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Nonlinear Analysis of Interconnected Power

Converters: a case study
Luis Benadero, Rony Cristiano, Daniel J. Pagano, Member, IEEE, and Enrique Ponce

Abstract—In this paper the nonlinear dynamics of intercon-
nected power converters in an islanded direct current (DC)
microgrid is analyzed. By using a simplified scheme based on
two cascaded converters we analyze the dynamical behavior
that can arise from the interconnection of these devices on a
common DC bus. Furthermore, in order to address the bus
voltage control problem, we propose a Sliding Mode Controller
for a DC-DC bidirectional power converter to control the DC
bus voltage under instantaneous Constant Power Loads (CPLs).
This class of loads introduces a destabilizing nonlinear effect on
the converter through an inverse voltage term that can lead to
significant oscillations in the DC bus voltage. Simulation results
are shown to illustrate the nonlinear analysis.

Index Terms—DC microgrids, Boost converter, Constant power
load, Sliding mode control, Nonlinear analysis, Bifurcations

I. INTRODUCTION

THE increasing energy demand associated with environ-

mental concerns has driven the electric power systems

to the distributed generation using renewable energy sources.

This is due to the high cost of large centralized generation

plants that have low efficiency and poor reliability, in addition

to requiring, mostly fuel fossil [1]. Despite the discussions

regarding the advantages and disadvantages of DC and al-

ternating current (AC) distribution systems (see [2]), it is

common sense that for facing the energy sector challenges

in an economically efficient way, the first step is to maximize

the use of resources by improving the ways of consuming

electricity. As a way to overcome AC distribution problems,

DC microgrids are discussed and analyzed as a solution for

new ways of power distribution.

In modern electrical distribution systems, switched power

converters are used to connect the different elements given by

distribution generation systems, storage elements and loads to

the main DC microgrid. Nowadays, one of the most widely

studied topologies of power converters interconnection is the

cascade structure. In [3], a systematic procedure to synthesize

cascade connection of DC-DC boost converters operating with

sliding mode control is presented. This method is applied to

a system connected to a photovoltaic source consisting of two

cascaded DC-DC boost converters under sliding mode control

in [4]. Smooth and non-smooth bifurcations in multi-structure
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Figure 1. DC microgrid system.

multi-operating-mode hybrid power systems are studied in [5]

where a hybrid power system consisting of dual-input buck

converters is analysed. Moreover, a stand-alone photovoltaic-

battery hybrid power system is analysed using standard bi-

furcation analysis based on averaged models in [6]. In [7],

a comparative study of several nonlinear control techniques

(Immersion and Invariance, Passivity-Based Control, Feedback

Linearization and Sliding-Mode Control) applied to dc-dc

power converters was presented.

This work presents the nonlinear dynamical analysis of a

structure generally exhibited in DC microgrids [8], a cascade

of two boost converters, as depicted in Fig. 1. A bidirectional

power converter (PC1) is connected to the main bus (BUS1)

where several sources and loads are connected. This converter

is responsible for regulating the voltage of the bus, which is

subject to unknown loads and to the fluctuation of parallel

sources. We are interested in this paper, in analyzing the con-

trol problems imposed by the connection of tightly regulated

point-of-load converters [9].

A simplified schematic diagram corresponding to our case

study is depicted in Fig. 2, showing two boost converters

connected to a common BUS2 together with a resistive load.

Since the input and output power of PC2 (Pin and Po) are

constant in steady-state, the static input v-i characteristic is

ideally a hyperbola defined for v > 0 and i > 0. For that

reason, PC2 can be modeled as a constant power load (CPL).

Consequently, the second converter (PC2) as seen by PC1,

has a negative impedance characteristics, where a voltage

increment will cause a current decrease and vice versa.

The PC1 converter in Fig 1 can be analyzed by the simpli-
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  BUS 1 BUS 2

Figure 2. Two interconnected power converters on a common DC bus with
a resistive load (CIL).

fied model depicted in Fig 3, composed by the main boost con-

verter that feeds a CPL and a constant impedance load (CIL).

A CIL represents any kind of load where the impedance does

not change with variations of voltage or current magnitude.

In this study, the nonlinear analysis of the BUS2 is made, by

considering that the equivalent load seen from PC1 is highly

nonlinear and has a piecewise defined characteristic dependent

on the point of load operation (see Fig. 4), assuming both

CPL and CIL characteristics. Comparing to the classical CPL

modeling [10], this load characteristic leads to a more realistic

representation of the actual system operation.

Here, the proposed controller uses a sliding mode control

(SMC) technique based on the nonlinear model of the system

and an adaptive scheme to reject unknown load variations. The

study also presents a stability analysis for the nonlinear model

of the cascaded converters, putting emphasis on the importance

of bifurcation analysis for the sliding dynamics.

Thus, the interconnected system studied in this work will

deal with a realistic load profile, where the CPL is represented

by a second stage boost converter with an independent control

loop. For PC2 being able to regulate its output voltage to a

predefined reference, the bus voltage needs to be greater than a

threshold voltage (Vth), therefore, determining the equivalent

system two regions of different behavior. Some preliminary

results following the same approach for a different case were

presented in [11].

The paper is organized as follows. The modeling of the

boost power converter and of the constant power load (CPL)

are developed in Section II. Nonlinear analysis of the inter-

connected power converters case is presented in Section III.

Simulation results to illustrate the developed nonlinear analysis

are shown in Section IV. Some conclusions are offered in

the last section. Moreover, a short review of the relevant

concepts in the analysis of discontinuous control systems

through dynamical systems theory and bifurcation theory,

fixing also the notation to be followed in the paper, is also

given in Appendix.

II. MODELING OF THE INTERCONNECTED

CONVERTERS

A. Boost converter PC1

The behavior of a boost converter can be studied using

the circuit topology depicted in Fig. 3. Using the Kirchhoff’s
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Figure 3. Structure of the first stage boost converter.

circuit laws, the dynamic model of the system is given by











C
dvc(t)

dt
= uiL(t)− iBUS2(t),

L
diL(t)

dt
= Vin − uvc(t)− rLiL(t)

(1)

where vc(t) and iL(t) are the instantaneous capacitor’s voltage

and the inductor’s current, respectively. The BUS1 input

voltage is assigned as Vin, rL is the equivalent series resistance

of the inductor, C and L are the circuit’s capacitor and inductor

respectively and iBUS2 is the current flowing through the loads

attached to the bus, defined as iBUS2 = vc

R
+Φ(vc), where

Φ(vc) =







imax, for vc < vth
P

vc
, for vc ≥ vth

, (2)

R is a resistive load, P is the constant power load and imax is

the maximum value fixed for the current in PC2. The switching

function u assumes binary values u ∈ {0, 1}, thus representing

the states of the switch S closed (on) for u = 0 and opened

(off) for u = 1 respectively.

To ease visualization and analysis of the model, the system

is normalized using the following change of variables

vc(t) = Vinx1(τ) iL(t) =

√

C

L
Vinx2(τ) (3)

and time t = τ
√
LC. Defining the new parameters

b = rL

√

C

L
γR =

1

R

√

L

C
γP =

P

V 2
in

√

L

C
, (4)

the dimensionless model is given by
{

ẋ1(τ) = −γRx1(τ)− ξ(x1) + ux2(τ)

ẋ2(τ) = −ux1(τ)− bx2(τ) + 1
, (5)

where

ξ(x1) =







x∗
2, for x1 < xth

γP

x1
, for x1 ≥ xth

(6)

where x∗
2 = imax

√

L/C/Vin is the maximum value fixed

for the normalized current in PC2 and xth is the normalized
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threshold voltage. Parameters γR and γP stand for the normal-

ized resistive and power loads of the circuit system, respec-

tively. These parameters vary with the power demand and the

availability of sources on the microgrid, thus causing changes

in the system dynamics and uncertainty on the location of

the desired operating point (pseudo-equilibrium) in the state

space.

B. Constant Power Load (PC2)

As previously stated, microgrid power converters usually

deal with two main kinds of loads: constant impedance loads

(CIL) and second stage converters behaving ideally as constant

power loads (CPL). An idealistic boost converter with no

parasitic losses, operating with minimum duty cycle, provides

an output equal to its input voltage. When operating with

maximum duty cycle, it can provide, theoretically, an infinite

output voltage. However, when the losses are considered, the

ranges of output voltage and inductor’s current are limited by

the converter’s load and by the losses itself.

The boost converter acting here as the second stage load

converter (PC2) has the same structure of PC1. It has its

own controller, designed to operate in a predefined voltage

reference and also to limit the maximum inductor’s current

according to the circuit’s limitations. From the interconnected

model in Fig. 3, the BUS2 current (xBUS2
2 ) is given by

xBUS2
2 = xCIL

2 + xPC2
2 = γRx1 + ξ(x1), (7)

where ξ(x1) is a piecewise defined function (6) that describes

the second stage converter (PC2) load profile.

Since PC2’s maximum current is limited by its own con-

troller, when the input voltage is below a certain threshold,

the current is saturated at the maximum value while the output

voltage can not reach its reference. The threshold from which

PC2 starts operating can be calculated using the equation

xth =
γP
x∗
2

, (8)

so that in x1 = xth the function is continuous (but not

differentiable), as shown in Figure 4.
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Figure 4. Equivalent load for the system in Fig. 3, showing the voltage
threshold xth and the piecewise profiles.

Figures 5 and 6 shows the curves obtained for variations

of γR and γP respectively. For a constant CPL, an increase
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Figure 5. Equivalent load curves for the system in Fig. 3 for a fixed γP and
different values of γR.
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Figure 6. Equivalent load curves for the system in Fig. 3 for a fixed γR and
different values of γP .

in the CIL power (reduction of R) shifts up the curve and

changes its slope, but does not change the voltage threshold

xth. For a constant CIL (parameter γR), an increase in the

CPL power (parameter γP ) shifts up the curve and increases

the voltage threshold xth. These load changes have great effect

when designing the control law.

From here on, time dependence on variables might be

suppressed for the sake of clarity.

C. Washout-SMC

The power converter feeding the bus has no information on

the load connected to it. Since its dynamics is dependent on

these load variations, the equilibrium points of the controlled

system are uncertain. Usually, dc-dc converters are controlled

using linear techniques, which normally take a linearized

model of the system. These techniques can guarantee zero

state-error and have the advantage of having fixed switching
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frequencies, but under unknown load variations their perfor-

mance is degraded. In order to ensure robustness under load

and source variations and minimizing transient responses, a

Sliding Mode Controller (SMC) based on a washout filter is

proposed.

A washout filter is a high pass filter that washes out

steady state inputs, while passing transient inputs [12]. The

main advantage of such method is the property of automatic

equilibrium following, ensuring adaptation of the sliding sur-

face under load variations [13]. The Washout-SMC was used

because its better time-domain performance when compared

to a conventional PWM-PI controller.

The inductor current x2 is passed through a washout filter

(see Fig. 7) and a new signal x3 is obtained by the dynamic

equation

ẋ3 = ωn(x2 − x3), (9)

where ωn = ω
√
LC is the normalized cut-off frequency of

the filter, ω denotes the reciprocal of the filter constant in the

physical system and xF = x2 − x3 is the filtered normalized

current.

The planar switching manifold is defined as

Σ = {x ∈ R
3 : h(x) = 0},

where x = (x1, x2, x3) and the switching surface is chosen as

h(x) = x1 − xr + k(x2 − x3), (10)

where k > 0 is the normalized control parameter to be

adequately tuned and xr = vr
Vin

> 1 is the normalized

reference voltage. The physical control parameter is given by

K = k
√

L/C[Ω]. The control law is defined as

  
Figure 7. Washout filter block diagram.

u =

{

u− = 0, if h(x) < 0

u+ = 1, if h(x) > 0.
(11)

D. System modeling

Assuming system (5) is operating in continuous conduction

mode (CCM) and controlled by the SMC law given in (11),

we conclude that for each switch state there is a different

vector field representing the dynamics of the system. When

the combined trajectories of the vector fields hit the switching

surface (h(x) = 0) inside the attractive region, the phenomena

of sliding occurs. The chosen notation uses f−(x) and f+(x)
to represent the vector fields for the switch u = 0 (case on)

and u = 1 (case off), respectively. The dynamics of the system

using the proposed SMC control with washout filter can be

represented by the dynamical system

ẋ =

{

f−(x), if h(x) < 0
f+(x), if h(x) > 0,

(12)

composed by the vector fields

f−(x) =





−γRx1 − x∗
2

−bx2 + 1
ωn(x2 − x3)



 , f+(x) =





−γRx1 + x2 − x∗
2

−x1 − bx2 + 1
ωn(x2 − x3)





defined for x1 < xth, or

f−(x) =





−γRx1 − γP

x1

−bx2 + 1
ωn(x2 − x3)



 , f+(x) =





−γRx1 − γP

x1
+ x2

−x1 − bx2 + 1
ωn(x2 − x3)





defined for x1 ≥ xth.

III. NONLINEAR ANALYSIS

In this Section, we use the results given in Appendix A

to analyze system (12). We begin the analysis considering

separately the equilibria of the two vector fields involved by

assuming the constraint x2 > 0.

The vector field f+ can have up to three equilibria, one in

the region x1 < xth and two in x1 ≥ xth region. However,

these equilibria are virtual. This is easy to be checked, because

if e+ = (x̄1, x̄2, x̄2) is the equilibrium in the region x1 < xth

then h(e+) = x̄1 − xr < 0 since x̄1 < xth < xr. Now, if

e+2,3 = (x̄
(2,3)
1 , x̄

(2,3)
2 , x̄

(2,3)
2 ) are the equilibria in the region

x1 ≥ xth, then we also have h(e+2,3) = x̄
(2,3)
1 − xr < 0

because, of the equation

−(1 + γRb)x
2
1 + x1 − bγP = 0,

from where one obtains the position at x1 of these equilibria

as a function of parameters (γP , γR, b), resulting in

x̄
(2)
1 ≤ x̄

(3)
1 ≤ 1

1 + γRb
< 1 < xr.

The vector field f− has no equilibria in its workspace, x1 > 0
and γP > 0.

The sliding vector field is calculated from the equation

(A.36), resulting in

fs(x) =

{

fs1(x), if x1 < xth

fs2(x), if x1 ≥ xth,
(13)

composed by the vector fields

fs1 =











−k(γRx
2

1 + x∗

2x1 − x2 + bx2

2)− kωnx2(x2 − x3)

kx1 − x2

γRx
2

1 + x∗

2x1 − x2 + bx2

2 + kωnx1(x2 − x3)

kx1 − x2

ωn(x2 − x3)











(14)

and

fs2 =











−k(γRx
2

1 + bx2

2 − x2 + γP )− kωnx2(x2 − x3)

kx1 − x2

γRx
2

1 + bx2

2 − x2 + γP + kωnx1(x2 − x3)

kx1 − x2

ωn(x2 − x3)











. (15)

The pseudo-equilibria points of system (12) are solutions

of the equation system fs(x) = 0 and h(x) = 0, with scalar

function h given in (10) and sliding vector field fs in (14)-(15).

Thus, these pseudo-equilibria have normalized voltage equal to

the normalized reference voltage, that is, x̃1 = xr. Therefore,

the system (13) has no pseudo-equilibria in the region x1 <
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xth, because xr > xth. Thus, there are only pseudo-equilibria

in the region x1 ≥ xth, given by p± = (xr, x̃
±

2 , x̃
±

2 ), with

x̃±

2 =
1±

√

1− 4b(γP + γRx2
r)

2b
. (16)

Note that the points p± only exist for

γP ≤ 1− 4bγRx
2
r

4b
. (17)

For the stability study of pseudo-equilibria let us consider

the vector fields defined for x1 > xth. Firstly, is important to

know the position of these points on the switching boundary

Σ, determining conditions on parameters so that p± belong to

the attractive region Σas. The analysis is easier if we project

both Σ and fs on the (x1, x2)-plane, reducing so the dimension

of the problem by simply substituting x3 = xΣ
3 = x1−xr+kx2

k
.

Thus, the projection of Σas is given by (A.33)

(ωn − γR)x1 − bkx2 −
γP
x1

+ k − ωnxr > 0 (18)

(ωn − γR − k)x1 + (1− bk)x2 −
γP
x1

+ k − ωnxr < 0 (19)

where we already have done the above substitution. From

(18)-(19), all the points belonging to Σ fulfill the condition

kx1 − x2 > 0, and so we can desingularize the sliding vector

field by considering the vector field fds(x) = (kx1−x2)fs(x).
Moreover, the dynamics on the sliding mode can be analyzed

in the (x1, x2)-plane, substituting again x3 = xΣ
3 and con-

sidering only the two first components of the desingularized

sliding vector field fds. Therefore, the differential equations

that describe the dynamics on the sliding mode, projected on

the (x1, x2)-plane, can be expressed as

ẋ1 = −k(bx2
2 − x2 + γRx

2
1 + γP ) + ωnx2(x1 − xr), (20)

ẋ2 = bx2
2 − x2 + γRx

2
1 + γP − ωnx1(x1 − xr) (21)

for kx1 − x2 > 0, x1 > xth and x2 > 0.

The relevant equilibrium points for this reduced dynamical

system are those with x1 = xr, namely, the solutions of the

quadratic equation

bx2
2 − x2 + γRx

2
r + γP = 0,

which are of course the previous values x̃±

2 given in (16). The

jacobian matrix of the system (20)-(21) linearized around the

equilibria (xr, x̃
±

2 ) is expressed as

J± =

[

ωnx̃
±

2 − 2γRxrk k(1− 2bx̃±

2 )
xr(2γR − ωn) 2bx̃±

2 − 1

]

, (22)

which determinant is

Det(J±) = ωn(1− 2bx̃±

2 )(kxr − x̃±

2 ), (23)

and the trace

Tr(J±) = (ωn + 2b)x̃±

2 − 2γRkxr − 1. (24)

Assuming p− ∈ Σas, we have that Det(J−) > 0, because

x̃−

2 < 1/2b and x̃−

2 < kxr. Thus, p− is stable (node or focus)

in Σas whenever Tr(J−) < 0, that is, for k > kHopf with

kHopf =
(ωn + 2b)x̃−

2 − 1

2γRxr

, (25)

where kHopf is the critical value of parameter k at the Hopf

bifurcation. Regarding p+, we have Det(J+) < 0 since

x̃+
2 > 1/2b. Therefore, it is a pseudo-saddle in the region Σas.

Clearly, the pseudo-equilibrium point p− must be chosen as

the operating point for the feedback control system.

From the previous analysis, we can give the following

result to choose the parameter k ensuring the operation of

the proposed SMC design, regarding variations of parameters

γR and γP .

Proposition 1: Consider system (12), where h is given in

(10), with fixed parameters xr > 1, b > 0 and ωn > 0.

(i) The parameters γR and γP must be selected such that

0 < γR <
1

4bx2
r

(26)

0 < γP <
1− 4γRbx

2
r

4b
, (27)

to guarantee the existence of the pseudo-equilibrium p−

(desired operating point).

(ii) The parameter k must be selected such that

k ∈ K =

{

k >
x̃−

2

xr

}

∩ {k > kHopf} (28)

to guarantee the stability of the pseudo-equilibrium p−,

where x̃−

2 is given by (16) and kHopf in (25).

Furthermore, k must be chosen sufficiently far away of

kHopf, making as big as possible the unstable limit cycle around

the pseudo-equilibrium p−. In order to design the SMC,

maximum values for parameters γR and γP are previously

defined and parameter k is chosen to keep the system stable.

The conditions of existence and stability for the pseudo-

equilibrium p−, presented in Proposition 1, are illustrated in

Figure 8 according to the physical parameters P , R and K of

the boost converter with SMC-Washout and considering the

values in Table I for the other parameters. In this case, we

must choose (P,R,K) within the solid shown in (a). Sections

of this solid are shown in (b), (c) and (d), where the stability

region is indicated by grey color areas.

IV. SIMULATION RESULTS

In this section, simulation results obtained with PSIM soft-

ware in order to validate the proposed controller performance

under load variations are shown. The circuit parameters are

given in Table I and the simulation diagram compose of two

cascaded interconnected power converters is shown in Fig. 9.

Table I
CIRCUIT PARAMETERS PC1

Input voltage Vin 12V

Output voltage vr 24V

Inductance L 2.2mH

Output capacitance C 47µF

Inductor series resistance rL 0.07Ω

Natural frequency ω 3110 rad/s

Resistive load R 115Ω
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(a)

      

(b)

      

(c)

      

(d)

Figure 8. a) Stability region in the parameter space (P,R,K). b) (P, K)-plane
for R = 50Ω, 115Ω, 180Ω; c) (R, K)-plane for P = 10W, 30W, 50W ;
d) (R, P)-plane for K = 20Ω, 30Ω, 50Ω. Stability regions are denoted by
grey color areas.

Table II
CIRCUIT PARAMETERS PC2

Input voltage vC 24V

Output voltage Vref 48V

Maximum current imax 2.9A

Inductance L2 0.5mH

Output capacitance C2 1µF

Resistive load R2 75Ω − 230Ω

The PC1 boost converter is controlled by the proposed

SMC. To minimize high switching frequencies that might

occur in SMC, the switching function is replaced by a classical

hysteresis band to limit the maximum switching frequency.

The second boost converter PC2 that acts as a constant power

load for the first converter PC1 and that is driving a resistive

load is composed by two cascade loops: (i) an inner current

control loop; and (ii) a outer voltage control loop. Both loops
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Figure 9. Two cascaded interconnected power converters showing the
proposed SMC-control for the PC1 boost converter and a PWM nonlinear
PI-control for the PC2 boost converter acting as a load.

have nonlinear control law, with a static nonlinearity for the

inner control loop and nonlinear PI for the outer control loop.

This control strategy uses a PWM to command the switch and

is given by

uPC2 =
1

xPC2
1

[

1 + kp(x
PC2
2 − xPC2

2ref
)
]

with

xPC2
2ref

= xPC2
1

[

k1(x
PC2
1ref

− xPC2
1 )− k2

∫

(xPC2
1 − xPC2

1ref
)dt

]

where xPC2
1 > 0, xPC2

2 and xPC2
1ref

are the output voltage,

inductance current and reference voltage (Vref ) normalized,

respectively. This normalization is the same used for the PC1

converter in Section II. Normalized control parameters used

to obtain the simulation results were kp = 0.843, k1 = 0.397,

k2 = 0.079 and a switching frequency of 50 KHz.

The normalized parameter values of converter PC1 are

obtained by applying the normalization of Section II to the

values given in Table I: xr = 2, x∗
2 = 1.65, ωn = 1,

b = 0.01, γR = 0.06. From the resistive load variation of

R2 given in Table II, the constant power load P is calculated,

i.e. P ∈ [10W, 30W ]. So that applying the normalization,

γP assumes values in the interval [0.5, 1.5]. According with

Proposition (1), these values for the normalized parameters

γR and γP guarantee the existence of the pseudo-equilibrium

point p− that is the desired operating point. Notice that

x̃−

2 = x̃−

2 (γP ) is an increasing function respect to parameter

γP , since

dx̃−

2

dγP
=

1
√

1− 4b(γP + γRx2
r)

> 0,
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Figure 10. State-space diagram of system (12) simulated for parameters xr =
2, x∗

2
= 1.65, ωn = 1, b = 0.01, γR = 0.06 and γP = 1.5. a) for k = 3.7,

showing the unstable limit cycle in red-color; the stable limit cycle in blue-
color; • stands for the stable pseudo-focus. b) for k = 3.13, the stable limit
cycle disappears when it touches a double tangency point in a HC bifurcation.

then x̃−

2 /xr and kHopf increases with γP . Therefore, the

stabilization condition given in (28) is true adopting the

maximum value for γP (i.e. γP = 1.5), thus we must take

k > 3.36.

For the sliding dynamics, a Subcritical Hopf bifurcation

occurs at k = kHopf = 3.36 so that there exists an un-

stable limit cycle around the stable pseudo-equilibrium p−

for k > 3.36; its size increases with k. Moreover, for this

parameter combination there exists a stable limit cycle around

this same pseudo-equilibrium point p−. This stable limit cycle

appears rounding the unstable limit cycle and its size decreases

with k (see Figure 11). Both limit cycles are confined to the

attractive sliding region Σas. The stable limit cycle arises as a

result of the threshold voltage xth, responsible for the sliding

vector field fs to be piecewise smooth. The interaction of the

two different dynamics (x1 < xth and x1 ≥ xth) at x1 = xth

gives rise to a stable limit cycle. A state space diagram in the

(x1, x2)-plane corresponding to system (12) is shown in Figure

10(a), where it is possible to observe the unstable and stable

limit cycles for k = 3.7. In order to determine the lower limit

for the control parameter k such that the state space presents no

limit cycle around p−, numerical continuation methods were

used. The resulting bifurcation diagram is shown in Figure 11.

From it we conclude that:

• The stable limit cycle exists for k ∈ (3.13, 3.99). This

limit cycle disappears for k = 3.13 when it touches a

double tangency point (Lf−h(x) = Lf+h(x) = 0), which

has a dynamics of saddle type, and also for k = 3.99
when it collides with the unstable limit cycle.

• The unstable limit cycle exists for k ∈ (3.36, 3.99). This

limit cycle is born in a subcritical Hopf bifurcation (Hsub)

for k = 3.36 and disappears when it collides with the

stable limit cycle for k = 3.99.

• For k = 3.13 a Homoclinic Connection Bifurcation (HC)

occurs (see Figure 10(b)).

• For k = 3.99 a Saddle-Node bifurcation of periodic orbits

(SNpo) occurs.

In this way, the value of the control parameter k must be

chosen k > 3.99 in order to avoid any limit cycle around the

pseudo-equilibrium point p−. This condition can be expressed

for original system (5), from the relation K = k
√

L
C

, giving

K > 27.3Ω.

Simulation results are shown in Fig. 12. In Fig. 12 (a), for

K = 24Ω, after a step in the load power P from 10W to

30W applied at time t = 0.1 s the equilibrium point becomes

unstable and the voltage vc begins to oscillate describing in the

state-space a stable limit cycle. In Fig. 12 (b), for K = 34Ω,

P is changed from 10W to 30W at time t = 0.1 s and before

a transient the system remains stable at the equilibrium point.

From the former analysis, control parameter K must be

chosen faraway from the SNpo condition (K > Kc = 27.3Ω)

as indicated in Fig. 11, ensuring the stability of the proposed

control design. For instance, simulation results are shown in

Fig. 12 (c) for K = 100Ω . In this picture, starting with an

initial value of P = 20 W, at t = 0.15 s the power is changed

to P = 25 W, at t = 0.3 s to P = 20 W, at t = 0.45 s to

P = 15 W and at t = 0.6 s to P = 20 W.

V. CONCLUSION

This paper addressed the nonlinear analysis of intercon-

nected power converters in DC microgrids through a case

study: a cascade of two boost converters connected to a

common bus. The nonlinear effects of a constant power load

were analyzed and a sliding mode controller was proposed to

guarantee stability under unknown load variations. The control

strategy proposed was validated through simulation results.

It showed a fast performance to reject load power changes.

The nonlinear stability analysis performed is very useful to

determine the safe parameter region for the stability system

operation under power changes (parameter γP ). This infor-

mation can be summarized in bifurcation diagrams leading to

practical rules for choosing the control parameter K in order

to achieve a suitable SMC design.

APPENDIX

DISCONTINUOUS CONTROL SYSTEMS:

CONCEPTS AND NOTATION

In this Appendix, we introduce the notation followed

through the paper along with some elementary concepts about
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Figure 11. Bifurcation diagram in the plane (k, x1) for k defined as the
bifurcation parameter, where: — denotes a stable pseudo-equilibrium; – – an
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homoclinic bifurcation. Parameter values are xr = 2, x∗

2
= 1.65, ωn = 1,

b = 0.01, γR = 0.06 and γP = 1.5.

discontinuous control systems, also called Sliding Mode Con-

trol Systems (SMC), see [12] for more details. We start by

considering affine control systems of the form

ẋ = f(x) + g(x)u (A.29)

where x ∈ R
n and the functions f(x) and g(x) 6= 0, are

smooth and the control signal u is supposed to be a scalar

discontinuous function. Assume a smooth non-constant scalar

function h : Rn → R that defines the discontinuity manifold

Σ = {x ∈ R
n : h(x) = 0} ,

is supposed to be regular, that is, ∇h(x) 6= 0, ∀x ∈ R
n,

and splitting the state space into two open regions S− =
{x ∈ R

n : h(x) < 0} and S+ = {x ∈ R
n : h(x) > 0}. Ac-

cordingly, the switching control law is u, namely as

u = u(x) =

{

u−(x), if h(x) < 0, i.e. x ∈ S−,
u+(x), if h(x) > 0, i.e. x ∈ S+,

(A.30)

where u(±) are scalar smooth functions of x (typically con-

stant ones) to be later specified. System (A.29) endowed with

the control law (A.30) constitutes a non-smooth differential

system that, depending on the state, uses one of the two

different smooth vector fields

f (±)(x) = f(x) + g(x)u(±)(x). (A.31)

As usual, we look for a stable operating point x̂, belonging

to the discontinuity manifold Σ, which is assumed to be a

set of zero measure in R
n. We define the rate variations

of the value of h along the different orbits when extended

continuously to the boundary of the open regions S(±), that

is, for all x ∈ S− = S− ∪Σ the orbital derivative of h or Lie

derivative

Lf−h(x) =
d

dt
h(x−(t)) =

〈

∇h(x), f−(x)
〉

,
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Figure 12. Time-domain responses of iL(t) and vC(t) for different steps of
load power P and for three different values of the control parameter K.

and the corresponding one for all x ∈ S+ = S+ ∪ Σ. Note

that Σ = S− ∩ S+.

Then it is natural to define the crossing part of Σ as the

Σ-open set

Σc = {x ∈ Σ : Lf−h(x) · Lf+h(x) > 0} ,
and its complement in Σ, that is the Σ-closed set

Σs = {x ∈ Σ : Lf−h(x) · Lf+h(x) ≤ 0} , (A.32)

which is normally called the sliding part Σs. Of course, we

are mainly interested in its attractive part, namely the Σ-open

set

Σas = {x ∈ Σ : Lf+h(x) < 0 < Lf−h(x)} , (A.33)
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where the two vector fields from both sides out of Σ push

orbits towards Σ. From (A.31) we can also write Σas as
{

x ∈ Σ : −Lgh(x)u
− < Lfh(x) < −Lgh(x)u

+
}

. (A.34)

A first goal is to define the controller for the desired

operating point x̂ to belong to Σas. The two conditions

in (A.33) are not sufficient for stability purposes however,

since there appears in Σs a sliding dynamics induced by the

interaction of the two vector fields. For robustness purposes,

as stressed in the introduction, we must know as deeper as

possible this sliding dynamics around the point x̂ ∈ Σs and

its possible bifurcations.

According to Filippov’s method [14], which is the most

natural way of obtaining the sliding dynamics induced by the

discontinuous vector field (A.29)-(A.30), we must consider the

vector field

fs(x) = λf−(x) + (1− λ)f+(x), (A.35)

where for each x ∈ Σs the value of λ should be selected such

that Lfsh(x) = 〈∇h(x), fs(x)〉 = 0. Imposing such condition,

the sliding vector field becomes

fs(x) =
Lf+h(x)f

−(x)− Lf−h(x)f
+(x)

Lf+h(x)− Lf−h(x)
, (A.36)

which clearly simplifies to

fs(x) = f(x)− Lfh(x)

Lgh(x)
g(x). (A.37)

It is also usual to introduce the notation

fs(x) = f(x) + g(x)ueq (A.38)

where

ueq = −Lfh(x)

Lgh(x)
= − 〈∇h(x), f(x)〉

〈∇h(x),g(x)〉 (A.39)

is the so called equivalent control, see [15]. We note that the

transversality condition Lgh(x) 6= 0 is a necessary condition

for the existence of ueq .

We recall that the discontinuous system (A.29) inherits the

equilibria of each vector field f±(x), and that they can be real

or virtual equilibria. In particular, we call (i) admissible or

real equilibrium points to both the solutions of f−(x) = 0
that belong to S− and the solutions of f+(x) = 0 that belong

to S+; (ii) non admissible or virtual equilibrium points are

both the solutions of f−(x) = 0 that belong to S+, and the

solutions of f+(x) = 0 that belong to S−. Virtual equilibria

are not true equilibrium points, but they can play a role in the

dynamics for the corresponding region.

Regarding now the dynamical system corresponding to the

vector field fs(x) induced on the sliding set Σs, and following

[16] we call pseudo-equilibrium points to the solutions of

fs(x) = 0, with x ∈ Σs. Pseudo-equilibrium points are,

in some sense, almost true equilibria for system (A.29). For

instance, suppose both vectors f (±) are transversal to Σ and

anti-collinear at a certain point of this surface, that is, there

exist λ1, λ2 > 0, such that λ1f
−(x)+λ2f

+(x) = 0. The point

is necessarily in Σs, since then Lf (±)h(x) are non-zero and

with different sign. In fact, it is immediate to conclude that

at such point one has fs(x) = 0, being a pseudo-equilibrium

for (A.29). Reciprocally, if x is a point of Σs with fs(x) = 0
and it is not a tangency point, both vector fields are anti-

collinear at the point. If for instance at such point we assume

Lf+h(x) < 0 < Lf−h(x), i.e. x ∈ Σas, we conclude that two

orbits, one in S− and another in S+, collide with opposite

directions and determine a rest point for the global vector

field. This rest point, in a different way from that of true

equilibria, can be achieved in finite time from the points of

these two orbits, which can be seen as defining a kind of stable

one-dimensional invariant manifold for the pseudo-equilibrium

point.

Proposition 2: Under the assumption Lgh(x) < 0 for all

x ∈ Σas, the de-singularized sliding vector field

fds(x) = Lfh(x)g(x)− Lgh(x)f(x), (A.40)

and the sliding vector field (A.37) are topologically equivalent

in Σas, that is they have identical orbits and the systems are

distinguished only by the time parametrization along the orbits.

Therefore, pseudo-equilibria of (A.37) are also equilibria for

(A.40) and the discontinuity manifold Σ remains invariant

under the flow generated by fds.

Proof. See [17].

If Lgh(x) = 0 for some x ∈ Σs, then we have Lf−h(x) =
Lf+h(x) = 0, and from (A.32) this common value vanishes.

Thus the point belongs to the boundary of Σas, where the

two tangency sub-manifolds of Σ intersect, and is called a

singular sliding point (double tangency point). Furthermore,

if x is a singular sliding point of the vector field (A.37) then it

is a standard equilibrium point for the de-singularized sliding

vector field, so that fds(x) = 0. See [18] for details about

possible intricate dynamics around these points.

Also, we can take advantage of the invariance of Σ under

the flow determined by fds and, after a change of variables

if necessary, reduce the dimension of the problem by one.

This can be done in most cases by a simple projection of the

dynamics in Σ onto one of the coordinate planes; it suffices

to eliminate one of the state variables through the condition

h(x) = 0 defining Σ.

The moral of the above approach is that, once assured

the attractive character of Σas, although we cannot forget

the global dynamics, we can focus our attention on the fds-

dynamics on Σ, and specially on Σas. The usefulness of this

methodology becomes clarified in Section III.
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