
143

PROC. OF JSCE, 

No. 252, AUG. 1976

NONLINEAR ANALYSIS OF SPATIAL  FRAMES CONSISTING OF 

MEMBERS WITH CLOSED CROSS-SECTIONS
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SYNOPSIS

A general matrix analysis for elasto-plastic 
spatial large deflections of thin-walled frames or 
arches is developed in this paper. A tangent 
stiffness matrix for an elasto-plastic member with 
closed cross-section and an initial stress matrix 
expressed in terms of internal  forces are written 
with respect to so-called incremental moving co-
ordinate. By the proposed method, the ultimate 
strength including buckling strength in bifurca-
tion problems for arbitrary spatial frames or 
arches subjected to non-proportional loading can 
be analyzed under consideration of growth of 

plastic zones and initial imperfections such as 
residual stresses due to welding. Numerical ex-
amples are shown for the several problems which 
are presently available. Through the comparison 
with other authors' results, the accuracy and the 
efficiency of this method may be recognized.

1. INTRODUCTION

In such technically important structures as long 
span bridges, especially arch bridges, which are 

governed by compressive stresses, finite displace-
ments and partial yielding phenomena have a pro-
found effect on their static behavior. To ignore 
both, as is done in most instability analyses, invites 
major errors, usually on the unsafe side. Almost 
all studies for finite deflections have been so far 
confined to elastic problems, and the plastic analy-
ses have been based on the popular plastic hinge 
theory associated with equilibrium situation in an 
infinitesimal excursion from its original configura-
tion. The plastic hinge theory improved to satisfy 
the plastic flow conditions in the plastic hinges 
seems to be one of useful approaches, at present, for

obtaining an approximation of the plastic  failure 

load1)•`3). However, since the plastic hinge theory, 

which is originally developed for flexural  mem-

bers, cannot include the longitudinal stretch of 

plastic zones and elasto-plastic state of the cross-

sections, it may not give so good solutions for 

the structures composed of the members subjected 

to axial  forces as for those composed of flexural 

members only. Existing elasto-plastic analyses, 

most of which are restricted to special planar 

structures under proportional loading, would be 

considerably complicated for complex structures 

even though they are based on some simplifying 

assumptions. 

The aim of the present study is to develop a 

general matrix  stiffness analysis for three dimen-

sional elasto-plastic behavior accompanying finite 

deflections of thin-walled frames and arches with 

closed cross-sections. This method can also treat 

the ultimate strength, including buckling strength 

in bifurcation problems, for arbitrary spatial 

frames and arches subjected to non-proportional 

loading under consideration of growth of plastic 

zones, for which no method is presently avail-

able.

In the matrix stiffness method concerning geo-

metrically nonlinear problems, a common tech-

nique is to obtain the equilibrium equations be-

tween total nodal forces and total nodal displace-

ments from partial derivatives of the total poten-

tial energy in Lagrangian  expression4). The stiff-

ness matrices derived thus are usually described 

by the first order stiffness matrix corresponding 

to infinitesimal displacements and two additional 

matrices which contain respectively the linear and 

quadratic terms of unknown total nodal displace-
ments. Solving this kind of equilibrium equa-

tions, unknown total nodal displacements will be 

uniquely found for the given nodal forces. This 

fact corresponds to Kirchhoff's theorem regarding 

uniqueness of solution in elastic problems. 

On the contrary, as for the problems where 

the effects of the plasticity of a material should
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be taken into account, the equilibrium state will 

not be uniquely determined for a given set of 

total forces or total displacements except in the 

case of proportional loading, because the stress
-strain relationships in the plastic range are

generally dependent on the history of the strains 

or the stresses. Accordingly, the equilibrium 

equations cannot be described only by the total 

displacements and the total forces without intro-

ducing some complicated description denoting the 

strain history or the displacement paths. Then, 

the equilibrium equations expressed by the cur-

rent stresses are needed. In this paper, the initial 

stress matrix expressed in terms of the current 

internal forces is introduced into the linear  in-

cremental equilibrium  equations5). The equilibri-

um condition for a whole structural system is 

satisfied at each loading step between the given 

total external forces and the current internal 

forces calculated from the summations of  incre-

mental stresses.

Further difficulty is how to estimate the rigidi-

ties of members, especially the torsional rigidity 

of a partially yielded member subjected to com-

bined  forces6)•`11). The absence of an adequate 

way for the precise estimation of the torsional 

rigidities of partially yielded cross-sections seems 

to have hampered the theoretical development in 

the field of elasto-plastic analysis of spatial struc-

tures. In the present paper, these difficulties are 

overcome by extending the procedure reported 

in  Ref. 11). By this procedure, the rigidities of 

elasto-plastic members can be estimated by nu-

merical integrations, which are suitable for a 

digital computer by dividing the structural mem-

bers into longitudinal finite elements and cross-

sectional sub-elements. The effects of initial re-

sidual stresses due to welding, which will play a 

very important role in the ultimate strength 

analysis, can be also easily taken into account 

by this procedure. 

In the existing investigations, to the authors' 

knowledge, the analyses of the elasto-plastic be-

havior for non-proportional loading are very few. 

By applying the proposed method, the analysis 

concerning not only proportional loading but also 

non-proportional one can be performed by solving 

the equilibrium equations obtained herein step 

by step according to the given loading path.

2 . DERIVATION OF EQUILIBRIUM 
EQUATIONS

(  1  ) Coordinate System and Assumptions 

A deformed body, of which strains are small

although deflections and rotations may be large, 

will be described by a moving coordinate system 

fixed on the  body12)•`15). At first, let us consider 

a member element at an arbitrary reference state 

i in the midst of some loading path. The local 

Cartesian coordinate system (x, y, z) originated 

at the shear center 0 of the cross section is set 

up and fixed to the element as illustrated in 

Figs. 1 and 2. The local coordinate system will 

be used as a Lagrangian frame for the  subsequ-

ent state  i+1. That is, the reference state i 

may be considered as the initial stressed state 

for determining the stresses, strains and displace-

ments of subsequent state  i+1. A global coordi-

nate system (X, Y, Z) fixed to the space is used 

to assemble all the elements in the whole struc-

tural system.

This analysis is based on the following assump-
tions and  idealizations: 
1) The structure is composed of members with 
closed cross-section and made of elastic-perfectly 
plastic material. 
2) The shape of the cross section and the dimen-
sion of the member are such that the effects of 
the warping torsion can be disregarded in com-

parison with those of the St. Venant torsion. 
3) Bernuilli-Navier's hypothesis about bending 
strains is also valid even for a partially yielded 
cross-section. 
4) The yield criterion of von Mises is acceptable

Fig. 1 Incremental moving coordinate system.

Fig. 2 Incremental displacements and rota-

tion of cross section.
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and the stress-strain relationships of Prandtl-
Reuss are valid in the plastic range. 
5) The  shear flows due to St. Venant torsion 
are uniformly distributed over the cross section 
with one cell, and the shear center may not 
change its location after partial yielding of the 
cross section. 
6) The effects of the shear stress due to bend-
ing are small enough to be disregarded. 
7) The strains are small although the displace-
ments may be large. 
8) Local buckling would not occur and the dis-
tortion of the cross-sectional shape is so small as 
to be negligible. 

In the following formulations, the total displace-
ments, strains, stresses and the total external 
forces are designated by the letters with bar 
over them and the ordinary letters without bar 
denote the increments of them, respectively.

( 2 ) The Relationships between Strains and Dis-
placements

The displacements  (Up,  vp,  wp) of an arbitrary 

point  P(ƒÅ,ƒÌ) in any cross section will be expressed 

by the displacements  (u,v,w) of the shear center

Ο as well as the rotation  ch of the cross section

as  follows:

(  1  )
where the superscript dash means differentiation 

with respect to x and  u*(ƒÅ, ƒÌ) is a longitudinal 

displacement due to warping. The relationship 

between the displacements and the normal strain 

is

 

(  2  )

Substituting Eq.  (1) into Eq. (2), the normal strain 
of an arbitrary point P will be expressed by the 
displacements of the shear center as  follows:16)

 

(  3  )

in which  u* is ignored according to the assump-

tion 2) and the displacements remain up to the 

quadratic terms after the Maclaurin series ex-

pansion of the terms  sinƒÓ and cos  ƒÓ. On the

other hand, the shear strain due to St. Venant 

torsion is given by the well-known  formula"),

(  4  )

where , the symbol r, denotes the distance from 
the shear center to a tangent drawn at any point 
on the middle line of the thin wall at the cross 
section and s is a curvilinear coordinate along 
the middle line of the thin wall. If Eq. (3) is 
considered to be total Lagrangian  expression"), 
the strain increment would be given as follows:

(5")
But, in the present analysis, since the subsequent 

state  i+1 is assumed to be incrementally close 

to the reference state i and the reference frame 

will be gradually moved for each load step, the 

strain increments will be expressed in the  form:

(  5  )

and

(  6  )

When the displacement increments are small, the 

normal strain increment is given by the ordinary 

linear equation. That is,

( 5')

(  3  ) Tangent Stiffness Matrix of Partially Yielded 
Closed  Cross-Sections'

The  relationships between the increments of

the internal forces (N,Mξ,Mη,Mζ) and the defor-

mation increments (ε0,φ',ψ η,ψζ) should be de-

rived about a partially yielded closed cross-section 

of unit length as illustrated in Fig. 3. The stress-

Fig. 3 Partially yielded cross-section.
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strain relationships in the plastic range may be 

given by the Prandtl-Reuss equations as  follows:

(  7  )

and

(  8  )

where  ƒÐ and ƒÑ are normal stress and shear stress 

respectively and E and G are Young's modulus 

and shear modulus of elasticity, respectively. In 

the elastic range, since Hooke's law is acceptable,

 

(  9  )

and

(10)

Performing the closed linear integrals of Eq. (6) 
over the whole cross-section after substituting 
Eq. (7) for the plastic zones and Eq. (9) for the 
elastic zones into Eq. (6) yields the following 

 equation:

(11)

in which  ∫ds denotes closed linear integral and

∫6

 ds and
∫p 

ds are linear integrals over the elas-

tic zones and plastic zones, respectively. The 

first term on the left hand side of Eq. (11) will 

vanish, because the warping of a closed cross-

section must be continuous at any point. Sub-

stituting Eqs. (5') and (8) into Eq. (11) and  solv-

ing it with respect to the shear flow  q=ƒÑ•Et yield 

the following equation:

(12)

in which

(13)

On the other hand, the increments of the internal 

forces may be expressed by the integration of 

stress increments over the cross-sectional area. 

That is,

(14)

Substituting Eqs. (5') and (12) into Eq. (14) yields 
the tangent stiffness matrix for a closed cross-
section as follows:

(15)
in which

(16)

In Eq. (15), the matrices  Se and  Sp consist of 
the quantities related to elastic zones and plastic 
zones, respectively. The matrix  Sp will not ap-

pear for an entirely elastic cross-section and only 
the square matrix  Se, which has only four dia- 

gonal nonzero terms for a doubly symmetric 
cross-section, remains. For a fully plastic cross
-section, only the matrix  Sp will remain and hold

the flow conditions of plasticity between f and d.

(  4  ) Tangent Stiffness Matrix of a Member 
Element

An incremental tangent stiffness matrix may be 

derived by applying the incremental variational 

method18) commonly used in the finite element 

formulations. When a member, starting from
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the initial state i prestressed under total external 

loads  p, reaches to the subsequent state  i+ 1 after 

producing increments of displacement due to load 
increments p, the incremental potential energy 

V during deformation may be given as follows:

(17)

in which the superscript T stands for the trans-

position of the matrix. Assuming the linearity 
during the incremental step, the incremental 

strain energy U stored in the element of length

lis:

(18)

Substituting Eqs. (5) and (15) into Eq. (18) yields

(19)

in which

(20)

Since no information is available for the displace-

ment functions of an elasto-plastic finite ele-

ment, polynomials, which are usually used for 

an elastic finite element analysis, are also used 

herein. That is, u,  ƒÓ and v, w are approximated 

by linear and cubic polynomials  of x, respec-

tively. Internal forces  N, T and  MƒÌ are also 

assumed to be uniform along x and  MƒÌ and  MƒÅ 

are assumed to be linear polynomials of x. 

Then, introducing the usual technique used in 

the finite element  method4), Eq. (19) can be ex-

pressed in terms of incremental nodal displace-

ments and internal forces at nodal point. Finally, 

the increment of the potential energy  ƒÎ=U+V 

can be described by the increments of the nodal 

displacement u. Since the stationary condition 

of  r gives the incremental equilibrium condition, 

first partial derivatives of  ƒÎ with respect to u 

will yield the following incremental equilibrium

equations:

(21 )

in which the displacement vector and forces vec-

tors are given as follows:

(22)

In the above equations (22), the suffixes a and b 
denote the quantities related to both the ends of 
an element. The  stiffness matrices  ke,  kP and 
kg are obtained as shown in Appendix 1. The 
matrix ke represents the stiffness of elastic part 
and the matrix  kp the reduction of stiffness due 
to yielding of the material. The matrix kg is 
the initial stress matrix including nodal internal 
forces of the element at the initial state i. In 
Eq. (21), the equation  f-P  =0 means that a total 
equilibrium condition is satisfied. Accordingly, 
the term  (f-P) will be considered as the  un-
balanced  forces13) owing to the linearization in 
the formulation and the yielding of the material 
in the midst of a step of incremental loading. 
In order to eliminate these unbalanced forces, 
the iterative procedure stated later will be need- 
ed. Transformation of Eq. (21) to the global co-
ordinate system by the transformation  matrix19) 
T yields:

(23)

An equation constructed by assembling Eq. (23) 
for a whole structural system should be solved 
after all. Such equation has, of course, an iden-
tical form with that of Eq. (23).

3 . PROCEDURE FOR SOLUTION

(  1  ) Computation Procedure 

In order to trace the growth of plastic zones 
both along the member axis and through the
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cross section, the structure is divided into a 

number of member elements and cross sectional 

sub-elements. The strains and stresses of each 

element are evaluated at the centroids of the 

cross sectional sub-elements. Cross sectional 

quantities and internal forces appearing in the 
stiffness matrix are evaluated by a numerical 

integration at both the ends of the member ele-

ment. Since Bernuilli-Navier's hypothesis con-

strains the movement between mutual sub-

elements, the degree of freedom of the displace-

ments may be reduced effectively and the size 

of the matrix to be solved depends on only the 

number of the nodal points. Generally speaking, 

in order to improve the accuracy about the esti-

mation of the plastic zones, it is needed to divide 

the structure into much more member elements 

than the elements for an ordinary elastic analysis. 

The numerical integration covering the sub-ele-

ments make it possible to analyze the complex 

structures composed of arbitrary closed cross-sec-

tions with arbitrary residual stress distributions.

(  2  ) Solution Procedure 

The Newton-Raphson method is well suited for 
certain types of nonlinear analysis and usually 
used in the analyses of nonlinear elastic  prob-
lems20). Not only the incremental equilibrium 
equations, but also the total equilibrium equa-
tions are needed for the Newton-Raphson method. 
Since, in the present formulation, the total equili-
brium equations can be obtained by an incre-
mental procedure in the same manner as elastic 

problems, in spite of the plastic problems, which 
are dependent on the history, the Newton-Raphson 
method can be employed in this analysis too. 
Since the Newton-Raphson method is considered 
to be an incremental procedure with a self-
correcting  process15), it seems to permit compara-
tively large load increments and it is true, to 
some extent, for the elastic analysis based  on 
the Lagrangian coordinate approach. In the pre-
sent method, as described in the former chapter, 
since the subsequent loading state  i+1 is assumed 
to be incrementally close to the reference state 
i, too large load increments i.e. too large displace-
ment increments may lead the numerical errors 

peculiar to the moving coordinate approach even 
for the elastic  problems5). Furthermore, for the 

plastic problems, especially for the cases heavily 
influenced by the history, it is necessary to give 
enough small load increments to obtain the re-
sults of  satisfactory accuracy. One of the method 
to control the load increments is to give the load 
increments so as to take place the yielding in

only one sub-element at one load  step21), but the 

computational efforts will increase remarkably. 

Though it is needed to determine an appropriate 

size of load increments by considering both the 

required accuracy of the solution and the costs 

of computation, it is difficult to seek for an opti-

mum and general method controlling the load 

increments for various structures of various be-

haviors. In the present analysis, particular load 

control process is not used because of above 

mentioned reason, but the numerical examples 

given in the next chapter show that the present 
method will give fairly good results in spite of 

comparatively large load increments. The pro-

cess of numerical calculation is illustrated in the 

flow chart given in  A  ppendix 2, and may be 

summarized as  follows:

1) Compute the displacement increments U 
due to load increments P referred to global co-
ordinate system. 

2) Evaluate the stresses of each cross-sectional 
sub-elements at both the ends of member ele-
ments and check the yielding. Compute new 
cross sectional quantities of the members from 
the averages of the corresponding quantities of 
their both ends. 

3) Renew the coordinates of the nodal points 
and revise the transformation matrices T. 

4) Calculate the internal forces  t as resultants 
of accumulated stresses and compute the un-
balanced  forces  (Tf-P).

5) Compose the new stiffness matrices  Ke,  Kp 
and Kg. 

6) Give next load increments if the specified 
convergence criteria are satisfied just after the 
iterative calculation from 1) to 5). 

7) Stop the computation if trivial large dis-

placements due to buckling would take place or 
a mechanism condition would be satisfied.

4. EXAMPLE PROBLEMS

A number of typical numerical examples are 
dealt with for demonstrating the rationality and 
efficiency of the proposed method. 

(  1  ) Compressive Member of Initial Imperfections 
The load-deflection diagrams of a column with 

initial deflection and residual stresses are illust-
rated in Fig. 4. The curve given by elastic 
analysis, where yielding of the material is dis-
regarded, approaches assymptotically the straight 
line corresponding to Euler's buckling load, and 
the critical loads of plastic analysis show good 
agreement with the values given by  Shulz23). It
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may be recognized from the shapes of the curves 

by the plastic analysis that the column with box 

cross section as illustrated here is weaken ab-

ruptly due to sudden total yielding of the flange 

plate of the concave side of the deformed column. 

It is also found from this example that even such 

a small number of section elements as 24 gives 

practically enough accuracy.

(  2  ) Deep Arch with a Concentrated Load 
A pin-ended semicircular arch under a con-

centrated load at the crown is treated here. In 
-plane elastic buckling and post buckling behavior 

of circular arches of this type have been investi-

gated analytically by Dadeppo-Schmidt by means 
of an elliptical  integration24). This example is 
taken up here so as to study mainly the effects 
of the following two subjects on the accuracy of 
the results. One is the number of member ele-
ments and the other is the substitution of a poly-

gonal structure composed of straight finite ele-
ments for an actual curved structure. In the 
calculation for this example, the number of itera-
tion at load step n is given as 3 x n in each step. 
Fig.  5  (a) shows the applied load-central  deflection. 
diagram. In this figure, the results of the pre-
sent method, in spite of fairly large load incre-
ments, show good coincidence with the results 
of Ref. 24) until the load attains to the critical 
buckling load  per=5.86. The deflected configu-
ration at the load  p  =5.83 is shown in Fig.  5  (b). 
It is seen from this figure that the present method

Fig. 4 Column with initial imperfections.

Fig.  5(a) Load versus central deflection dia-
grams of semicircular arch.

Fig.  5(b) Deformed configuration of semi-
circular arch at  p=5.83.

Fig.  5  (c) Moment and thrust diagram of 
semicircular arch at  p=5.83.
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is effective enough for a remarkably nonlinear 

problem like this. The variation of the bending 
moment and axial thrust at the load p  =5.83 is 
also illustrated in Fig.  5  (c). As for the values 
of bending moment, the results of this method 
coincide with those of  Ref. 24) very well. The 
axial thrust diagram in Fig.  5  (c) shows stepwise 
variation and is discontinuous at the nodal points, 
because the solutions of the present method are 
found for the idealized polygonal frame. How-
ever, if the values at the mid-points of the mem-
ber elements are considered as the actual ones, 
the results fairly correspond with the curve of 
Ref. 24). It is possible, of course, to make the 
differences of the stepwise variation more small 
by dividing the structure into much more member 
elements. The inclination of the load-deflection 
diagram of Ref. 24) in Fig.  5  (a) varies abruptly 

just after the load attains to the critical load of 
sidesway buckling. In the present method, it is 
also possible to analyze such nonlinear buckling 

producing large deflection as this example by 
introducing small initial imperfections into the 
structure as shown in the previous example (1). 
For example, the load-central deflection  diagram 
which is obtained under the vertical load P to-
gether with the horizontal load  H=0.01P as an 
initial disturbance at the crown, fairly corresponds 
to the one of Ref. 24) as illustrated in Fig.  5  (d). 
An asymmetrical initial deflection also may be 
introduced as an initial infinitesimal disturbance 
for sidesway buckling. These techniques would 
be rather equivalent to the procedure in the 
analysis of bifurcation problems in which the 
equilibrium equations will be formulated for an

infinitesimally deflected configulation. The arches 
in Fig. 5 are also assumed to be made of idealized 
elastic material. If the arch is made of more 
realistic material like steel, yielding will occur 
before such a large deflection takes place. The 
results of inelastic analysis shown in Fig. 6 are 
about the arch identical with the one in Fig. 5 
except considering the residual stresses due to 
welding. From the distribution of plastic zones, 
it will be recognized that the cross section at the 

quarter-points and the crown become almost fully 
plastic state and the arch is just before the failure 
due to a mechanism. The load-central deflection 
curve in this case, which is also illustrated in 
Fig.  5  (a) by a dotted line, shows that the rigidity 
of the arch is reduced very much at the load 
p=0.9 and large deflections are produced. It is 
noteworthy that the failure load in this case is 
only about  15% of the critical load for elastic 
sidesway buckling.

(  3  ) Parabolic Arch under Distributed Vertical 
Loads

Pin-ended parabolic arches with rectangular 
cross-sections subjected to distributed vertical 
loads are studied here. Some results obtained 
by the present method are compared with those 
of  Harries25) and  Kuranishi-Lu26). The results of 
the present method are calculated for the frame 
whose configuration is an inscribed polygon in 
the given parabolic configuration, and the distri-
buted loads are substituted into thirteen concen-
trated loads applied at the nodal points as shown 
in the inset of Fig.  7  (b). The maximum loads 
of arches are plotted against the slenderness

Fig.  5(d) Load versus central deflection dia-
grams of semicircular arch with a 

horizontal force as an initial dis-

turbance. Fig. 6 Inelastic analysis of semicircular arch.
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ratios for two loading cases in Fig.  7(a). The 

results of the present analysis show good agree-

ment with Harries' values. The values by Kura-

nishi-Lu seem to be  10•`20% less than those by 

Harries or by authors in the case of  s=0.99. 

One of the load-deflection diagram for the quarter

-point are illustrated in Fig.  7  (b) together with
those by Kuranishi-Lu. The maximum loads 

given by the present method are about  16% larger 
than those of Kuranishi-Lu for  s=0.99 and  7% 
for  s=0.5.*

(  4  ) A Right-Angle Bent under a Concentrated 
Load 

A right-angle bent under a concentrated load 
is taken up as a simple spatial problem to ex-
amine the rationality of the present method for 
a frame subjected to combined torsion and 
bending. Ueda et al. have also investigated such 
a problem by a modified plastic hinge theory 
and estimated the plastic failure load through

* The results of present method for this case

are compared with the results of recently 

published paper of Shinke et al.28) and re-

cognized to show good  coincidence29).

Fig.  7  (a) Maximum loads versus slenderness 
ratios diagram of pin-ended para-
bolic arches.

Fig.  7  (b) Load-deflection diagram at quarter
-point of pin-ended parabolic arches .

Fig.  8  (a) Load-deffection diagram of right
-angle bent .

Fig.  8  (b) Spread of plastic zones of right
-angle bent.
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tracing a forming process of plastic  hinges2). 
Fig.  8  (a) shows the load-deflection diagram at 
the loading point of the beams. Since in the 
theory of  Ref. 2) yielding of the material is 
limited to isolated plastic hinges and the shape 
factor of the cross section is inevitablly assumed 
to be unity, the load-deflection diagram obtained 
there is a folded straight line as illustrated by 
the broken like in Fig.  8  (a). The present method, 
which can consider the spread of the plastic zones 
both along longitudinal direction and through the 
cross section as illustrated in Fig.  8  (b), yields 
a smoothly continuous load-deflection diagram. 
Both curves are show fairly good correspondence 
except the difference of shape caused by the 
difference of the both methods stated above. In 
authors' calculation, a box cross section is chosen 
and determined to have the same cross-sectional 

properties as those in  Ref. 2), but the shape

factor has been taken equal to 1.08 as it is, with-

out the idealization of making it unity. The 

difference of the failure load between the present 

result and that of Ref. 2) will be mainly caused 

by the difference of the shape factors. The col-

lapse load of simple plastic hinge theory is com-

puted by J.  Heyman27) as  p=5.1 for an idealized 

box cross section. Ueda et al. have extended 

their theory to a finite displacement analysis, but 

the results for this example belong to a small 

deflection theory. The geometrical nonlinearity 

of this example will be small. The variation of 

the internal forces at the nodal points, which 

will become a fully plastic state, are shown in 

Fig.  8  (c). It is seen from this figure that the 

internal forces vary along the yield surface after 

the cross section attains to a fully plastic state. 

The longitudinal variation of deflection v and 

torsional angle  ƒÓ are shown together with the 

moment diagram in Fig.  8  (d). From these re-

sults, it will be recognized that the results of the 

present method will coincide with those of the 

plastic hinge theory as for the plastic analysis of 

the  framed structures which will collapse without 

the longitudinal spread of the plastic zones like 

this example.

5 . CONCLUDING REMARKS

A general matrix method for the problems in-
cluding both geometric and material nonlinearity 
is presented. By using the proposed method, the 
spatial elasto-plastic behavior and ultimate strength 
of various framed structures can be analyzed in 
sufficient accuracy except for such problems as 
the  elastica22) in which finite strains must be con-
sidered. Since this method is developed by intro-
ducing the elasto-plastic tangent stiffness matrix 
of closed cross-section proposed in Ref. 11) into 
the matrix method for geometrically nonlinear 

problems, it has many advantages which are 
proper to the matrix stiffness analysis. In the 
existing method for dealing with the problems 
covered in this paper, it is needed to perform 
individual formulation for each special structural 
system and boundary conditions and also to derive 
complex yield conditions for various shapes of 
cross sections individually. In authors' method, 
there is no necessity to do so and it is possible 
to analyze systematically arbitrary structural 
systems with various boundary conditions and 
various shapes of closed cross-sections only by 
changing the input data in the computer program. 

Strictly speaking, when the shape of the cross 
section is other than square or circular ones, the

Fig. 8  (e) Variation of internal forces at the 
nodal points 1, 11 and 15 of right
-angle bent .

Fig.  8  (d) Moment and deformation diagram
of right-angle bent at the state 5.
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effects of warping must be considered. As is 

stated in the assumption, the effects of warping 

are disregarded in this paper, but the solutions 

of the present method may give one of good ap-

proximations of ultimate strength even for the 

structures composed of the members whose cross 

-sectional shape is rather flat. As for the ultimate 

strength analyses of the spatial structures com-

posed of the members of open cross-section, it 

will be necessary to clarify the phenomena about 

the warping torsion in the elasto-plastic range, 

since the warping torsion will become more  im-

portant than the St. Venant torsion in such struc-

tural members. The knowledges about the warp-

ing torsion in the elasto-plastic range is not 

presently available, and it is not so usual case 

to use members of open cross-section for main 

members which should resist to torsional force. 

In this paper, only the outline of the formu-

lation and limited numerical examples are pre-

sented. But, it is supposed that developing and 

improving this method will open up the possibility 

to analyze quite a few unsolved problems.
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NOTATIONS

A = cross sectional area;

Ae = elastic part of cross sectional area:

C1～C6  =cross sectional properties defined in

Eq.(13);

D1～D10 =components of matrix Sp;

d = vector of incremental deformations;

E = Young's modulus of elasticity;

f = vector of incremental internal forces;

G = shear modulus of elasticity;

Iξ,Iη, Iζ =moment of inertia of the cross sec-

tion with respect toξ,ηandζ-axes,

respectively;

Iηζ = product of inertia of the cross sec-

tion;

ke, Ke =elastic part of tangent stiffness ma-

trix in local and global coordinates,

respectively;

kg, Kg  =initial stress matrix in local arld

global coordinates, respectively;

kp, Kp = Plastic part of tangent stifiness ma-

trix in local and global coordinates,

respectively;

l = length of member element;

Mξ,Mη,Mζ = stress couples with respect toξ,η

and ζ-axes, respectively;

N = axial force;

Ο =shear center of cross section;

p,P  =vector of external loads in local and

global coordinates, repectively;

q  = shear flow;

γs =distance from the shear center to a

tangent drawn at any pointon the

middle line of the thin wall of the

Cross section;

s  =curvilinear coordinate along the mid-

dle lineof the thin wall of the cross

section;

Sζ,Sη  = momentof area of the cross section

about ζ and η axes, respectively,

Se,Sp = elastic part and plastic part of tan-

gent stiffness matrix of the cross

section, respectively;

t  = thickness of component plates of the

Cross section;

T  = force due to twist of longitudinal

fibers;
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σ  = increment of strain energy;

u  = vector of incremental displacements;

u* = longitudinal displacement due to

warping;

m,v,w  = incremental displacements of the

shear center with respect to x, y

and z-axes, respectively;

up, vp, wp = incrernental displacements of arbi-

trary point Pwith respect to x, y

and z-axes, respectively;

V = increment of potential energy;

x,y,z  = local coordinate system;

X,y; Z  = global coordinate system;

γ  = shear strain;

ε  = normal Strain;

ε0    = normal strain increment of Iongi-

tudinal axis x;

θ  =increment of torsion rate;

ξ,η,ζ = local coordinate values of arbitrary

point P;

π  = increment of potential energy;

σ  = increment of normal stress;

τ  = increment of shear stress;

φ   = rotation of cross section;

ψη,ψζ  = increments of curvature with respect

toη and ζ-axes, respectively;

APPENDIX  1

Symmetry
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Symmetry

Symmetry

where
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