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Nonlinear Analysis of Relativistic Harmonic 
Generation by Intense Lasers in Plasmas 

E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstruct- A linearly polarized, ultra-intense laser field in- 

duces transverse plasma currents which are highly relativistic 
and nonlinear, resulting in the generation of coherent harmonic 
radiation in the forward direction (i.e., co-propagating with the 
incident laser field). A nonlinear cold fluid model, valid for 
ultrahigh intensities, is formulated and used to analyze relativistic 
harmonic generation. The plasma density response is included 
self-consistently and is shown to significantly reduce the current 
driving the harmonic radiation. Phase detuning severely limits 
the growth of the harmonic radiation. The effects of diffraction 
are considered in the mildly relativistic limit. No third harmonic 
signal will emerge from a uniform plasma of near infinite extent. 
A finite third harmonic signal requires the use of a semi-infinite 
or finite slab plasma. For an initially uniform plasma, no second 
harmonic radiation is generated. Generation of even harmonics 
requires transverse gradients in the initial ptasma density profile. 

I. INTRODLICITON 

HE interaction of ultra-intense laser pulses in plasmas is T rich in a variety of phenomena [1]-[22]. These phenom- 

ena have gained particular relevance due to the development of 
compact lasers which produce ultrashort pulses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5  1 ps) at ul- 

trahigh powers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 1 TW) and intensities (2 1 O l 8  W/cm2) [2], 
[23]. For example, the production of harmonic radiation may 

occur by several mechanisms. At modest intensities, lasers 
interacting with neutral gases have been observed to produce 

coherent harmonic radiation at well past the 53St harmonic due 
to atomic effects [13]. At ultrahigh intensities, a gas is readily 

ionized and the effects of the free plasma electrons become 
exceedingly important. The ionization process itself results in 

electron currents which can produce harmonic radiation [ 141, 

[15]. In a fully ionized plasma, harmonics can be produced by 
i) relativistic harmonic generation in the forward direction (the 

propagation direction of the incident laser) [l], [8], [17]-[20], 

ii) stimulated backscattered harmonic generation [ 11, [21], 
and iii) incoherently, by nonlinear Thomson scattering [ 11, 
[22]. Recent experiments on these processes have also been 

performed [2], [15]-[MI. This paper discusses the details 
of process i), relativistic harmonic generation in fully ion- 
ized plasmas. The growth, dephasing, and saturation of the 

harmonics will be analyzed. 
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lncident Laser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWO Radiation w = N w a  

Fig. 1. Schematic of an intense laser interacting with a plasma to produce 
coherent relativistic harmonic radiation in the forward direction. 

An intense laser field interacting with a plasma induces 
transverse currents associated with the quiver motion of the 
electrons. For ultrahigh intensities and linear polarizations, 
the induced plasma current becomes highly relativistic and 
nonlinear, resulting in the generation of coherent harmonic 

radiation in the forward direction (see Fig. 1). The trans- 

verse quiver momentum, pq, of an electron in a 1-D laser 
field is given by pq = mocao, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = eAo/moc2 is 

the normalized vector potential of the incident laser field. 
The quiver velocity, vq, is given by vq = c a o / y l ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
yl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (1 + is the relativistic factor associated with 
the transverse electron motion. Consider a linearly polarized 

incident laser field of the form ao(z, t )  = GO cosBoez, where 

Bo = koz - wot and ko and W O  are the wavenumber and 

frequency of the incident laser field, respectively. In the mildly 
relativistic limit, U; << 1, the quiver velocity is sinusoidal. 

At ultrahigh intensities, U; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, the quiver velocity contains 

a spectrum of harmonic components. This nonlinear electron 

quiver motion leads to the generation of relativistic harmonic 
radiation [l] ,  [8], [17]-[20]. The laser strength parameter, bo, 
is related to the intensity, IO, of the incident laser field by 

LO E 8.5 x 10-10Xo[pm]I~'2[W/cm2] (1) 

and to the laser power, PO, by Po[GW] N 21.5(~ioro /Ao)~,  

where TO is the spot size of the Gaussian transverse profile 

and XO = 27r/ko is the incident laser wavelength. For A0 1: 

1 pm, ultrahigh intensities 10 2 10" W/cm2 imply 6; 2 1 and, 
hence, highly nonlinear and relativistic electron motion. Such 

intensities are currently available from compact laser systems 

based on the method of chirped-pulse amplification [2], [23]. 

Relativistic harmonic generation was first described and 
analyzed by Sprangle, et al. [8]. In [8], the independent 

variables < = z - ct and r = t were used along with 
a quasistatic plasma response. Expressions were derived for 

the growth of the harmonic radiation in the linear regime 

in which the harmonic field amplitude is proportional to the 

laser-plasma interaction distance, L. These expressions are 
qualitatively valid for interaction distances less than the phase 
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detuning length, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACTd.  Use of the variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,r along with 
the quasistatic approximation is not adequate to accurately 

describe saturation of the relativistic harmonics by phase 
detuning. More recently, by using the variables E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - V p h t  

and T = t ,  where vph is the phase velocity of the incident laser 

field, along with the quasistatic plasma response, the authors 

accurately analyzed the saturation of the relativistic harmonics 
by phase detuning ‘[l]. Independent analyses of saturation of 

the third harmonic by phase detuning have also been recently 

performed [19], [20]. 

This paper is organized as follows. The remainder of 

the introduction describes the basic physics of third har- 

monic generation using a simplified 1-D model in the mildly 
relativistic limit, << 1. The importance of collective, 

space-charge, and detuning effects are discussed. It is shown 
that the self-consistent plasma density response significantly 
reduces the source current driving the harmonic radiation. 

Phase detuning places a severe limit on the growth of the 

harmonic radiation. In Section 11, a 1-D nonlinear model valid 

for ultrahigh intensities, iii 2 1, is formulated and used to 

study the generation of coherent radiation at odd harmonics. 

A general expression for the nonlinear index of refraction and 

the dispersion relation for a laser field in the limit 6; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 
are presented. The collective plasma response is included self- 

consistently and the saturation amplitude of the harmonics by 

phase detuning is calculated. This is done in the long pulse 

limit, C T ~ ;  >> A,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71; is the incident laser pulse duration 
and A, = 2.rrc/wP, where w, is the electron plasma frequency. 

For a TL = 1 psec laser pulse, c q  >> A, implies no >> 10l6 
~ m - ~ ,  where no is the ambient plasma density. In Section 

111, the effects of diffractive spreading of the radiation fields 

are determined using a 3-D model in the mildly relativistic 
limit, iig << 1. Third harmonic generation from semi-infinite 

and finite slab plasmas are analyzed. The effects of transverse 

gradients in the initial plasma density are discussed, which lead 

to the generation of radiation at even harmonics. A conclusion 
is presented in Section IV. 

A. Quiver Model, Collective Effects and Detuning 

The process by which relativistic effects produce coherent 
harmonic radiation may be understood by considering a sim- 

plified “quiver” model, which includes only the effects of the 

relativistic electron quiver motion. Other effects, such as the 

plasma density response, will be discussed below. A linearly 
polarized laser field will be assumed, ao(z, t )  = i iocosB0. 
In the quiver model, the transverse plasma current is J ,  = 
-enOv,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, is the relativistic electron quiver velocity 
(discussed above) and no is the ambient plasma density. The 

quiver current J ,  acts as the source term in the wave equation 

which drives the harmonic radiation, (V2 - d2/c2dt2)a = S,, 
where 

s, N ICp260 cos Bo (1 + ii; cos2 Bo)  -ll2 (2) 

of the third harmonic power to the fundamental is P3/Po N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( i i ~ k ~ L / 1 6 k 0 ) ~  R,, where L is the laser-plasma interaction 
length and L < Ld has been assumed, where Ld is the 

detuning distance (discussed below). Hence, in the quiver 
limit, ~3 - L2ngIi. 

The quiver model assumed that the plasma response is 
dominated by the electron quiver motion. This is an over- 
simplification and collective plasma effects, i.e., the plasma 

density response, cannot be neglected. Including the density 
response, Sn(z, t ) ,  in the transverse current gives J l  = 
-e(no + Sn)vl. Letting v 1  = U ,  gives S = k:ao(l + 
&/no - ug/2), where the term a$/2 arises from expanding 
the relativistic factor, assuming U;  << 1. Using 1-D cold fluid 

theory, the density response 6n may be calculated, giving 

Hence, the effect of including the density response is to reduce 

[7], [8] the source term for the third harmonic, - exp(f3i&), 

by the factor 3w,2/4w; << 1 as compared to the quiver 
model. The power in the third harmonic will be reduced 

by the square of this factor, P3IPo = R , ( ~ W : / ~ W O ~ ) ~ .  

Hence, in the 1-D limit, P3 - L2niIr,”. Physically, this 

reduction arises from the longitudinal ponderomotive force, 

F, - -V,ai N koiigsin2r90. This modulates the density, 

&/no - exp(f2iBo), in such a way that it nearly cancels 
(to order w,”/wi) the contribution from the relativistic factor, 

&2. In the absence of the space charge potential, w i  + 0, 

this cancellation is exact and no third harmonics are generated 

in the 1-D limit. 

The harmonic radiation will reach a maximum amplitude 
after a detuning distance [I], [19], [20], L = Ld. The phase 

velocity up of an electromagnetic wave of frequency w in a 

plasma is given by vp/c  N l+w;/2w2, where w:/w2 << 1 and 

U; << 1 have been assumed. The phase velocity of the incident 

laser, w = WO, is greater than that of the third harmonic, 
w = 3Wo. Hence, the third harmonic, which is being driven by 

the incident laser, eventually becomes out of phase with the 

incident laser. The maximum amplitude of the third harmonic 
occurs after the detuning distance defined by LdAv,/c = 
A3/2, where AV, = 4 ~ ; / 9 w ~  is the difference in the phase 
velocities of the incident and third harmonic fields and A3 N 

A013 is the wavelength of the third harmonic. Hence, Ld 21 

3A;/8Ao, where A, = 2.rr/kp is the plasma wavelength. The 
maximum amplitude of the third harmonic power at saturation 
may be estimated by setting L = Ld, giving P3/Po N 

(ii0A0/Ap)4%. As an example, consider a A0 = 1 pm laser with 

IO = 5x1Ol7 W/cm2(& -N O.6)and a plasma of density no = 
10igcm-3(A, N 11 pm ). The third harmonic power is given 

by P3/Po N 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo-’. The detuning length is prohibitively 
short, Ld N 45 pm. The third harmonic pulse length is 

approximately equal to that of the incident laser pulse. 

and w, = ck, = ( 4 ~ e ~ n o / m ) l / ~  is the plasma frequency. 

In the limit iii << 1, the denominator in (2) may be ex- 

panded and the component driving the Nth odd harmonic 

( w ~  = Nwo) may be determined. For example, the ratio 

11. NONLINEAR FORMULATION 

The 1-D fields associated with the laser-plasma interaction 

can be described by the normalized transverse vector potential, 
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a(z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e A l ( z ,  t ) /moc2,  and the normalized scaler poten- 

tial, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ( z ,  t )  = e@(z, t ) /mocz.  Coulomb gauge will be used, 

V - A  = 0, which implies A,  = 0. It is convenient to introduce 
the independent variables < = z - cPtt and r = t, where Pt 
is the normalized transform velocity which will be specified 

below. Using the €,, T variables, the normalized potentials a 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 satisfy the 1-D wave equation and Poisson's equation, 

which are given by 

speaking, for a general laser field of the form a0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUO(<,T), 

the T derivatives may be neglected provided that the transit 

time of the electrons through the laser pulse, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATL (= laser pulse 
duration), is small compared to the evolution time, TE, of the 
laser envelope, r~ << r ~ ,  i.e., the quasistatic approximation 

[8]. Assuming a quasistatic plasma response, (6x7) imply the 

existence of two constants of the motion, 

.(Pt - P z )  = Ptno, (sa) 

(8b) Y ( 1  - P t P z )  - $ = 1. 

Equations (8aHb) may be solved to give expressions for the 

fluid quantities n, Pz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy in terms of the fields a and 4, 

( 9 4  

where y t 2  = 1 - P,", wp = ck, = ( 4 7 ~ ~ n o / m o ) ~ / ~  is 

(9b) 

(9c) 

( 9 4  

the ambient plasma frequency, n((, T) is the plasma electron 
density, no is the ambient density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$5,~) = (I - p2)-'/' 

and D(<, T) = w/c is the normalized electron fluid velocity. In 

Pt - (1 - ~/112r,")'/2 
= 1 - pt(l - 1/Tpy,2)1/2' 

n/yno = ~ t ( l +  $)pl( l  - ~ /q+& ' /~  

is the relativistic factor associated with the plasma electrons 

deriving the right side of (4), use was made of the fact that 

the transverse canonical momentum is invariant and that prior 

to the laser interaction the plasma is assumed to be stationary, 

The electron fluid quantities n, PZ and y are assumed to 
satisfy the cold, relativistic fluid equations. Using the €,, r 
variables, the continuity equation and the axial momentum 
equation may be written as 

a l a  % [n(Pt - P,)] = - -n 

Y = r,"(l+ 4) [l - Pt(1 - l / ? P Y , " Y ]  , 

where +2 = (1 + 4)2/(1 + a2) .  Notice that for the case 

field in a plasma. 

Using the above expressions for the fluid quantities, expres- 

sions for the normalized transverse plasma current, kinalnoy, 
and the normalized charge perturbation, ki(n/no - l), can be 

found and inserted into the wave equation and Poisson's equa- 
tion (4)-(5). This results in two coupled nonlinear equations 

for the potentials a and 4, 

i.e., PI = a/?. Also, the ions are assumed to be stationary. Pt = pph, y t 2  = yph -2 < 0, since Pih > 1 for a radiation 

(6) ar 

respectively. Equations (4)-(7), together with y = (1  + 
a2)'/'/(1 - p,")'/', form a complete set of fully nonlin- 

ear, relativistic cold fluid equations which describe the 1-D 
laser-plasma interaction. The 1-D assumption is valid provided 

that the radiation spot size rs is large compared to the plasma 

wavelength A, = 27r/kp, i.e., r, >> A,. The cold fluid 
assumption is valid provided that i) the electron quiver velocity 
is much greater than the transverse thermal velocity and ii) the 

phase velocity of the driven plasma oscillations is much greater 
than the axial thermal velocity, as is the case in the following. 

The primary focus of this section is to determine the 
coherent harmonic radiation excited by a long pulse incident 

laser field, CTL >> A,. To study coherent harmonic radiation, 
it is convenient to set the transform velocity, Pt, equal to the 
phase velocity, D p h ,  of the incident laser field, Pt = Dph.  

The incident laser field is of the form a0 = 60 cos k ~ < ,  where 

ko€, = ko(z - c&t), Pph  = W O / C ~ O  is the normalized phase 

velocity, WO is the frequency, and is the wavenumber of the 

pump laser field. The pump laser amplitude is slowly varying, 

la&/a<l N &/CTL, and is assumed to be independent of 
T ,  i.e., pump depletion effects are neglected. The effects 
of diffraction are consider in Section 111. In determining 
the plasma response to an incident laser field of the form 

a0 = ao(<), the T derivatives are dropped in ( 6 x 7 ) .  Strictly 

Equations (10)-(ll) completely describe the nonlinear gen- 
eration of relativistic harmonic radiation in 1-D within the 

quasistatic approximation, i.e., TL << TE.  For the case where 
the transform velocity, Pt, is set equal to the phase velocity, 

Pph ,  of the incident laser, ( 1 0 x 1 1 )  may be used to analyze 
relativistic harmonic generation, as is done in detail in the 

following. For the case where Pt is set equal to the group 
velocity, P,, of a laser pulse with a pulse length N A,, (11) 

may be used to analyze laser wakefield generation [5]-[9]. The 
limiting case of Pt = 1 has been analyzed in detail in [8]. 

It is of interest to define the nonlinear index of refraction 

n~ by setting the right side of the wave equation (10) equal 

to (w2/c2)(1 - .;)a, which gives 

In particular, the slaw part of nR determines the dispersion 

relation for the radiation field a ,  whereas the fast part of 
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n R  determines the generation of harmonic radiation, as is 

discussed below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Dispersion Relation 

TO describe the generation of relativistic harmonics, the 
electrostatic potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is separated into slow and fast com- 
ponents, 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4s + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4f, where 4s is approximately constant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l@s/atl << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlIC041, and 184f/atI N Ik041. The fast com- 
ponent qhf contains the harmonic content and is important in 

determining the source current which drives the N t h  harmonic 

radiation. The slow component 4s is important in determining 

the dispersive characteristics of the harmonic radiation as well 

as of the pump laser field. In the following, it is assumed 

that q!$/(l + 4s)2  << 1. Furthermore, it is assumed that the 
vector potential of the harmonic radiation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaN, where N is the 
harmonic number, is much less than that of the pump laser, 

i.e., I a ~ l / l i i o l  << 1. 
The dispersion relation is determined by examining the slow 

part of the TA:, (.12). Assuming l(kpy,h)-2d2&/dE21 << 1, the 
dispersion relation for the radiation field, a, to leading order 

(i.e., neglecting 4f), is given by 

W i / C 2  = k; + g/(l + d S )  (13) 

where a = aexp(ik,z - iw,t) has been assumed with a 

slowly varying compared to the phase factor exp(ik, z - 
iw,t). Equation (13) holds for the pump laser field (w, = 
WO, IC, = ko) as well as for the various harmonics. Notice that 
the transform velocity is the phase velocity of the incident 

laser field, P p h  = wo/cko, and, hence, 7;: = 1 - ,l3& = 
-k;/k;(l + 4s) < 0. Furthermore, for a nonevolving, long 
incident laser pulse of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa0 = i i g  exp(ik0z - iwot), the 

quantity (1 + 4s) is approximately constant, as is discussed 
in the following. 

Consider a long pump laser pulse with a slowly varying 

envelope, latio/a(l N I&o/cTL~, where TL is the laser pulse 
duration, propagating in a plasma with crL >> A,,Ao. The 

slow part of the potential $s may be determined from examin- 

ing the slow part of Poisson's equation (11). In the long pulse 

limit, a24,/aE2 may be neglected and (11) implies that, to 
leading order (i.e., neglecting 4f) [8], [21], 

(1 + (bS) = (1 + &32)1'? (14) 

In particular, notice that in the long pulse limit, CTL >> A,. Ao, 
propagation (i.e., real IC) requires wi/w2(1 + C+$s) < 1. This 

implies that for intense pump laser fields with i i o  2 1, 
propagation in an overdense plasma in which w i / w 2  2 1 may 

be possible. Physically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAys = 1 + 4s = (1 + ? ~ ; / 2 ) ~ / ~ ,  and the 

reduction in the effective plasma frequency, ~ , / y ; / ~ ,  is due 
to the relativistic quiver motion of the electrons. 

It should be emphasized that (14) only applies to the long 

pulse limit CTL >> A,, Ao. For TL = 1 psec, TL >> A, implies 
plasma densities W O  >> 10l6 cmP3. In the short pulse limit, 

A, >> CTL >> XO, it can be shown [8], [21] that ldSl << 1 

provided CTL << A,/( l  + ii;/2)'I2. Physically, lq5sl << 1 
holds for pulses sufficiently shorter than A,, since A, is 

the characteristic length scale (in the frame) for collective 
electron motion (i.e., collective electron motion leading to 

charge separation and significant values of 4s does not occur 

on time scales sufficiently shorter than l/wp). 

B. Plasma Response 

The source current driving the harmonic radiation is de- 
termined by the harmonic content of nR. As indicated by 

(12), nR may be specified entirely in terms of 4. Hence, it 
is necessary to determine the various harmonic components 

of 4. This is done by analyzing the plasma response to the 

pump laser field, a0 = 60 cos /cot, via Poisson's equation (11). 
The various harmonic components of 4f = Ce+2e, where 

+2g N cos(2tIC0~) with ! = 1 , 2 , 3  ..., may be determined 
analytically in the limit E = iE;/k;(l + ( p s )  < 1. In this limit 

I$p/(l + 4s)l N ce,  and the various harmonic components of 
$f may be solved order by order in E .  

To solve for 4f via ( l l ) ,  two expansions will be used. 
Assuming I($1y,h)-~1 5 E ,  gives 

where (2!-l)!! = 1 .3 . .  . :(2.!-1) and (2C)!! = 2 . 4 . .  . :(2!). 
Assuming l$f/(l + $ s ) l  5 E ,  gives 

O= 
2t(2t + 1). . . (2t + m - 1) .c m! 

m=O 

Letting 4f = C,42e, where 4 2 e  N E' cos(2lkoE) for 1 = 
1 , 2 , 3 . .  ., and using the expansions in (15a) and (15b), allows 

42e to be solved order by order in E .  For example, 4 2  (order 
E ) ,  4 4  (order c2) and 4 6  (order c3) are given by 

where the subscript (Q)' refers to the tth harmonic component 

of Q, i.e., (&)e N exp(tlco(). These equations can be solved 
iteratively to yield 
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harmonic radiation. It is convenient to represent the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANth 
harmonic radiation field, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa N ,  by the form (17c) 

For order of magnitude scaling purposes, (17aH17c) imply 
that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21th harmonic component of $f scales as 

Knowing the harmonic components of #f, it is possible to 

determine the harmonic components of the source current S 
which drives the harmonic radiation. The source current S is 

given by the right side of (lo), 

Using the expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
03 

(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 4 - l  = (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4J1 [-4-J(1+ 4,)-lIm (20) 
m=O 

aN = ii, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T) exp ( i k N <  - i A w , ~ )  (24) 

with Aw, = wN - P p h c k ,  and k,J - AW,T = k,z - w N t ,  
where k, and w ,  are the wavenumber and frequency of the 

Nth harmonic radiation field. Inserting this into (10) gives a 

reduced wave equation for the harmonic amplitude ii,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(g - 2iwN) &&, = -c2SN exp(iAw,T) (25) 

where w, and k, satisfy the dispersion relation, (13), with 

kN = Nko and N = 21 + 1. The amplitude of the source 
current for the Nth  harmonic, S,, is given by S,  = 
S, exp(iNko<), where S, is given in (22)-(23). 

The reduced wave equation (25) has the solution 

where 
allows the harmonic components of S to be solved order by 

order in E. For example, the third, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5'3, fifth, Sg, and seventh, 
S7, harmonic components are given by (21) at the bottom of 

this page. Using (17aH17c) gives 

- C 2 @ p h k :  = -___ 

For small times ~ A w , T ~  << 1, the harmonics grow linearly 

in time [8], 3k;': cos 3k05 

32k:(1+ 4s)4 ' 
(28) 

CT 
s3 = - P a )  

5 5  = (22b) 

s7 = - 

6, N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-is, - 
3k;ii: COS 5kot 2Nko * 

The Nth  harmonic reaches its maximum amplitude [l], 

[19], [20] after a dephasing length C T d ,  = nc/ lAw,  1, where 

AW, = ck, (p, - p p h )  and p, = w,   cl^,, i.e., 

28k,4(1+ 4 s ) 7  ! 

5k;iiL;: COS 7kot 

3.210k,6(1 + + s ) l o .  (22c) 

For order of magnitude scaling purposes, (22aH22c) imply 
that the (21 + l)th harmonic component of S scales as k; 

N2k;(1+ 4 s )  

G ( l +  4 s )  
- (1 + " ,"'] . (29) 

(21 - l)!! 2e ';e+1 cos(21 + l)kot 
S2e+1 - ( - l ) e k i m  (k) [(I + $ p + 1  ' 

(23) 

C. Harmonic Radiation For k;/k;(l + 4s)  << 1, (29) may be expanded giving 

NXE(1+ 4 s )  

cTdN (N2 - l ) X O  * 

The above expressions for the harmonic components of the 

source current, S2e+l, may be used in the wave equation 

(lo), to determine the growth and saturation of the relativistic 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The amplitude of the normalized vector potential of the harmonic 
radiation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16, I, for the first three harmonics, ilr = 3, 5, and 7, versus the 
normalized propagation distance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC T / A O ,  for a A0 = l p m  wavelength laser 
of intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl o  = 6.i x 10" W/cm2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i o  = 2 .2 )  interacting with a plasma 
of density no = lozo cm-3 (A, = 3.4j~m).  

The maximum amplitude of the N t h  harmonic at CT = CTdN 

is given by 

In particular, for the third, fifth, and seventh harmonics, 

An order of magnitude expression for the maximum amplitude 

of the (2! + 1) harmonic is given by 

Equations (32)-(33) are valid for all 60, including 60 2 1. It 

is easily verified that 16, l m a I  << 60. A plot of the harmonic 

radiation amplitude 16, 1 verses the normalized propagation 

distance cT/Xo is shown in Fig. 2 for the first three harmonics 

for the parameters XO = 1 pm, A, = 3.4 pm (no = lo2' 

cmP3) and 60 = 2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IO = 6.7 x 10l8 W/cm2). 
At saturation for the Nth harmonic, i.e., c r  = C T d N ,  the ratio 

of the power in the Nth harmonic, P,, to the power in the 

pump radiation field, PO, is given by PN/P0 = N216,12/iLi. 
Using (32)-(33), this can be written as 

and C7 = 2.3 x Furthermore, driven relativistic 

harmonic generation is a nonresonant interaction; hence, the 

process is not sensitive to thermal plasma effects. 

As an example, consider an incident laser with PO = 10 TW, 
XO = 1 pm and spot size ro = 10 pm (60 = 2.2), interacting 
with a plasma of density no = lo2' cm-3 (A, = 3.4 pm). 
For the third (and fifth) harmonic, PN/Po = 2.2 x 
(4.6 x 10-l') and L d  = 8.0 pm (4.3 pm). Hence, 220 MW 
(4.6 kW) should be observed at a wavelength of X = 3300 A 
(2000 A). Clearly, the limitations due to phase detuning are 

restrictive. If a scheme for phase matching could be conceived, 
the interaction distance, L, and thus the harmonic power, 

PN - L2, could be increased. 

111. DIFFRACTIVE EFFECTS 

The above nonlinear theory indicates that the N t h  harmonic 
saturates (i.e., reaches maximum amplitude) after a detuning 
distance CTdN = m/ lAw, I ,  where A w ,  = ck,(P, - p p h ) .  

In particular, for the third harmonic, CTd3 N 3XE( 1 + 4,)/8X0. 
Physically, saturation by detuning arises due to the fact that 
the phase velocity of the fundamental pump radiation is 
greater that than the phase velocity of the harmonic radiation, 

i.e., Pph > P,. In a realistic 3-D configuration, however, 
diffractive effects will limit the effective radiation-plasma 

interaction length to a few vacuum Rayleigh lengths, ZR, 
where ZR = kor,2/2 and ro is the minimum spot size of 

the radiation field (assumed to be Gaussian). For interaction 
distances L << TZR, diffraction effects are unimportant 
and the 1-D theory is an adequate description. In the limit 

TZR 5 L, however, and in particular TZR 5 cTdN, diffractive 
effects are important and must be included in the analysis. 

In the following, the generation of second and third har- 

monic radiation is analyzed using 3-D relativistic fluid equa- 

tions in the limit a i  << l .  Higher order harmonic generation 
can be consider by solving the fluid equations to higher 

order in ai. Furthermore, the radiation fields are assumed 
to undergo vacuum diffraction. Notice that in the regime 

in which 3-D effects are important, the condition TZR < 
c r d 3  implies 15 = 2kir;/3 < 1. Hence, the effects of 

relativistic optical guiding [3]-[ 101, which become important 
when PIP, = kir;iii/32 2 1, may be neglected in the 3-D 

regime when 6; << 1. Assuming vacuum diffraction, a long 
pulse, Gaussian, incident radiation field evolves according to 

a(r,  z ,  t )  = a, expi& where 00 = koz-wot and the radiation 
envelope a, is given by [24] 

&or0 r2 
a,(r, z )  = - exp -(I  - ia)- - i tan-' a] (35) 

where r ,  = ro(l+ct2)1/2 is the radiation spot size, a = ~ / Z R  
and z = 0 is the location of the laser focus at which T,  = TO. 

A. 3-0 Formulation 

The 3-D pump laser interaction with the plasma electrons 
will be modeled using the cold, relativistic fluid equations. In 

particular, the momentum equation and the continuity equation 

may be written as 

T S  [ r,2 

I d  l a  1 
- - u = V 4 + - - a - - u x ( V x a )  (36) where CN are constants which decrease rapidly with increas- 

ing harmonic number, i.e., C3 = 4.9 x C:, = 2.4 x c d t  c a t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 
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c at  

Furthermore, the third-order transverse wave equation, de- 

(37) scribing the generation of third harmonic radiation, is given 
- - ( p y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ V .  (pu) = 0 

respectively, where U = p/mc is the normalized momentum, 
y = ( l + t ~ ~ ) l / ~  is the relativistic factor, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = n/(noy). The 

evolution of the normalized potentials are determined from the 
wave equation and Poisson's equation, which may be written 

as 

I d  
( ~ 2  - $$)a = k i p +  - - V 4  c at  (38) 

(39) 
2 - 2  

V 4 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIc,(PY - 1) 

respectively, where Coulomb gauge, V . a = 0, has been 

assumed. 
To study the generation of the third harmonic, the above 

equations will be solved perturbatively, i.e., order by order in 

the pump laser amplitude i i ~ ,  assuming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6; << 1. The various 
plasma quantities, denoted by Q, will be represented by an 

expansion Q = QO + Q1 + QZ + . . ., where Qn - U:. The 
pump laser vector potential is assumed to be known and given 

by a01 = a, exp i60e,, where a,(r, z )  is the vacuum solution 
given by (35). The effects of pump depletion and of various 

laser-plasma instabilities will be neglected. The zeroth order 

plasma quantities (in the absence of the pump laser) are given 

by uo = 0, yo = 1, po  = 1 and do = 0, i.e., the plasma 
is assumed to be initially uniform, stationary, and neutral. To 

first order in the normalized vector potential, (36) implies that 

u1 = ao, which is simply the quiver motion of the electrons. 

Furthermore, (36H39) imply p1 = y1 = 41 = 0. The first 
order form of the wave equation (38) implies that the pump 

laser field obeys the dispersion relation wi/c2 = 
To second order, (36)-(39) imply that quantities 42,  u2 and 

p 2  are related to a i  by 

+ k;. 

1 a2 
( ~ 2  - -- c2 at2 - k i )a31  

at l a  >, = (%32ao* + k i U 3 l +  --v143 . (43) 

where (. . .)n signifies the nth harmonic component. 
In particular, to determine the source term driving the 

third harmonic radiation, it is necessary to determine the fast 

(i.e., third harmonic) components of 43 and u3. Assuming 

d3, u3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN exp 3200, (42a) and (42b) imply 

iC 

3Wo 
u3 II --V(ao ~ 2 ) 3  

where terms of order k;/ki << 1 and l l r ik ;  << 1 have been 
neglected. It can be shown that the leading order contributions 

of each of the three terms on the right side of (43) are 
of the same order. However, to leading order, k;u31 + 
Vld43/dct = 0, and, hence, the wave equation describing 
third harmonic generation is given by 

where higher order terms (of order k:/ki and l/rgkg) have 

been neglected. The transverse wave equation (45) along with 
the second harmonic component of p2, 

(LE C2at2 +kp 2) p2 = ( V2 - -- a2 - k 2  .) - (a:)2 (46) c2 at2 

completely determine the generation of third harmonic radia- 
tion in 3-D in the limit U: << l. (40a) 

(40b) B. Third Harmonic Generation 

The pump laser is assumed to be a long pulse, Gaussian 
- k;) :. a' (40~)  laser beam which is diffracting according to the relation 

ao(r, z ,  t)  = a, expi00, where a,(r, z )  is the envelope given 
by (35) and wi/c2 = k; + kg. Using this form in (46) gives 

Furthermore, (40a) and (40c) imply that the second-order wave 
equation describing the generation of the second harmonic may 
be written as p2  II -- 1 [!rz/c2 + m] 1 a: exp 2200. (47) 

2rik,2 8 

1 a2 
(V2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7s - k;)a2 = 0. (41) Hence, the source term driving the third harmonic radiation 

is given by 

a: exp 3i00. (48) 
Hence, no second harmonic radiation will be generated. 

are related to U: by 
To third order, (36)-(39) imply that quantities 43 and u3 ki(p2ao)3 21 

" -  
It is convenient to denote the third harmonic radiation field, 

a3(r, z,  t), by the following form, 

4 r ,  z ,  t) = f(z)aV3(r, 2) exp 203, (49a) 

r2 

rs3 

($$+k:)V243 = k i [ U 2 ( a o . u 2 )  - --V.(aopz) I d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c at 

(4% 

(42b) aV3(Z, r) = -(1 - i c x 3 ) T  - i tan-' a31 (49b) l a  -_  atU3 = v43 - V(a0 . u2) 
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frequency and wavenumber, ~ , 3  = ~ g ( 1  + a;)ll2 is the 

third harmonic spot size, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3 = z / 2 ~ 3 ,  Z R ~  = k3~3/2 is 
the Rayleigh length associated with the third harmonic, and 

w$/c2 = + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk:. Inserting this into the wave equation (45) 
gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(50) 
a 

2ik3av3 exp( i '33)zf  N $(p2a0)3 

where the right side is given by (48). Letting w3 = 3Wo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T$ = T i / 3  implies Z R ~  N Z R  and 

where Ak = 3ko - k3 = -4ki/3ko. 
For a pump laser pulse which interacts with a uniform 

plasma extending from Zmin < z < zmaX, (51) can be 
integrated giving 

f = I f l -Dl [h(67amax) - h(6, amin ) ] ,  (524  
4 6  1 e-i6a 

h(S,a) = --{ 9 (- 8 + -)- ( l+ ia )  (l+za) 

62 

8 
--e6E1[6(1 + ia)] 

where I f&DI = 13iiiki/27k,21 is the maximum amplitude of 

the third harmonic in the 1-D limit, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = I A k l z ~  = 2k:~,"/3 

El is the exponential integral. 
In particular, consider a finite slab plasma centered about 

the focal point of the pump laser (chosen to be z = 0) which 

extends from zmin = -ZO to zmax = 20. The amplitude 

function f of the third harmonic signal emerging from the 
slab plasma at z = zo is given by 

(6 = n z R / C T d s ) ,  amin = zmin /zR ,  Qmax = Zmax/ZR and 

f = 2l f l -Dl Im[h(6,  Q O ) ]  (53) 

where Im[h(S,ao)] is the imaginary part of h(6,ao) and 

(YO = ZO/ZR. The ratio of the third harmonic power to the 
pump laser power is given by 

P3/Po = W$T$I  f 12/W:Tgc?g = 31f12/iig. (54) 

Hence, for a slab plasma centered about the laser focus, 

P3 - 41Im[h(S,a0)]1~. A plot of the function H(6,ao) = 
41Im[h(6,  YO)]^^ verses the normalized plasma slab width, ao, 
is shown in Fig. 3 for S = 0.1, 1.0, and 10.0. Notice that 
for 6 = 10.0 (c7d3 << TZR)  and a0 << 1, the first peak, 

which occurs when the slab width is equal to the detuning 

length, 220 = c ~ d , ,  is close to the 1-D value of H(6, ao) = 1. 

For 6 = 0.1 (c7d3 >> sZR),  the maximum amplitude of 

the third harmonic occurs for a plasma length of N ZR, at 

which H(6,ao) N 1/3. In the limit of a slab plasma with a 
spatial extent large compared to ZR, i.e., zo >> 2, ((YO >> I), 
f + fr, where fI = Ifl-Dlao2sin(6(Yo). Hence, fI + 0 
as (YO --+ 00, i.e., the third harmonic radiation emerging from 

a plasma centered about the laser focus vanishes for plasma 

dimensions large compared to ZR. The conclusion that no 

third harmonic is generated by an infinite medium is also 
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Fig. 3. The function H(6,ao),  proportional to the third harmonic power 
emerging from a plasma of width 220 centered about the laser focus, verses 
a0 = z o / Z ~ ,  for 6 = 2kEr;/3 = 10.0 (solid curve), 1.0 (dashed curve) and 
0.1 (dotted curve), where ZR = kor,2/2 is the Rayleigh length. 

the case for third harmonic generation due to the nonlinear 

susceptibility associated with bound electrons [Z]. 
A finite third harmonic signal, however, may be detected 

by focusing the pump laser on the trailing edge ( z  = 0) 
of a plasma slab extending from Zmin 5 z 5 Zma, = 0, 
with dimensions large compared to ZR, i.e., Zmin << -ZR. 
In practice, this may be achieved by focusing the pump 

laser pulse on the trailing edge of a pre-ionized gas get. 
Approximating amin = -00 and amax = 0 gives f = fs, 
where 

g(6) = (6/8) [l - 6e6E1(6)]. (55b) 

Furthermore, it can be shown that 0 5 1 - 6e6El(6) < 
(1 + 6)-l. Hence, g2 << 1 and may be neglected. The 

amplitude of the third harmonic emerging from the plasma 

is given by la31 = I fsl 1 ~ ~ 3 1 .  At the laser focus, this is a factor 

of 4 / 9  smaller than that obtained from the 1-D theory in the 
limit iii << 1. Hence, for a semi-infinite plasma including the 
effects of diffraction in the limit iii << 1, the ratio of third 

harmonic power to the pump laser power, P3/Po = 31 f:l/&i, 
is given by 

P ~ / P O  N 3 x 1 0 - 4 ( ~ 0 i i 0 / ~ p ) 4  (56) 

which is a factor of (4/9)2/3 N 1/15 smaller than the 

corresponding 1-D expression for the maximum power. 

C. Second Harmonic Generation 

The above results indicate that for an initially uniform 

plasma density, no second harmonics are excited. This is true 
even when the effects of a finite incident laser spot size, TO, 

and the transverse gradients associated with self-consistent 3- 
D density perturbation are included, i.e., (41). Generation of 
even harmonics requires that the plasma have initial transverse 
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density gradients prior to the arrival of the incident laser, 

i.e., Vino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0, where no(r) is the initial plasma density 
profile. Electrons undergoing quiver motion in the presence of 

a density gradient produce density oscillations. For a pump 

laser of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 cos Ooe,, the continuity equation, 

to first order in 60 << 1, implies a density oscillation anl of 
the form Snl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: (60sin00)Vxno/ko. This produces a source 
current 5 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN k~(Snl/no)60cosBo - sin200 which drives 

the second harmonic radiation. The amplitude of the second 
harmonic radiation may be estimated by approximating the 

density gradient by Vxno N -nO/r,, assuming r: >> ri 
and neglecting the effects of diffraction. At saturation, i.e., 

after a detuning length L d 2  = 2A:/3Ao, the amplitude of the 

second harmonic is given by 1621 21 6g/3k0rp. The ratio of 

second harmonic power to pump laser power is P 2 / P o  21 

(60Ao/r,)2% and, hence, P 2  - 1;. Not only do initial 

density gradients lead to the generation of even harmonics for 
linearly polarized incident lasers, it also implies that circularly 

polarized incident lasers will generate harmonics, both even 
and odd. 

Transverse plasma density gradients can occur when a 
Gaussian laser pulse produces intensity-dependent ionization 

of a neutral gas. For laser pulses with peak intensities IO > IS 
(where IS is the saturation intensity for which the gas is 

fully ionized) ionizing a uniform gas, density gradients will 
exist in the “halo” region about the laser focus. This halo 

region is the portion of the interaction region in which the 
gas is not fully ionized and corresponds approximately to 

focal regions in which the laser intensity lies within the band 

Imin < I < 1s (where Imin is the minimum intensity 
required to produce ionization). As the peak intensity, I”, 
increases, one can show that the volume of this halo region 

increases as where a Gaussian laser pulse of the form 
given by (35) has been assumed (i.e., a spherical lens and a 
double cone focal geometry) [26]. Second harmonics will be 

produced from the halo region. The intensity scaling of the 
second harmonic power with peak intensity will tend to be 

dominated by effects associated with the increasing volume of 

the halo region. Hence, for Io > Is, the volume effect implies 

a second harmonic power scaling of P 2  - I i f 2 .  Furthermore, 
in the partially ionized halo region, the production of harmonic 

radiation can be significantly enhanced and/or dominated 

by atomic [13] and ionization [14] processes [17], [18]. In 

long-pulse laser-plasma experiments, filamentation may be 
a dominant mechanism in second harmonic generation [15], 

1271. 

IV. CONCLUSION 

A nonlinear cold fluid model valid in the regime 6; 2 1, 

given by (10) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ll), has been formulated and used to 
analyze relativistic harmonic generation. The self-consistent 

relation (13) and the fast part determined the source current 
for the harmonics. Saturation of the Nth harmonic occurs after 

a detuning length, LdN = C T d N ,  given by (30). The harmonic 
amplitude is maximum when the laser-plasma interaction 

length, L,  is an integer multiple of L d N .  The ratio of saturated 
power in the Nth harmonic to that in the incident laser 

is given by (34). This expression is valid for long lasers 

pulses, CTL >> A, (no >> cm-3 for TL N 1 psec), 
and for interaction distances short compared to the diffraction 
length, L << TZR. Relativistic harmonic generation favors 

the use of high densities and intense lasers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 - 1. The 
saturated power given by (34), in the limit 6; << 1, is a 

factor of b,y(Ao/A,)2(N-1) smaller, where bN are constants, 

than that predicted by the simplified quiver model, which 
neglects the self-consistent plasma response. This reduction in 

the harmonic power by collective plasma effects is supported 

by recent experiments on harmonic generation in pre-ionized 

plasmas [2], [17], [18]. 
The effects of a diffracting incident laser field with a 

finite spot size ro have been analyzed in the limit 6; << 
1. Diffraction is important for interaction lengths L 2 TZR 
(LdN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 TZR implies S = 2kgri/3 5 1 for the third 
harmonic). It is shown that no third harmonic signal emerges 

from a plasma of near infinite extent. A finite third harmonic 

signal requires the use of a semi-infinite or finite slab plasma. 

The third harmonic power emerging from the edge of a semi- 

infinite plasma, which corresponds to the focal point of the 
incident laser, is given by (55) and is a factor of 15 smaller 

than the corresponding I-D saturation power. No second 

harmonics are generated from an initially uniform plasma. 

The generation of even harmonics requires the existence of 
transverse gradients in the initial plasma density. Circularly 

polarized light will also generate both even and odd harmonics 
when initial transverse density gradients are present. 

The most severe constraint on the production of coherent 

relativistic harmonic radiation is that of phase detuning. In a 

dense plasma with no = lo2” cm-3 (A, = 3.4 pm) and a 

A0 = 1 pm laser with Io = 6.7 x 10’’ W/cm2 (60 = 2.2), 
the saturation efficiencies for the third and fifth harmonics are 

P3/Po = 2.2 x lop5  and Ps/Po = 4.6 x respectively. 

At such a high density the detuning lengths are extremely 

short, Ld3 = 8.0 pm for the third harmonic and L d s  = 4.3 pm 
for the fifth harmonic. If a scheme for phase matching could 

be conceived, the interaction distance, L, and, hence, the 
harmonic power, PN - L2, could be dramatically increased. 
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