordingly, we consider solutions of the form @(z,t) = eMp(z) and ¥ (x,t) = eMip(z), with
(p, )t € @ i, where the Hilbert space /# = £?(R,R?), which denotes the set of
Lebesgue square integrable functions f : R — R?. The integral is reexpressed using

dH 0z —a) O(x+a)
20 (s =) ) = S+ ey

leading from (2.5) to the spectral problem

o =i = [0 T(7)+ (57)

where ¢ = (p,9)" and Ng is a nonlocal spatial operator defined by

(Na)(@) = /R (i%?jﬁ + ﬁ%:;)‘)w(x —y) e(y)dy.
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(a) sum mode Q:r—z (z) (b) difference mode Qg ()

Figure 2. Spatial modes QF (solid curves) for the linearized system (2.5) with profiles Q= (z) given by
(2.11)—(2.13). Dotted graphs indicate the components w(x +a) with a = 1.

We write the subscript in Mgz to express its dependence on the pulse half-width a which is
important in the analysis of the bifurcation. Since ¢ (z) = ( )\j’ru)gp(ac), the spectrum is then
determined by solutions (A, ¢) of the equation

(2.7) (A Tl A”—fy) o(z) =

where U (-a) = —U.(a) > 0. From (2.2) the spatial derivative U%(a) is given by
(2.8) W.(a) = L (I’(c‘z) —w(0) + w(2a)) <o0.

1+p

Essential spectrum. The essential spectrum is composed of A = A7, where

(2.9) X =314 v) £ 3/ (1) — a1+ p).

Associated with it is the infinite set of functions ¢(x) = v ¢°(z) which are constructed as
products of any scalar function ¢°(z) € £%(R,R) that vanishes at # = 4 a, with either of the
eigenvectors v of the matrix M,, where

Since Mj is a closed operator and A] are isolated points of the spectrum with infinite geometric
multiplicity, it follows that A5 belong to the essential spectrum of Mz [54]. Moreover, the
essential spectrum plays no role in instability since fRe{)\j[} < 0.

The point spectrum and the spatial modes Q; Comprising the point spectrum are
two pairs of eigenvalues X, X, each corresponding to one of the two spatial eigenmodes
OF € Z%(R,R) of the linearization about the stationary pulse which are illustrated in Figure 2.
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e The sum mode Qg has eigenvalues \ = )\1 which are given by
0.(@) = (14+v)— (1+p)T,(a),
-0,+,/02-47 a) — _ -
(2.10) ) = =V T,(@ = v(1+p) (1 I, (a)),
O

o a(@)
@ = w(0) —w(2a) +

(@)

and correspond to the eigenfunctions ¢ = vi(x), where vi(z) = QF(x) 0] and

(2.11) O () = w(z —a) + w(z +a), ot = (1 o V) .

e The difference mode Q, has eigenvalues A = A\, which are given by
©_(a) = (1+v)-(1+pTl_(a),
— —0_+,/02-47_ a) =
(2.12) X.(@) = — : T(@) = v+p)(1-T(@),

r(a) = e ) -
w(0) — w(2a) + |I'(a)|
and correspond to the eigenfunctions ¢ = v (z), where vy (z) = Q7 (x) v, and
2.13 Q, a a o= (1 —2—)
(2.13) a(r) = wlx —a) —w(x +a), 'ui—( )\;—i—y) .

Note that QF (x) is an even function and Q7 () is an odd function since w(z) is even.

No input (I, = 0). The difference mode §); has eigenvalue A\, = 0, as aresult of I'"_ =1,
reflecting the translation invariance of the system. The other eigenvalue for the difference mode
is positive for p > v and negative for p < v. A stationary pulse is therefore always linearly
unstable in the case p > v. For p < v, a stationary pulse, with half-width a, can be linearly
stable only if w(2a) < 0 which occurs only in the case of the Mexican hat weight function
(w(2a) < 0 = I', < 1). Also, since p < v, it is not possible for a stable stationary pulse to
undergo a Hopf bifurcation.

Excitatory inputs (I, > 0). The input I(x) can stabilize a stationary pulse by moving
all eigenvalues into the left half-plane. A stationary pulse is linearly stable when )\1, A, <0,
which occurs when I' ., I'_ < 1 and ©_,,0_ > 0. Since I'_ < 1 is automatically satisfied, and
©,,0_ > 0 are equivalent to I',,T_ < (1 4+ v)/(1 + p), linear stability of the stationary pulse
reduces to the conditions

1+v
<1 ifv> and r,r- < —  ifv<op.
+ p + 1+, p

These conditions translate in terms of the gradient |I'(a)| to
(2.14) v>p: |I'(@)| > Ds(a) = 2w(2a) — N'(a) <0,

£2) 0 (@) + 2w(2a w(2a
(2.15) v<p: ‘I/((_L” > DH(C_L) _ (1+u)Q¢j( )+2 (2 ), (2 )>0,
() Qala), w(2a) < 0,
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(a) breather (b) slosher

Figure 3. Breathing and sloshing pulses arising from destabilization of different spatial modes in a Hopf
bifurcation of a stationary pulse solution as the input amplitude I, is decreased. (a) even-symmetric breather
arising from the destabilization of the sum mode Q2 (z) for the parameters I, = 1.9, w; = 0.0, p = 2.75, v = 0.1,
k = 0.375. (b) Asymmetric breather, or slosher, arising from destabilization of the difference mode Q7 (z) for
the parameters Io = 1.5, w; = 0.4, 0; =2, p = 2.6, v = 0.01, kK = 0.35. Parameters common to both cases are
oc=12,we =1, 0e = 1,7 = 1. Yellow indicates superthreshold activity; light blue denotes the firing threshold k.

where N'(a) is given in (2.4). We no longer necessarily have a 0 eigenvalue due to the
loss of translation invariance of the stationary pulse. A pair of complex eigenvalues crosses
into the right half-plane when |I'(a)| = D;(a), which determines the Hopf bifurcation point
(@,I,(a)) = (ay, I2). In contrast to [33, 11], when w is a Mexican hat, the fact that w(2a) < 0
introduces a new case in (2.15) wherein it is additionally possible for the difference mode Q7
to lose stability in a Hopf bifurcation of a stationary pulse Us. In particular, at the bifurcation
point @ = ay, the sum mode 7 destabilizes if w(2a,) > 0, while the difference mode Q7
destabilizes if w(2a4) < 0. A loss of stability of the sum mode Qg gives rise to the expanding-
contracting type of breather which commonly occurs in this model [33, 11]. Interestingly,
destabilization of the difference mode Qg can give rise to a different type of stable periodic
solution which oscillates with a time-periodic side-to-side motion. We refer to such localized
periodic solutions as side-to-side breathers or sloshers due to their motion which is illustrated
in Figure 3(b).

Finally, we show how the geometry of the solution branches in Figure 1 relates to stability
condition (2.14) using the relationship identified in (2.4).

Case A (v > p). From (2.14), a stationary pulse Uz is stable when N'(a) < 0 and unstable
when N'(a) > 0. Equation (2.4) then implies that stable pulses occur on branches along
which I/ (@) > 0, while unstable pulses lie along branches where I (a) < 0. (We mention that,
although no stability results are affected, there is a minor error in the analysis of [33] that is
corrected by this analysis. The difference is in the derivatives I’ (a) and I'(a).) Recall that
Figure 1(c) graphs the existence condition from the alternative perspective of the dependence
of I, on the half-width a. Stability of the branches is determined by the slope of the tangent
at each point. A saddle-node bifurcation occurs at a = agsy when I/(a) = 0, i.e., when
|I'(@a)| = |I,(a)G'(a)| passes through Dgy(a), with the vanishing of the real eigenvalue X'.
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(Note that w(2asy) > 0 for N'(asy) = 0.) Hence, if v > p, then the right branch in
Figure 1(c) is stable and the left branch is unstable for all a.

Case B (v < p). At p = v, a pair of zero eigenvalues suggests a codimension 2 Bogdanov—
Takens bifurcation. As v decreases from p, a Hopf bifurcation point emerges from the saddle-
node point and traverses along the branch that is stable for p < v, destabilizing the segment
from the saddle-node to the Hopf bifurcation points.

3. Nonlinear analysis of the Hopf bifurcation. We analyze the nonlinear stability of
a stationary pulse in (1.1) near a Hopf bifurcation by two approaches: in section 3.3 by
the method of multiple scales and amplitude equations and in section 3.4 by projection onto
the center manifold which is approximated to second order. This provides the framework
for studying the dynamics of the periodic solution bifurcating from a stationary pulse in
a neighborhood of the Hopf bifurcation point. As the two approaches use a related set of
operators arising in the expansion of the dynamical system about the stationary pulse Uz (x),
we begin by collecting a variety of results in sections 3.1 and 3.2 that are used throughout
sections 3.3 and 3.4 to calculate the normal form coefficients and bifurcation formulae for the
Hopf bifurcation. To streamline the exposition, the core calculations are collected separately
in Appendices A-E. The analytical results are then compared with numerical simulations in
section 3.5 demonstrating strong agreement regarding the direction of bifurcation and whether
the bifurcation is sub/supercritical.

3.1. Preliminaries. We consider the firing rate model (1.1) in the presence of a localized,
excitatory input inhomogeneity I(x), which we reexpress as

%(x,t) = —u(z,t) — pn(z,t) + (F(u))(:p,t) + I(x),
(3.1) Lo wt) = ulet) — e,

where the nonlinearity F'(u) is given by

(F(u))(z,t) = (w * H(u— /ﬁl)) (x,t) = / w(z —y)H (u(y,t) — k)dy.

R
We assume the parameters of the system are such that (3.1) supports a stable stationary
pulse (Uz(z),Us(x)) with Uz(x) as given in (2.2). In particular, we consider the bifurcation
parameter I, in a small neighborhood of a Hopf bifurcation point, which is taken to occur at
(@, I,) = (ay, 1), and consider the evolution of an arbitrary, small perturbation ¢ = (p, )"
to the stationary pulse (u[-l, UC—L)T by setting

(3.2) (1) = () Uala) + @la.t).

Since Taylor expansion extends, in the sense of distributions, to the Heaviside function and the
d-function [29], we may formally express the nonlinearity F'(u) in terms of a Taylor expansion
for small ¢ about the equilibrium u(x,t) = Us(x), i.e.,
F(u)=wxHUz - k) + wx [§(Usz - K)¢]
+qwx [0(Us-w)Q* ]+ fws [§"(Us - k)*] + O(p").
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Consequently, the perturbation ¢ evolves according to

(3.3) %—f = Ma + 47 Ba (¢, @) + 31 Ca(o, ¢, ) + O(ll9l"),

where the first order term is given by the linear operator Mg,

o = [0 2] (@) (7P

and the second and third order terms are given by the multilinear operators
w [6(Uz — K) @2 wx [6"(Uz — K) @3

While in (3.3) we treat the input amplitude I, as the bifurcation parameter for fixed
v, p, K, 0, it is directly related to the stationary pulse half-width a, through condition (2.3),
and therefore both parameters, simultaneously, control the bifurcation. However, since a is
explicitly present throughout the equations, it is more mathematically convenient to treat
the bifurcation as being controlled solely by the pulse half-width @ and, instead, to view
the input amplitude I, as being dependent upon a, thereby recognizing a single bifurcation
parameter for the higher order analysis. This is appropriate in the neighborhood of a Hopf
bifurcation point (a, I,) = (ay, I}*) that is sufficiently far from any other bifurcation point, as
the relationship between the two parameters can be expressed as one-to-one. The relationship
between I, and a in the vicinity of the Hopf bifurcation point is approximated in Appendix A,
and we occasionally write I,(a) to express this dependence.

3.2. Operators M,,, B;,, C;,, and W/, at criticality (& = @5,). In this section, we collect
the expressions and properties for the stationary pulse Uz(z) and the operators Mg, Bz, C;
evaluated at the critical point @ = a,. These are the primary operators common to both
the amplitude equation and center manifold reduction. Important results for inner products
involving these operators are also summarized. As the calculations are rather involved, the
details are collected in Appendices A-E.

Derivatives of the stationary pulse Ug. The spatial derivative U (z) of the stationary
pulse at the critical point (a, I,) = (ay, I2*) of the Hopf bifurcation appears ubiquitously in
the various operators and is given by

(3.4) W,(z) = LUg,(v) = ﬁ (w(x +ay) —w(r — ay) + I G’(g;)).

The pulse profile U;(x) is even in x, and we define the symbol i, |, where

= %ufm(x) o :‘_u%‘
r=ay T=—-ax

‘UM = _%U@H(x)

since |U7,, (+ay)| appears frequently throughout the analysis. Higher order derivatives of the
stationary pulse are defined and collected in Appendix A.
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Linearized operator M,, and the critical spatial eigenmode 2. The linear operator Mgz
at the critical point a = a, is denoted by

o= = [ 7)(2)057)

where the nonlocal spatial operator N;, is expressed as

(o)) = [ (- T Yt — ) et

| |3

The operator My, has a pair of imaginary eigenvalues A, A, where \ = iw,, with their respective
eigenvectors v(z),v(r) € H# @ iH = L*(R,C?) given by

1
(3.5) Myv = iw, v, v(x) = < e ) Qx),
where v < p and the Hopf frequency w, is
wo = \/p— ).
Q denotes the critical spatial mode for the Hopf bifurcation which satisfies
NuQz) = (1 +v)Qx).

From (2.11)—(2.13), there are only two spatial modes, and we introduce the notation

a=ay

In the case that the sum mode € = ), becomes critical in the Hopf bifurcation,
(3.6) Qi (z) = w(z—ax) +w(z+a), (SUM MODE)
whereas if the difference mode 2 = €)_ becomes critical,

(3.7) Q (z) = w(z—ay) —w(z+axy), (DIFFERENCE MODE)
and, whichever mode €2 becomes critical in the bifurcation, it satisfies

(3. Q) = (1+v)e .

We reiterate that destabilizing the sum mode €2, leads to the expanding-contracting breather,
whereas the difference mode €)_ leads to the side-to-side or sloshing breather in a Hopf bi-
furcation of a stationary pulse. Note that the + notation for denoting the dependence of
expressions on spatial modes €2, is often suppressed to €2 in equations until it becomes rele-
vant to distinguish.
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Adjoint operator M7,. Defining the usual inner product on JZ @ .7 as

2
(g.p) = ;/R i(z) pi(z) d,

where p = (p1,p2)", ¢ = (¢1,¢.)", we proceed to calculate the adjoint operator Ms,.
The adjoint operator M, satisfies (g, My, p) = (M},q,p) and is given by

(3.9) Mg = [:; _VV] <z> + (N:SSD)’

where

s MNx—a MNx+a
(3.10) N, ole) = <( o) | o *,’“) o= ety
‘un‘ ’_un R

The operator N, is formally defined in the sense of distributions and arises as follows:

(o (50)) = Lo [ (S5 5o

= [ () [ty - o)) do| ) do

where the even symmetry of w is used. Since w € C*°(R,R) and the J-functions have compact
support, the exchange of the order of integration is permissible [73].

Nullspace of the operator M, + iw,I. The two approaches in sections 3.3 and 3.4 involve
the adjoint eigenvectors y, y, associated with the adjoint operator M;,, where

(3.11) M,y = —iws y.

Due to the appearance of the d-function outside of the integral in (3.9)—(3.10), we consider
the solution y(z) in a weak formulation of (3.11) given by

(3.12) <y, (M ion)*u> ~0 for cach u € D(R) = C°(R, C?).

Depending on which of the two spatial modes Q(x) = Q. (z) becomes critical in the Hopf
bifurcation and using w? = v(p — v), solutions of (3.11) are of the form

(3.13) y(x) :g(_(lii%»A(x), ¢ = m <1-z‘pafy>.
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¢ is a constant chosen so that <y, 'v> = 1, and the function A(z) satisfies the equation
(3.14) (14+v)A(z) = N;,A(z).

There are various ways to solve (3.14), and, in Appendix D, we demonstrate one such method,
applying Fourier transforms to construct the solution. The solutions of (3.14) depend on which
eigenmode (), goes critical in the Hopf bifurcation.

In the case that the sum mode €1, goes critical,

Ay (z) = 6(z—aw) +6(z+ax), (SUM MODE)
whereas in the case that the difference mode 2_ goes critical,
A (z) = §(z—ay) —6(z+ay). (DIFFERENCE MODE)

Also, it is straightforward to show by substitution that the above solutions A, satisfy the
weak formulation of (3.14).

Higher order terms B;, and C,, at criticality. The methods in sections 3.3 and 3.4 involve
the operators Bs, Cz at the critical point @ = a,, which we denote By, C;,. The subscripts +
correspond to the spatial mode €2, that becomes critical in the Hopf bifurcation, with + and
— denoting the sum and difference modes, respectively.

The bilinear operator Bg,, for ¢ = (p, )" € J was calculated using (E.1) to be

(315)  Bu(e,¢)(x) = (BC—LH (6. ¢)) () = < (w# [5/(uﬂo— /i)cpﬁ])(a:))
— (;) /R 5’<UH(y) - n) w(z —y) p*(y) dy

() [t . ez

The trilinear operator Cg,, for ¢ = (p, )" € A was calculated using (E.2) to be

(3.16)

Cou(p. b, 0)(z) = (CaH (), b, ¢))($) _ < (w = [5//(uH0— n)(pi%])(x))

:<(1)>/R5”<uH(y)—n)w(:c—y)so?’(y)dy

- () L)

For either eigenvector v(x),v(xz) of My, where v = (vy,v,)", we have v, = v, = Q(z).
Consequently, for different permutations of ¢ = v, v, it follows that

W,y dy|  W,(y)

1 d [w(:c —y) sog(y)”dy‘

Bi(v,0) = By(v,9) = By(v,v) = Bu(0,0) = (}) Su(a),
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where 3, (z) is even for either mode 2 = Q. and is given in (B.1) in Appendix B. The relevant
inner products involving B,, with v, v and adjoint eigenvectors y, 4y are

<y7BH(va)> - <y7BH(U71_J)> - <y7BH(Il_)71_J)> - C/RA:l:(x) 2:i:(x) dr,
<’I[,BH(’U,’U)> = <@7BH(U7'E)> = <Q7BH(T)7'E)> = C/RA:l:(x) 2:i:(x) dx,

2% (ay), SUM MODE
[ A i@ = e ( )
R 0, (DIFFERENCE MODE)

where ¥ (a4) is given in (B.2) in Appendix B and y = (v, y,)" with y, = (AL (x).
We express Cy, ('u, v, ’l_J) in terms of A(x), which is given in (B.5) in Appendix B:

Cy (v,v,ﬁ)(m) = <é> Ai(z).

A, (x) is an even function in the case of the sum mode € ; conversely, A_(x) contains both
even A° (x) and odd A° (x) components in the case of the difference mode §)_.

2C A (ay), (SUM MODE)

(y, Cx(v,v,0)) :C/IRAi($)Ai(x)d$ — {

20 N° (ay). (DIFFERENCE MODE)

3.3. Amplitude equation for the breather. We start by repeating (3.3) for the evolution
of the perturbations ¢(t) € s about the stationary pulse Ug:

(3.17) 26 =Mapp+ 5Ba(¢. @) + 3 Ca(, 8, 0) + O (||#]]*).

Let Ai(a) be the pair of complex eigenvalues becoming critical with all other eigenvalues
lying in the left half-plane. The bifurcation parameter I, is directly related to the stationary
pulse half-width a, and, if the Hopf bifurcation point lies sufficiently far from the saddle-
node bifurcation point, a restriction can be used locally in which a and I, are in one-to-one
dependence. We then express deviations of (a, I,) from the bifurcation point (G, I?*) in terms

of the small parameter € as

a = ay + o€, I, (@) = I + ae’ I (a,) + O(eh),

where I/ (ay,) is calculated in Appendix A. The constant o« = +1 is introduced to allow for
the limit cycle to appear on either side of the bifurcation point and remains undetermined at
this point. Note that this expansion is done a priori in the case of a Hopf bifurcation since
inclusion of the odd powers of € in the expansion typically results in the condition that the
corresponding coefficients must vanish according to the Fredholm alternative. However, in
some cases odd powers may be present [43].

Accordingly, we expand the operators Mz, Bz, and Cj to relevant order as

Mg = My + ae? M, + O('), Ba = By + O(€%), Ca=Cy+0O(e),
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with A(a) = iwo +ae? X, +O(e?), where M,,, By, C;, are defined in (3.5), (3.15), (3.16). M,
and A, are calculated in Appendix A. The standard approach for computing the amplitude
equation for a Hopf bifurcation uses two-timing effectively to separate out the dynamics on
the center manifold which are taken to evolve on an independent, slow time scale 7 = €%t that
is introduced. This results in the operator d; — 0y + €2 9;. Finally, we expand ¢ = (¢,4)" in
orders of € and include its dependence on T:

(., t,7) = ¢, (x,t,7) e + Py(x,t,7) €% + Py(x,t,7) ¥ + O(e').

Under these expansions the system (3.17) becomes

<§t+e §><¢16+¢26 + e + - >

:(MH+a€2M1+"')(¢1€+¢262+¢363+---)
+ @ [1Bu(00,9))| + € [Buldi8) + 3rCuld, 01,0 + O(e):

Defining the nonlocal, linear spatiotemporal operator L, ¢ = (% — MH) ¢, we express the
hierarchy of equations according to the order of € as

(3.18) O(e) : Lyg, =0,
(3.19) O(®) © Lug, = 5 Bu(, ¢,),

(3.20) O(€) © Lut, = Bu(¢1, 8,) + 57Cu(dy, 01.0,) — 00,

or

By separation of variables, the nondecaying solution to the O(€) equation is given by

¢, (2,t,7) = 2(1)v(w) ™! + 2(7) B(x) T,

+aM, ¢,.

where v(z) is given in (3.5), and the complex amplitude z(7) of the oscillation is ultimately
determined by the O(e*) equation.

Continuing to solve the equation hierarchy requires applying the Fredholm alternative to
ensure solvability of the equations. We define the following inner product for tlme perlodlc
functions g,p € Z*([0, i:] x R, (C2).

(a,p), /wo/qzzntpzxt)da:dt

Note that the slow time 7 is not included in the inner product. The adjoint operator Lj, is
found using the relation <L*Hq, p>27r = <q, Ly p> and is given by

Lo = — —¢ M.,
with M3, defined in (3.9). The null space of L%, is spanned by Y,Y, where
y(x7 t) = y(x) eiWOtv 5;(%7 t) = @(‘T) e et
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with y given in (3.13) for the sum and difference modes. At O(¢?), the Fredholm alternative
guarantees solutions to equation (3.19) if

(Y. Bu(9:6))) =0,

I

+i2wot and eO:

which is naturally satisfied as By (q’)l, ¢1) produces only terms with e
By (¢, ¢,) = 32° "By (v,v) + 22By(v,0) + 32° e "B, (v,0).
Consequently, we expect solutions to the O(e*) equation (3.19) to be of the form
¢, (x,t,7) = %zz et by (2) + 22 by (z) + %22 e 2oty () + 9, (2, 7),
which, when substituted into (3.19), results in the O(e?) equations for h,, hyy = hos,
(2woi1 - MH) hao(2) = By (v, v) (2),
(3.21) My by () = By (v, ) (2),
<—2woz'1 - MH) hgy(x)

Il
oS}
x
—
Sl
Ql
S—
—
I
:_/

by the linear independence of e*??“°t 0 The upright I denotes the identity operator. In

Appendix C we solve (3.21) for this specific case and for a general right-hand side. This
determines the solution ¢,(z,t) at O(e?), which is present in terms at O(e*). Note that
the coefficient 19, which is undetermined at this order, does not contribute to the amplitude
equation. Equations (3.21) may be compared with (3.32) in section 3.4 which arises in the
center manifold reduction of the dynamical system (3.3). As we show in Appendix C.3, the
additional terms present in (3.32) ultimately do not contribute to the coefficient ¢, (0) at third
order in the Poincaré normal form.

At O(€?), the amplitude equation arises from the solvability condition for (3.20) whereby
the Fredholm alternative requires

(3.22) (9. Bu(91. ) + 4 Cu(01.81.8)) — b, +aMig]) = 0.

27

These terms may be expressed in terms of the following spatial inner products < , > which do
not vanish automatically under the inner product:

<y, BH(¢1,¢2)>2 - z\zy2<y, By (v, hyy) +%BH(T2,h2O)>,

™

(9, 5l 600)) = 22 (v, 1Cu(v.0.9)),

<y7 [_ %¢1 +OZM1¢1]>2W = - <y,v>g—j +04<'y, M1'U>Z = — g—i + a) z.

The solvability condition (3.22) results in the complex amplitude equation

d
(3.23) & al z + Xz|z|?,
dr
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commonly known as the Stuart—Landau equation, and X the second Landau constant. The
calculation of \; = o, + iw, = (y, M,v) is collected in Appendix A, and the coefficient X is
expressed as

(3.24) X = <y, 10,0 (0,0,) + By (v, 1) + 1By (v,h20)>

(3.25) = ¢ | As(@n) + 2Z5(an) + = (an) |-

A+(ay,) is calculated in Appendix B, and Z°:(ay), 2% (a,), which depend on X+(as,), are
calculated in Appendix C.2. Additionally, the coefficient X identically matches the related
coefficient ¢, (0) in the Poincaré normal form in (3.36).

Taking z = re? and decomposing X = Xge + i X1m, (3.23) can be expressed as the pair
of real equations

P = aor + Xpe 1, 0 = aw, + Xim7?
which admits the periodic solution (r,6) = (o, 0,(7)), with arbitrary phase ¢, where

01
|foe| ’

9 9 2
ro = 0o = 7 + @, w; = aw;, + X1, 75,

The limit cycle appears for sgn (ag;) = —sgn (Xge ) implying that @ = —sgn (Xge/0,). The
bifurcation is supercritical producing stable periodic orbits if Re X < 0 and is subcritical
producing unstable periodic orbits if Re X > 0, where

A (@) + 255 (ay) + Re {(1 - 5 Ei(aﬂ)}
49 (ay) ’

Xpe = ReX =

Re ¢ = (494 (ay))"Y, both Ay(a,) and Z¢(ay) are real, and =%(a,) is complex. “Super-
critical” is taken to mean that the bifurcation transfers stability from an equilibrium to the
bifurcating limit cycle. The sign of o determines on which side of the bifurcation point the
periodic orbit appears. Note that in section 2 it was found that the stationary pulse loses
stability as a (and I,) is decreased through the Hopf bifurcation point, implying that g, < 0.
If the bifurcation is supercritical (Re X < 0), then o« = —sgn(Xge/0,) < 0, indicating that the
stable periodic orbit appears for a < a.
Finally, the small amplitude periodic orbit can be expressed to O(e) as

(50) m (D)atafe) + e (rowlay e =+ 1 pp(a) (oot

from ¢ ~ ¢, in (3.2) with 2(7) = 7, e“'™ and 7 = ¢?t. Expressions for w,, v,v are given in
(3.5), and Uy () is calculated from (2.2) with @ = a,,. From the expression for v, the periodic
orbit, to lowest order, can be seen as a time-periodic modulation of the profile of the spatial
mode . (x) about the stationary pulse, naturally reflecting the geometry of the breathers
and sloshers exhibited in the numerical simulations.
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3.4. Center manifold reduction. We study the evolution of perturbations ¢ = (p, )"
about the stationary pulse U in (3.3), where ¢(t) € 7 = £*(R,R?). We consider initial
conditions and orbits belonging to .7 N C™(R,R?) for ¢ > 0 as classical solutions of (3.3). We
shall proceed by assuming that there is a center manifold theorem for this infinite-dimensional
dynamical system, which perhaps could be demonstrated through an extension of [90]. In
particular, we shall assume there exists a local, two-dimensional invariant manifold W¢ C
N C™"(R,R?) for (3.3) that depends on the parameter a, is locally attracting, and is tangent
at the bifurcation point a = a4 to the critical real eigenspace T¢ of the equilibrium. The flow
restricted to this locally-defined manifold W¢ is described by a pair of ODEs which exhibit a
Hopf bifurcation, with a unique limit cycle appearing on one side of the bifurcation point. In
particular, it is assumed that the linear operator Mz has a pair of complex eigenvalues A, A,
where A(0) = iw, and % ReA(@ — @y)|a—ay # 0. Ordinarily, the periodic orbit may appear
by either increasing or decreasing a through the bifurcation point a,, and this is determined
by the expansion for a in (3.38).

There are two spatial modes €, (described in sections 2.2 and 3.2), either of which
may form the two-dimensional critical eigenspace for the Hopf bifurcation, and we assume
throughout that, for a sufficiently large neighborhood of the bifurcation point a,, only one
eigenmode becomes critical with all other eigenvalues in the left half-plane. The critical
eigenvectors v,v € 7 @ 1.7 of the linear operator M,, determine the critical real eigenspace
T. = {zv +zZv: z € (C} = span{fRe v, Im v}. Importantly, the direction of bifurcation is
governed at the critical point a = a,, by the third order coefficient ¢,(0) in the Poincaré nor-
mal form for the expansion of (3.3) about the stationary pulse (related to the first Lyapunov
coefficient £,(0)). Since we need only to calculate the critical center manifold W5, = Wg_ , we
consider (3.3) at @ = a,, where ¢ = (¢,v)" and the operators M,,, B, C;, were introduced
in section 3.2, to obtain

o¢

(3.26) 5 = Mud + Bu(¢,6) + Cu(¢,6,6) + O(I1l").

My, is not self-adjoint. (My, — iw.I) and (M, + iw,I) have one-dimensional nullspaces and
are Fredholm operators with index 0. Consequently, we have the orthogonal direct sum

decomposition
H D i = Ran(MH— ion) &) NuI(M;—HwOI),

where Nul(ﬁ]\/[;:—i— ion) is spanned by the adjoint eigenvector y defined above in (3.13). We use
this decomposition and follow the approach of [43] to project the system, at the bifurcation
point @ = a4, onto the critical center manifold W¢,.

Since WY, is tangent to T, we define the real subspace T, where

Ts={p e :(y, ¢) =0} C Ran(M;,— iw.]),
and express the center manifold WY, as the graph of a function m : . =2 C — Tj:
(3.27) m(z,z) = %w20z2 + 2w, 2z + %w0222 + O(J2]).

The point zv + zo in T, identifies with the point m(z, Z) on the center manifold, where the
second order coefficients w,y, w,;, wy, € Tg are yet to be determined. Next, we define the
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projections Pg and P, on the real space S by

Psp = (I - P)0,
P = <y,¢>v+<y,¢>'ﬁ = 21Re{<y,q‘)>'v}

to put (3.26) into a form typically assumed for center manifold theorems. The critical center
manifold WY, lies in Ty and the projection Py leaves T invariant; the projection P. maps
T+ into the critical eigenspace T, defining new coordinates. Although P is not orthogonal,
Ran(Ps) N Nul(Ps) = @ holds, and we have the nonorthogonal direct sum decomposition
A = Ran(Ps)® Nul(Ps). Thus, by setting z = (y, @) and z = (y, ¢), we may decompose any
vector ¢ € J uniquely as

Psp = s(t) € Ty

#) = s0) + A v +20), b = AHv+i)e € T

Projecting (3.26) onto these subspaces, the dynamical variables z and s evolve according to

d .
(3:28) = =iwez + (y, 4Bu(9.9)) + (v, 4Cu(@.6.9)) + O(l@]l").
d
= Mus + Bu(@.¢) — (v, 5Bu(6.9) ) v — (7. 5Bu(.9) ) o+ O(]]").
We then rewrite system (3.28) in terms of the coordinates z,z on T, and s € T as
dz . 1 2 - 1 =2
I = Wwoz + orRxnz" + Riuz2Z + 7Rz
(3.29) + [%RHZQE + Ri(s)z + Ryp(s) Z} + o,
d
(3.30) d—: = Myus + [%H20z2+H11z2+%H0222] + O(I21*) + 0(I=l]1s]),

where the coefficients of the equation in z are given by the inner products

Ry = <y,BH(v,'v)>, R, = <y,CH('u,v,'TJ)>, R (s) = <y,BH(v,s)>,
Ry, = <y,BH(T2,'TJ)>, Ry, = <y,BH(v,'TJ)>, Ry (s) = <y,BH(T2,s)>,

and those for the equation in s are given by

Hoy(z) = Hy(z) = By(v,v)(z) — (9.Bu(vw))v(z) — (3.8x(vw)) v(2),
H, (z) = Bu(v,9)(z) — (y.Bu(vo))v(z) — (8.Bx(ve))v(2),

all of which involve lengthy calculations that are collected in Appendices B and C. Note that
in (3.29) we explicitly list only the terms that generate the resonant term 222 at order O(|z|*)
since other terms at this order will be annihilated in a near-identity transformation to obtain
the normal form.

To restrict the dynamics (3.29)—(3.30) to the center manifold (3.27), we first take

(3.31) s = m(2,2) = twy2® + w2z + 3w + O(|2).
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We differentiate s in (3.31) and use (3.29) for dz/dt to find
ds om dz om dz

T o d&t + 5 A <w20z+w112+~')(—|—z’woz~l—-")

+ (wuz+w022+~-)<—z’w02—|— )

= 12w, w20z2 — 12wo 'w0222 + -
Next, we substitute (3.31) for s into the right-hand side of (3.30) to obtain
ds
dt
These two expressions for ds/dt are equal, and the linear independence of the 22, 2%, 2 terms
yields the following equations determining the center manifold coefficients w,;(x):

2 - -2 2 - —2
- M’H (%wQOz + ’wnZZ “I‘ %wogz ) “I‘ %Hgoz + anz “I‘ %Hogz “I‘ ctt

(Zwoz'l — MH) Wayo () = Hyo(z),
(3.32) ~My, wy () = Hi (),
<—2woiI - MH> Wy () = Hyy ().

Since 0 and +i2w, are not elements of the spectrum of M,,, (3.32) can be solved to calculate
the second order coefficients w,,, w,,, we, € T, for the center manifold. The solution is given
for h;; in Appendix C.2 and completed for w,; in Appendix C.3.

Substituting the results of (3.32) with (3.31) into R,,(s) and R (s), the following three
terms in (3.29) can be expressed, listing only the resonant term z|z|?, as

[%R21Z22 + RlO(S)Z + %Rgl(s)Z] - %Rgal Z|Z|2 —+ s
where the coefficient R, of the resonant term z|z|? is given by

(3.33) RY = <y,CH(v,v,@)> + 2<y,BH(v,wn)> + <y,BH('D,w20)>.

Subsequently, (3.29) for z becomes

dz . _ _ .
(3.34) o = Wz + [%Rzozz + RyzZ + %Rozzz} + 1R Z|Z)2 + -
and describes the evolution of the system on the center manifold in terms of the coordinates z
and z in T,. Finally, it can be shown that (3.34) can be transformed into the Poincaré normal
form (at criticality a = ay,)

d§

= = iwl + a(0)gef + o)

using a near-identity transformation z = £+ O(|{]*) that eliminates all second and third order
terms, save the resonant term &[¢|? [43, 44]. The coefficient ¢,(0) of the resonant term is
expressed accordingly as

(3.35) a(0) = LRE + 2%)@(]%20]%11—2\R11|2—§|R20|2>.
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In Appendix C.3, we show in (C.13) that the expression for ¢, (0) given above in (3.35) may
be further reduced to

(0) = 1 [<y CH(’U,’U,’I_))> + 2<y, B, (v,h11)> v <y, B, (@,hzo)ﬂ

(3.36) =¢ [ Ay (@y) + 285 (axn) + Ei(aﬂ)}

Now, ¢,(0) is identical to the coefficient X in the complex amplitude equation (3.23). The
bifurcation is supercritical and stable periodic orbits bifurcate when Re ¢,(0) < 0, whereas
the bifurcation is subcritical with unstable periodic orbits bifurcating when Re ¢,(0) > 0.
Since Re ¢ = (494 (ay)) " and AL (ay),=S (ay ) are real, it follows that

p—v
Reel(0) = 10 (ay) ’

As(an) + 225 (@) + Re { (1 - |75 1) Z(an) }

where A. (@) is calculated in Appendix B and Z¢ (@), Z%(ay) in Appendix C.2. The first
Lyapunov coefficient ¢,(0), in an associated normal form [62, 46], relates to ¢,(0) by

0,(0) = wioﬂze ¢ (0).

Re ¢,(0) and ¢,(0) are of the same sign and track the direction of bifurcation similarly.

Until now we have concentrated on the dynamical system at the critical point a = a
which is sufficient to calculate ¢,(0). However, it remains to calculate how the bifurcating
periodic orbit and its period depend upon the bifurcation parameter a in a neighborhood of
the critical point. The Poincaré normal form can be expressed as

de

(3.37) =

Ma—a) € + aia—an) gl + o)

and leads to the following general bifurcation formulae [43]. Following Hopf’s convention [45],
the amplitude of the periodic orbit is treated as the small parameter ¢, e.g., by setting & = Eé
and taking é = O(1). The bifurcation parameter a, the critical eigenvalue A\, and the period
T of the oscillation can be expanded in orders of ¢, and from (3.37) it is straightforward to
show for 0 < ¢ < 1 that

Re ¢, (0
(3.38) a(e) = @y +as e’ +-- -, azz—Wg),
T(g)_w_o<1+7-2€ _1_...), 7'2——W—O<Imcl(0)—m32ecl(0)),
M@ — ay) = iwo + N(0)aye? + -+, N (0) = &(0) + iw(0),

where &(0) = o, and w(0) = w,, which are calculated in (A.3) in Appendix A. The formula
for a(e) determines on which side of the bifurcation point @ = a,, the periodic orbit appears
as well as how a varies with respect to the amplitude ¢ of the periodic orbit. Note that these
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expansions may be related directly to those in the approach in section 3.3 by making the
transformation 2 — €2/|a,|. The difference is that e in section 3.3 is defined as the deviation
of the parameter a from the bifurcation point @ = a4, whereas the small parameter ¢ presently
defines the amplitude of the oscillation. Additionally, the largest Lyapunov exponent (real
part of a Floquet exponent) is given by

Be) = 2Re ¢,(0) e + O(eY).

The limit cycle is orbitally asymptotically stable with asymptotic phase if Re ¢;(0) < 0. This
means that the limit cycle x(t) is locally asymptotically stable, and, in some neighborhood
O C S of the limit cycle, each orbit ¢ C O has an associated phase ¢ along the limit cycle
such that ||¢(t) — x(t — @)|| — 0 as t — oc.

3.5. Direction of bifurcation calculation and numerical simulations. The sign of the
real part of the critical coefficient (X or ¢,(0)) determines whether the Hopf bifurcation is
supercritical or subcritical, and the analytically determined expressions in (3.25) and (3.36)
were used to determine the codimension 2 point along a curve of Hopf bifurcations at which the
direction of bifurcation switches from supercritical to subcritical (or vice versa). This predicted
codimension 2 point was then studied in numerical simulations to check for agreement. The
numerics were solved using either an Euler or an improved Euler scheme for the temporal
dynamics with the spatial integral computed using the antiderivative W (x) according to

bn
/ w(z — y)H (u(y, tn) — &)dy = W(z — a,) — W(z — by),
an
where a, and b, track the left and right endpoints of the pulse of activity at ¢t = ¢,,. On each
iteration n, the points a,, and b, are determined by using linear interpolation to identify the
precise threshold crossings z* where u(x*,t,,) = k based upon the two neighboring gridpoints.
This scheme is limited to the case of a single pulse of activity above threshold over the interval
(an,by), but, as a consequence, it is fast and suitable to study the slow dynamics near the
Hopf bifurcation point. Simulations were performed with 1001-2001 spatial gridpoints and
time step At ~ 1072 to 10~*. When the activity is no longer a single bump that is continually
above threshold, the assumptions on the treatment of the integral in the numerical scheme
break down, in which case we instead approximate the integral term by a Riemann sum.
With regard to the analysis in section 3, the input amplitude I, is the parameter used
to control the Hopf bifurcation, and throughout our investigations the equilibrium generally
was found to be unstable for I, < I*. Varying a second parameter can unfold a generalized
Hopf bifurcation with its codimension 2 point marking the point, along a curve of Hopf
bifurcations, where Re X = Re ¢,(0) passes through 0 causing the bifurcation to switch from
sub- to supercritical. The curve of Hopf bifurcations can be determined by simultaneously
solving (2.3) and |I'(@)] = Dy(a) in (2.15) for the critical point (a,l,) = (ay,I?*). An
additional parameter ¢, which we call the switching parameter, can be used to search for
points where Re X = Re ¢,(0) = 0, and we denote such points by (I",<", @,,). This additional
parameter may subsequently be varied in numerical simulations to study the system in a
neighborhood of the codimension 2 point to see if the appearance of the periodic orbit in the
numerical simulations matches the prediction according to the coefficient. Specifically, on the
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supercritical side, we expect the system to be locally attracted to a stable periodic orbit that
grows from zero amplitude at the Hopf bifurcation point, whereas, on the subcritical side, an
unstable limit cycle should be detected in the flow.

We investigated the neighborhood of points where Re X = Re ¢,(0) = 0 vanishes in three
different regions in parameter space. Two cases involved the Hopf bifurcation of the sum
mode using two different parameters to control the switch from sub- to supercritical, and, in
the third case, the difference mode was examined using yet a different parameter. As noted
above, we shall refer to the switching parameter ¢ as the additional parameter controlling
the direction of bifurcation, whereas I, is always used to control the Hopf bifurcation. The
predicted Hopf bifurcation point was checked in numerical simulations by taking the initial
condition to be a small perturbation of the exact stationary pulse solution and determining
the point (I, a) at which the flow switches from inward (toward the equilibrium) to outward.
This may be confounded by an unstable limit cycle surrounding the equilibrium, so various
sizes of perturbation were tested. The oscillations are generally coherent across the domain,
and orbits can be plotted for a fixed spatial point z = 2z, in the (u(wxo,t),q(z,,t))-phase
plane to study the structure of the oscillatory solutions. Although the slosher has a different
orbit structure due to the spatial asymmetry [36], it is nevertheless straightforward to identify
periodic orbits. In all cases, it was determined that the numerical simulations were in strong
agreement with the prediction by the analysis, and in all cases in the supercritical regime it was
possible to demonstrate the existence of a stable limit cycle growing from near zero amplitude
from the predicted Hopf bifurcation point with the amplitude of the periodic orbit decreasing
rapidly near the bifurcation point, as would be expected for Re X = Re ¢,(0) < 0 near 0.
However, since the subcritical side is more varied, we shall describe each case separately. The
descriptions are kept simple for exposition; however, many values of I, and a myriad of initial
conditions were explored in all cases and simulated for a long time. When the bifurcation is
subcritical, it is possible to detect the repelling flow of an unstable limit cycle for I, > I*
(where the equilibrium is stable). This can be accomplished by a mix of using various initial
conditions and solution continuation accompanied by a decrease in the input amplitude I,
incrementally, toward the Hopf bifurcation.

Case 1. The switching parameter was taken to be the input space constant o. The fixed
parameters are p = 2,v = 0.01,x = 0.375,w, = 1,0, = 1,w; = 0,0; = 0. The codimension 2
point was predicted to be (1,0 ", a),) ~ (1.5195,1.0055,0.9445). Taking the system a short
distance in the subcritical region (0 < o), a small perturbation to the stationary pulse
oscillates with an exponentially growing envelope until u(x,t) drops below threshold x across
the domain, which is suggestive of a type II subcritical bifurcation, as illustrated in Figure 4.
After this point, large amplitude relaxation oscillations ensue in a local region about the
input in which the neural field oscillates between super- and subthreshold activity, with the
periphery subthreshold. In this case, the sum mode destabilizes in the bifurcation.

Case 2. The switching parameter was taken to be the strength of adaptation p. The
fixed parameters are ¢ = 2,v = 0.0l,x = 0375, w, = 1,0 = 1,w; = 0,0; = 0. The
codimension 2 point was predicted to occur at (I, p",a),) ~ (2.724,2.856,1.193). Taking the
system a short distance in the subcritical region (p < p'), with I, < I?* so the equilibrium
is unstable, a small perturbation of the stationary pulse leads to a large amplitude breathing
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o
.

I(;H' 10
supercritical subcritical (type I) subcritical (type II)

Figure 4. Illustrative bifurcation diagrams for a Hopf bifurcation to aid the description of the numerical
simulations in section 3.5. Solid black curves indicate stable solutions while dotted gray lines indicate un-
stable solutions. Solutions along the horizontal represent equilibria (stationary pulses), while solutions along
the curves represent periodic orbits (breathers/sloshers) which emerge at the Hopf bifurcation point IX*. The
point S denotes a saddle-node bifurcation of limit cycles where a stable and unstable pair of periodic orbits
emerges/vanishes. Supercritical is taken to mean that stability is transferred from the equilibrium to the peri-
odic orbit.

pulse localized about the input, and, in contrast to the periodic orbit in Case 1, the breather
here is always superthreshold. It is possible to continue the periodic orbit back across the
Hopf bifurcation point where I, > I?*, in which case there is bistability with the breather and
the stationary pulse. The breather extends only a short distance above the bifurcation point
before it vanishes, presumably in a saddle-node bifurcation of limit cycles which is consistent
with a generalized Hopf bifurcation. This is suggestive of a type 1 subcritical bifurcation as
illustrated in Figure 4, and, in this case, the sum mode destabilizes in the bifurcation.

Case 3. The switching parameter was taken to be the threshold for firing x, and the fixed
parameters are 0 = 1.2, p = 1,v = 0.025, w, = 1,0, = 1,w; = 0.4,0; = 2. The codimension 2
point was found to occur at (1), k", a),) = (2.9312,0.2253,2.0691). Taking the system a short
distance in the subcritical region (k < k"), with I, < I* so the equilibrium is unstable, a small
perturbation of the stationary pulse with a lateral bias to trigger the difference-mode leads to
a large amplitude breather with a local region about the input that remained entirely above
threshold. This case is similar to Case 2, i.e., suggestive of a type I subcritical bifurcation (see
Figure 4); however, destabilization of the difference mode leads to a side-to-side sloshing pulse
rather than the symmetric breather. The slosher similarly may be continued a short distance
over the bifurcation point where I, > I** with a similar region of bistability and vanishing in
a purported saddle-node bifurcation of limit cycles.

4. Discussion. In this paper, we have extended the results of [33, 11] in a variety of ways
regarding breathing pulses in the neural field model (1.1). First, we extended the existence
and linear stability of the stationary pulse to the case of a Mexican hat weight function
which changes sign so it is locally excitatory (positive) and laterally inhibitory (negative). In
both cases, the input inhomogeneity precludes the 0 eigenvalue corresponding to the spatial
eigenmode (difference mode) that is associated with the translation invariance of the stationary
pulse in the homogeneous system. Consequently, this permits complex conjugate eigenvalues
if parameters of the system are varied appropriately. Interestingly, the Mexican hat weight
function is capable of destabilizing either of the 2 spatial eigenmodes (sum and difference
modes) of the linearization in a Hopf bifurcation of a stationary pulse in (1.1); an excitatory
weight function, conversely, always destabilizes the the sum mode [33]. Although the change of
sign of the Mexican hat weight function was used in (1.1) to induce the Hopf bifurcation with
respect to the difference mode, we have found that destabilization of the difference mode occurs
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more commonly in other neural field models wherein the weight functions do not change sign,
and we shall report these results elsewhere [36]. This lends support to the notion that (1.1)
serves as a simplest neural field model for developing the nonlinear analysis of a stationary
pulse undergoing a Hopf bifurcation. Moreover, our analysis can be extended to other neural
fields that similarly use the Heaviside firing rate and analogous spatial integrals. The Heaviside
firing rate function is enormously useful for making analytic calculations for special patterns
in neural field models, and, moreover, it can be used in conjunction with a variety of different
neuronal processes, e.g., synaptic excitation and inhibition, synaptic depression, nonlinear
adaptation, etc., to explore different effects on the behavior of the network, which, in turn,
can be composed of populations of different neuronal type.

We have extended the results of [33, 11] further by calculating explicit expressions for the
higher order operators in the Taylor expansion of the dynamical system about the stationary
pulse which exhibit intricate structure from higher order derivatives of the d-function (see
Appendix E). Although the linear stability analysis correctly determines the stability of the
stationary pulse, higher order analysis is necessary to describe the dynamics and stability of
the bifurcating periodic orbit. The nonlinear analysis for the Hopf bifurcation was developed
using the two methods of amplitude equations and center manifold reduction; both were
in agreement and gave rise to various spatial terms involving convolution of the synaptic
weight function w with higher order derivatives of the -function composed with the stationary
pulse Uz. These integrals produce a profusion of terms which are critical to the normal
form coefficients, indicating why neglecting spatial terms in the Amari ODE-formulation could
lead to a discrepancy. The critical coefficients ¢,(0) and X were used to identify points at
which the bifurcation switches from supercritical to subcritical, and the results of the analytic
calculations were found to be in strong agreement with numerical simulations of (1.1) taken
a small distance on either side of these switching points.

The motivation of this nonlinear analysis is to establish the basic framework for a pertur-
bative analysis of the dynamics of the periodic solutions as it provides a representation for the
breather/slosher in a vicinity of the bifurcation. Since the third order terms determine changes
in dynamics of the breather for small deviations from the bifurcation point, additional terms
that influence the dynamics of the oscillations may be introduced at this order to study their
effects on the breather. To investigate interacting breathers, we consider a pair of breathers
positioned a sufficient distance apart so that the strength of the interactions between the
breathers is sufficiently weak to be introduced at third order. Thus, a pair of normal forms
representing the two different breathers can be coupled through weak interaction terms to
provide a framework for studying weakly interacting breathers. As we shall report elsewhere,
we use this formalism to investigate the effects of weak modulatory interactions mediated
by the reciprocal, long-range patchy connections in primary visual cortex which are found to
occur between populations of neurons with similar feature preference [3].

Appendix A. Equations, approximations, M,, and ;. Here we collect a series of calcu-
lations regarding stationary pulses and the operator M,; and A,. Recall that a represents any
stationary pulse half-width for a given set of parameter values. Fixing all other parameters
and taking the input amplitude I, as the bifurcation parameter, a, is the stationary pulse
half-width at the Hopf bifurcation point I, = I’*.
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Higher order derivatives of the stationary pulse Uj. Differentiating (2.2) or (3.4) yields
the following derivatives at criticality a = ay:

2 2 w'(2a,,) + I G"(a
W= ol @) = @) = CCREEC)
Tr=ay T=—-ay p
3 3 w" (2ay,)-w"(0) + I G"(a
uy = %uaﬂ('x) = _%uau(x) = (28) 1(_3 ( H)-
T=ay T=—-ay p

Approximation of I(a). From (2.3), the dependence of I, on a is

k(1+p) — W(2a)
G(a) '

k(1+p) = W(2a) + I, G(a) = I,(a) =

Setting @ = a,, + a, where a is small, we expand I,(a) = I} + a I.(a,) + O(a?), where, from
(2.4), the derivative I/(a) can be expressed in two ways:

d _N'(@) or —2w(2a)

%Io(a) = "C@ - c@m m(1+p)—W(2d)}

I'(a) =

The expression following & differs in that, by reusing (2.3), it is independent of I,.

Useful relationships for various functions. In the following equations, it is assumed that
a > 0 and that I, and a are related according to (2.3). Note, however, that the relation
Qi (ay) = (1+v) [, | applies only to the critical mode.

Qo(-z) =+Q4(x), Uz (-a) Uz(a) = &,
Y, (-z) =[x, (2)], Uz (-a) = ~Ug(a) = |Uz(a)l,
) (-z) =+ (2), Uz (-a) = Uz(a),
Q. (an) (-a) = -UZ(a),
(an) ' )

=
=
I
g
—~
(=)
|
=S
[\
Ql
\:_/
I
o3
Q
—~
l
\i_/

Il
= g
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—~ S~—
[\
S oH
8
~
= [\
Q
hN
S~—
_ =
SR

Calculation of operator M,. We calculate expansions for the operator Mz and its eigen-
value A\(a) that is becoming critical. Let @ be a small perturbation of the critical half-width
a4 so that a = a, + a; then we expand as follows:

Ma = My, + aM, + O(a%), Ma) = X + a)l + O(a%).
From section 3.2, it was shown that M, v = A\,v, where A, = iw,, and we have
<y, MH’U> = X0 = tWo, <y, M1v> =\ =0 + 1w

with M,, 0., w, calculated below. Note that @ = €’ in section 3.3, whereas @ = a,e? in
section 3.4.
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The operator M, is given by

Mo () = - Mg (2)

()& [ L 100 s

d 1 1
= Ny g(a) - [d— |u%(a)|] \ F () \
_ W)

a
s, ]2

where ¥(a) = |U’ )| is given below in (A.2) and N, and N, are computed as

-Nip(z) + — - Nap(a),

|

The relevant inner products for calculating A, are given by

<y, va> = C/RAi(a:) N, Qy(x)de = 2C<Qi(dﬂ)> = %( 'pﬁ,)a

(y, Now) = g/RAi(;p) NoQu(w) do = 4C(Qula) Xilan)) = (1-i:25 ) ilan).

Next, (2.8) implies that |Us(a)| = ﬁ( (0) — w(2a) — I,(a) G'(a)). Subsequently, by differ-
entiating this expression with respect to a and substituting for I/(a) using (2.4), W(ay) can

be expressed as

W) = - @] = (2000 + L@ 6@ L@ @)
=an N”(d) =an
(22) — = (V@) - My S,

where

N, (ay) = 2w(2ay,) + 127G (ay,), NI(ay) = 4w’ (2a;,) + 121G (ay,).
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The subscript # indicates simultaneous evaluation at a = a, and Is(ay) = I} at the Hopf
bifurcation point. This completes the calculation of M;; now we calculate \;.
Calculation of A,. From (A.1) and the above calculations, it follows that

Y(ay) 1
— = N —_— N
)\1 <y7 M1v> |ufH|2 <y7 1’U> + |ufH| <y7 ZU>
(1) [ 2
p—v/ |2 |yl s,
Finally, A; may be expressed as
01 = (D(dH)u Wy = — (pw__ou) (D(dH)u
4 Mo e ®(ay,) = (L+v)? W@, (1+v) O, (@)
" 2 2(an) Q. (axn)

since ( is the only complex quantity in the expression for A\, and [u,| = Q(dH) /(1+v). Note that
this result agrees with the result obtained by calculating X' (@) directly from the expression for
the critical eigenvalue X (a) in (2.10) or (2.12). Additionally, for clarity we mention that in
section 3.4 we use the symbol A(a — a@4) so that A(0) = iw,, while elsewhere we use A(a) with
A(@y) = iw,. This was merely to preserve the use of the symbols ¢, (0) and ¢,(0) in section 3.4.

Appendix B. Calculation of B(v,v), B(v,v), and C(v,v,v). In section 3.1 we express
B(v,v), B(v,v), and C(v,v,?) in terms of the functions ¥(z) and A(z), respectively. These
functions depend on which of the two spatial modes goes critical in the bifurcation, and the two
cases are distinguished by the appearance of +, which corresponds to spatial modes 2 = €),.
Furthermore, these complicated expressions reduce considerably by the useful relations listed
in Appendix A and symmetries of w.

Calculation of B; (v,v) and B, (v,?). From (3.5) the eigenvectors v, v, where v =
(v1,v2)",
satisfy v (z) = v1(x) = Q(z). Hence, from (3.15), for all vi,vs € {v,v},

By (Vla V2) (‘T) = <é> E(.’L’),
where we have used (3.15) and (E.1) to obtain the following expression for ¥ (z):

S(r) - /R[My—aH)Jré(eran)} 0 [_Mgz(y)}dy

s, B T O)
_ h(x,dH)U’,'{(dﬁ)—iz(:n,aﬂ)u;{(dﬁ) n h(xran)u;/{(*aﬂ)—h(fﬂa*an)u;{(*aﬂ)
Wy (@)’ W ()|’ |
where
Bw,y) = wle - ) Q). b, an) = 5-h(z,y)
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After a lengthy calculation, the explosion of terms reduces significantly by the useful relation-
ships listed in Appendix A, including Q(a;) = (1 + v)[w;,|. Accordingly, for the two spatial
modes 2 = Q,, we find

(B.1) S, (2) = 0 (ay) w(x—dﬂ)—i-’w(a&d%)] + (142)? {—w’(x—dﬂ)—i-w’(wrd%) ,

where the + indicates the dependency on the bifurcating mode Q. and o(ay) is

_ (14v)? _
oi(ay) = 0 (@) [(1 +v)wy, + 2w/(2aﬂ)}.

Y. (x) are even in x, and we use the relationship ¥, (a,) = X (—a4), where
(B.2) S (ay) = 0 (@) [w(o) + w(2d,{)] (14 )2 (2a0),
(B.3) S (@) = 03 (@) w'(2a5,) — (1 +v)* (w"(0)-w" (2ay,)).
The even symmetry of ¥, simplifies this integral with A, (x) = §(x—ay) £ 6(x+ay):

2% (ay), (SUM MODE)

/ Ai(x)Yi(x)de = ()
R 0, (DIFFERENCE MODE)

where 3 (a,) can be further reduced to
(B.4) S (@) = (1+ y)2{(1 oy, + 3w'(2aﬂ)}.

Note that ¥, (a@,) appears in the calculations of Z¢ (@) and =4 (a,,).
Calculation of C ('u, v, 17). As above, for all permutations vi,vs,vs € {v,v},

Cy (vl,v2,V3)(ac) = ((1)) A(x).

From (3.16), we use (E.2) to obtain the following expression for A(x):

[y —an)  dy+an)]| d| 1 dfw@—y) 3
A(x)_/R[ AT ] dy U;(y)dy[ Wiy (y) Q(y)de

- % [f(aj,aH)u;;((_LH) —f(l“,an)ulﬂ(aﬂ)]

% [l @ Wl@) - F o, a) W (a)]
% (@, (@) - F (o, -a Wi ()|
W () f(a:, —ay) W, (~aw) - f(x, *dﬂ)u;,{/(*dﬂ)}

|u;{(*dﬂ)‘5 B
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where f(z,y) = w(z —y) Q3(y),

. . 0?
f(xviaH) - 8_yf(x’y) f(xvidﬂ) - a—ygf(xvy)

, .
Y==+ay y=+ay

After a doubly lengthy calculation and using w™ (z —ay,) £ w™ (z +ay) = Q(in) () and w'(0) =
0, we apply symmetry conditions to reduce A, (x) to

Ay(z) = (1+0)* Q" (z) + B, {—w'(az—dﬂ)i w’(az+dﬂ)}

(B.5) 5 5
+ C@) + Da | wie-a) +wzra) ),
where
. w Q, (a’H) o Q”(C_ZH)
B, =3(1+v)? 4 6(14 ) =2 D, = 3(1+v)> =222,
+ ( ) Qi(aﬂ) ( ) Q:l:(aH) + ( ) Q:l:(aH)

et ()t (i s ) o (1)

These expressions have two forms according to the relationship Q. (a;) = (1+v)[u,|; however,
the expression for Q. (a,) = w(0) +w(2ay ) is simpler than that of i, |.

In the case of the sum mode ), the function A (x) is an even function, whereas in the
case of the difference mode Q_, the function A_(x) = A® (z) + A° (z) is composed of even
A° (x) and odd A° (x) parts where

K (2) = Dy [w(e-aw) +wlwtan) | K (2) = As(@) = A ().
The following integral also simplifies in the two cases Ay (z) = §(x — ay) +d(z + ay):

2N (ay), SUM MODE
[ A nsmar = {200 ( )
R 2/° (ay), (DIFFERENCE MODE)

where

Ay(@r) = (140)* Q(ax) + B, @, (@) + (C,+D,) Q,(an),
N (@) = (1402 Q" (@) + B_Q (@) + C-Q_(ay)

as a result of the symmetries of AL (x).
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Appendix C.

C.1. Solving the second order equations. We first derive the solution for the class of
equations arising from the second order equations with a general right-hand side H(z). Subse-
quently, we use this to express the solutions h.(z) and hy, (z) of (3.21), where H(z) = Hy, =
By (v,v) and H(xz) = Hy; = By (v, v), respectively. The even symmetry of 3(x) simplifies the
expression for each solution. The related solutions wy,(x) and wy, (x) of (3.32), arising in the
center manifold reduction in section 3.4, are given explicitly in Appendix C.3. In particular,
we show in Appendix C.3 that the solution w,; is related to h,; (similarly, w,, is related
to hy); however, we also show that the differences between w,, and h,; (and between wy,
and hy,y) do not contribute to X and ¢,(0) (the critical normal form coefficients at third order
in sections 3.3 and 3.4, respectively). In particular, X and ¢,(0) are shown in (C.13) to be
identical.

Solution of the general equation. The general integral equation that arises at second
order in ¢ is given by

(C.1) (1 = V) w(z) = Ha),

where w,H € 7 and 7 is not an eigenvalue of M,,. In sections 3.3 and 3.4, the critical
eigenvalues of M, are +iw, and 7 is + 72w, or 0. Assume w(z) = (s;(x), s,(x))" and H(x) =
(Hy(x),Hz(x))T; then (C.1) can be expressed as the integral equation

si(x)| ((w * [0 (Uy, — k) 31])(az)> ~ (Hi(z)

S5(x) 0 Ha(z) )
Since the nonlocal operator is present only in the first component of this equation, we can
immediately solve for s,(x) to obtain

n+1 p

C.2
(©-2) -V n+v

(C.3) 5o(x) = (Tn) si(z) + (%M)HW)-

Substituting for s,(z) in the first component of (C.2), we obtain the equation

(C.4) wn) 5,(2) — /

w(z = y) (8 (Uny) = ¥) 51(»)) dy = B} (@),
R

where

W) = L + oo HY () = Hi(2) - (55 ) Ha():

Evaluating the convolution subsequently results in the equation

(C.5) w(n) s, (z) — (SI(QH)w(:E—&H)Jr Sl(aH)’w(ZE—i-(_lH)) = H} ().

|3
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Substituting x = a, and x = —a4 yields the following matrix equation as a compatibility
condition determining the values of s,(ay) and s,(-a, ) that satisfy (C.5):
o) W) —0(0)  0Ca) ] (sian)) [ H@)
' W(2a)  w(n) —w(0) | \si(-ax) HY (-aw) )
where w(z) = w( ) The matrix is invertible, and s,(a;) and s,(-a, ) are given by
( ) 1 lu(n) —@(0)  @(2ay) ( HY (ax) )
@(0))° - (@(2a,))° | ©(2a)  un) —w(0) | \HP(-ax))

Finally, using (C.5) and (C.3), the solution w(x) of (C.2) is then expressed as

1 7o, ) o
o) (sl(x)) s (z) = m [S w(r—ay) + S w(x+ay) + H?(x)},
sa(z) ) 1
(@) So(x) = e [Vsl(:zt) - Hg(l‘):|,
where
su@n)  (RODRG] = w(0)) HY @) + w(@n) HY ()

8§t = = ’
o (sl - w )~ (w(2a,)”

si(can) W@ @) + (Wl w(0)) H} (ax)
i (el — w () (w(2an)

Using this solution for the general equation (C.2), we now solve (3.21) as special cases.
Solution of — M, h,; = By (v, ). In this case, n = 0 implying n(0) = (1 + p), and we

must solve
_ by
~Myhy, = By (v,0) = < é$)>

Let hy(x) = (cl(:n),cz(:n))T. Since Ha(x) = 0, it follows that HP(z) = H,(z) = X(z), and,
since 3(x) is an even function, HY(-a,,) = HP(a,) = X(ay) implies that 8~ = 8* = €, where
the coefficient C(a;) is

E(an)
(@) — (w(O) + w(2d7{))

)

since (1 + v)w,| = Q(ay). Then, since ¢,(z) = ¢,(z), we arrive at the solution

ha(z) = (Zg) c(@) = ﬁ(e(aﬂ)[w@an)w(;pmﬂ)} + 3(a)).
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Moreover, it can be shown that ¢ (x) is even-symmetric in z, providing the useful results

c(=ay) = c(ay) and ¢ (—ay) = —d(ay,), where
o o — M@0
(149) Qi) — (100 (w(0) + w(2)
r— 1 Y (ay)w' (2a4,) r—
C.8 d(ay) = + X(ay) |-
(C8) (@) Lt p [ 428 0(a0) — (w(0) + w(2ay)) ( )]

In the case 2 = ), we have the additional simplifications

i (%@) | £ () = ﬁ </1:_ZE+(?;1)(72;()2GH) 4 zg(aﬂ)> . o

Solution of (ZwoiI —Mﬂ)hzo = By (v, v). In this case, n = 2w,i, and we have

. . pv pv , p—v
2wet) = |14+ 2wei + ———— | = |1 6w, .
(o) < + wz+u+2woz> [ +4p—31/]+2w [4p—3y}

As before, Hy(z) = 0 and HY(z) = H,(x) = X(z), and the even symmetry of X(z) implies
that 8- = 8" = D, where the coefficient D (a;,) is
X(an)

D) = ——
B2 0 ay) — (w(0) + w(2r)

and we have used (1 + v)u},| = Q(ay). Hence, we arrive at the solution

hoo () = (ﬁ) . d(z) = u(zioz) <D(aﬂ){w(xf&7{) + w(mﬂ)} + z:(g;)).

V4+2wot

Similarly, it can be shown that d(z) is even-symmetric in z and
Y(ay) Q(a
(C.9) d(ay) = — (@) Han) —
w(2woi) Q(ay) — (14v) (w(O) + w(2aH))

1
H(2wo1)

Y (ay) w' (2a4)

frey Aan) = (w(0) +w(2ax))

(C.10) d (@) =

+ E/(aH)]

and, in the case Q2 = (1, simplifies to

¥ (@) ]

di(@n) = [u(2woz’) —(1+v)

C.2. Inner products involving the solutions h,; and h,,. In this appendix, we calculate
first the functions Z°(z) and Z%(z) and subsequently the inner products (y, By (v, h,,)) and
<y, By (v, h20)>. The superscripts ¢ and ¢ correspond to the functions c¢(z) and d(z), which
form the solutions h,, () and h,,(x) respectively, in Appendix C.1.
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Calculation of Z¢(x) and (y, By (0, hy,)). A third order term in (3.36) involves

By (v, hyy)(z) = ((1)) =°(x),

where h,,(z) = (c(m),c(:n))T. We can express =¢(z) from (3.15) as follows using symmetry
conditions and the relation [w(x—ay )+ w(x+ay)] = Qu(z):

=) =/R [5(3"; T”) + 5%’3&’”)] '%{—%Q(y) C(y)]dy

_ clayn) Qay) (@) (@y) + ' (ar)2as) | c(@) Qas) uy,
T e O 0. M R
where 1. (7) = —w/(z — ay) + Wiz +ay).

In the sum mode case Q = €2, the function Z¢(x) is even-symmetric and

i (as)

Q, (axn)

In the difference mode case @ = Q_, the function =€ (z) is odd-symmetric and

= (ay) = [+2(1+u)2 w' (2a4) + (14v)° u;;] + (14+2)? ¢, (an).

2¢ (ay) = {— 2 (14+0)2 W' (2ay) + (14v)3 u”}é ((aH)) + (1+0)2 (),
and we have the inner product
<y7B'H ’l) hll /Ai == 253:((_1;%).

The quantities ¢ (@) and ¢(ay) are given in (C.7) and (C.8). [ ]
Calculation of Z%(x) and (y, B;, (¥, hao)). A third order term in (3.36) involves

Bru(®, huo) (2) = () E'(@),

where hyo(z) = (d(x) v d(z) .)T. Analogously, from (3.15) using symmetry conditions

' V4 2wot

d(ay) Q' (as) + d' (@) Qay) | d(ay) Qaq) wy,
1, T ]“W

_ d(a) @)

P II(z) +

where IL, (z) = —w(x—ay) + wl(x+ay).
In the sum mode case = ., the function Z%(a,) is even-symmetric and

d. (@)

m + (1+V)2 d;(dH)

= (ay) = [+2(1+u)2w’(2aﬂ)+ (1) wy,
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In the difference mode case Q = Q_, the function 2% (ay) is odd-symmetric and

d_(a)

Q,(C_LH) + (1+I/)2 d- (dy_[),

= (an) = | - 20000/ (2) + (100)* 1,
and we have the inner product
(9 Bu(o k) = [ As(o) =) do = 224 @),

The quantities d(a) and d’'(a, ) are given in (C.9) and (C.10). [ ]

C.3. Reduction of the coefficient ¢,(0). This final section serves (i) to show how the
coefficient ¢, (0) in section 3.4 reduces to X in section 3.3 and (ii) to provide the solutions
Wy (z) and wy, () of the center manifold equations (3.32):

-Myw,, = Hyy, (2wOiI_MH)w2O = Hy,

where H;; and H,, are given by

Since hy; (x) solves ~-M; hy; = By, (v, ) (see Appendix C.2) and since v and © are eigenvectors
of My, it can be shown that the solution w,,(x) is given by

wy () = hyy(z) — wi <<vaH('Uv'l_7)> v(z) = (.Bu(v0)) ﬁ(x))

o

Analogously, hy(z) solves (2woiI—MH)hQO = By (v,v), and it can also be shown that

Wy (1) = hyy(x) + wio <<y,BH (vw)) v(2) + 3{(5.Bx(v0)) 'D(:z:))

The inner products involving w,,(z) and w,,(x) are subsequently expressed as

<y, BH v, Wy, > :<y,BH(U7f’)><y,BH(v7v)>—<?7,BH(1>717)> <vaH(vv'l_7)>}

(

(C.11) - <y,BH v, hy,) Rn R — |Ruﬂ,
=
(

Y, BH v, hy > + wi —<y,BH(v7v)><y,BH(fhv)>-I%<@7Bﬂ(vvv)><y7BH(ﬁvﬁ)>}

(C.12) = — Ry Ry — %|R20|2}7
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where R,, = <y, B (v,'v)> and Ry, = <y,BH ('v,@)> were defined in (3.29). Then substituting
(C.12) and (C.11) into (3.33), we can then express RS, as

RY = <y,CH('v,v,'D)> + 2<y,BH(U,'wH)> + <y,BH('D,'w20)>

= <y,CH('v,v,'D)> + 2<y,BH(U,hH)> + <y,BH(’D,h20)>

- wi [Ron oy — 2| R |* = 5| Rao].
It follows immediately that
(C.13) a(0) = $R5 + 5 (RaoBu = 2|Rus|* = §|Raol*)

— % [<y, CH(’U,’U,’T))> + 2<y,BH ('v, h11)> + <y,BH ({;, h20)>] s

This shows that the coefficients ¢, (0) in section 3.4 and X in section 3.3 are identical. |

Appendix D. Nullspace of (N% — (14+)I). We now demonstrate how to use the method
of Fourier transforms to solve (3.14), which we repeat here:

(D.1) (1+v)A(z) = NLA(z).
Recall that the operator N7, is defined in the sense of distributions:

Nuple) = (N 22 [ e - ot an

For simplicity, define

f() =6(x — ay) + 0(x + ay,), g(z) = (wxp)(x) = Rw(x —y) e(y) dy,

and define the following notation for the Fourier transform of u(z) in the variable :

Since the Fourier transforms of f and g are

F(&) = F [8(x — @) + 6(x + )] (€) = —=(e'67 + =),

9(8) =T [(wA)(@)](§) = w(§) A(S),

respectively, applying the Fourier transform to both sides of (D.1) yields
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Defining v = (1 + v) [),|, this reduces to the following equation for A(¢):

_ \/g ] cos (@t =) i) A .

Expanding the cosine results in
(02 1[5 80 =| [ sin @) o) An)an sin (a6
| [ cos @) 00) A ] cos (a).
which suggests that solutions may be expressed as
A(€) = Cysin(ax€) + C, cos (anf).

Case: A(€) = sin (@4+&). Substituting A(x) = sin (a&) into (D.2) and using the fact that
the Fourier transform (&) is even (since w(x) is even), we find that

(/Rsin (dHn) sin (dHn) w(n) dn) sin(aﬂf) = \/; sin(d,{{),

assuming the integrals converge. The above equation is satisfied when

(D.3) Ve [ sin® (@) iy = 7 = (14 0) |
To determine which mode this solution corresponds o, we compute
P 2ot (o)
LG aran)-
e w5 [sn @) @ do
\f / [ cos2(2a,m)} oo
_ \/; /_ 0@ <m 5z) — \/g (5 — 2a2) + 5z + 2aﬂ))> do
- /= (V200 - 3 (w200 + w(-20.))

= w(0) —w(2a,) = Q_(ay) ( DIFFERENCE MODE )_)
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since w is even. Condition (D.3) is therefore satisfied when the difference mode Q_(x) becomes
critical, since (3.7) and (3.8) imply that

(14 V)5 | = Q () = w(0) — w(2a).

Case: A(z) = cos (@x&). Substituting A(€) = cos (@x&) into (D.2) results in

(D.4) \/%/Rcosz(aqm) wn)dn = v = (1+v)w,l.

Following a similar calculation, it can be shown that

\/g/ cos” (@) w(n)dn = w(0) +w(2ay) = Q. (ay), ('sum MODE )
R

indicating that condition (D.4) is satisfied when the sum mode goes critical, since (3.6) and
(3.8) imply that

(1 +v)|uy| = Qy(an) = w(0) + w(2ay).

Summary. A(€) = cos(a;€) is the only solution of (D.1) when the sum mode Q. (z) =
w(x — ay) + w(x — a@y) goes critical. The inverse Fourier transform reveals

Az) =A(z) = C,F 'cos(ané)](z) = C; \/g (5(3: —ay) +0(x + dﬂ)>.

A~

Conversely, A(§) = sin(ay€) is the only solution of (D.1) when the difference mode Q_(z) =
w(z — @y ) — w(x — ay) goes critical, and similarly

Az) =A_(2) = C,F [sin(axé)|(z) = C, \/g (5(3,« —ay) — (a4 aH)).

Since only the nullspace of the operator Nj, is of interest, we ignore the coefficients.

Appendix E. Higher order derivatives of 6(h(ac)) For the cases n = 1,2, we evaluate
the following integral in a formal manner using integration-by-parts:

/ 6™ (h(z)) f(x)da forn=1,2.
R

Suppose f,h are sufficiently smooth functions on R, note that h here differs from A in
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Appendix B) and suppose that h has N isolated simple zeros (h(ax) = 0) ordered as ag, k =
1,..., N, at which h/(ag) # 0.

| o) r@d = [ (nw) Zéxg o= [ 2 (s) £

e N - 4
00 d .
T /_Ooé(h(x)) @[}{,(($))] dx
_ al 1 d | f(x)
B kzzl | (o) %[hf(x)] . (compact form)

()

- » s dx
— [ 0w | f ] as
T ) g 9]
:/_Zé(h(w)) %[hzx)%[}{((?)] "
N
- k; !h/(ka)\ %[h%’“’)dﬂh/((x))up%

N
=3 ;ﬁ{ 3" () | Fen )R (o) — /() (en,) |

(E.2) + K (ap) [f//(ak)h/(ak) - f(ak)hm(ak)] }

The proof of the above result (which has been omitted for simplicity) uses the implicit function
theorem and z = h™'(y) to reexpress the integral in terms of y. The absolute value in the
denominator in (E.1) and (E.2) is due to the change in sign of the integral depending on
whether h is increasing or decreasing in a neighborhood of each ay.
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