
  

  

Abstract—This paper aims to propose a mixed algorithm to 

simulate the interaction between cable-truss; the study is 

focused on the geometric nonlinear analysis since the cables 

always have nonlinear behavior under static loads. 

By using lagrangian formulations, it is determined the 

nonlinear stiffness matrices from the elements cable and truss, 

which are assembled to a structure on a global reference system. 

The balance of the structures under the action of external loads 

is solved by an iterative incremental method, which highlights 

the secant method; which gets better approaches to the solution 

with a smaller increase in loads. The solution algorithms are 

implemented with matlab. 

 
Index Terms—Cable, nonlinear, truss.  

 

I. INTRODUCTION 

Many structures in the initial state have a linear behavior; 

however, there are exceptions where the relationship 

between force and displacement cannot be described 

properly with a model of linear behavior of the structure. The 

sources of non-linearity are due to the nonlinear behavior of 

the material, the geometric nonlinearity or a combined effect 

of these [1]. 

Among the exceptions, the cables always have a nonlinear 

behavior with a nonlinearity due to only having a tensional 

behavior and geometric nonlinearity [2]. In general, cable 

structures exhibit a flexibility that cannot be attributed to low 

axial stiffness of the elements; but the geometry of the 

structure [3], in many cases are structures that has large 

displacements, for that reason it becomes necessary their 

study in the nonlinear range. 

The usual methods of analysis of cable structures are based 

on the discretization of the cable into smaller elements to 

formulate the equilibrium equations. Then, numerical 

methods used to solve the resulting equations or elements 

with appropriate values of Young modulus are applied. In the 

present paper the cable structures, dividing them into cable 

stiffness matrix elements deduced from the equation of the 

catenary are studied. 

A. Antecedent 

The study of the cable element has been of great interest 

for many years. Thus Galileo 1638 says that the form of a 

trailing cable is parabolic, this analogy to the flight of a 

projectile. In 1691 the Bernoulli, Leibnitz and Huygens 

brothers concluded that it has the shape of the catenary [4] 

and they found the equilibrium equations for inextensible 

cable. Leibnitz use calculus theory to derive the equation of 

this curve [5]. 
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The Bernoulli brothers also made the general differential 

equation of equilibrium of a chain element, under various 

loads that considers the effects of incorporating stretching 

Hooke's Law. In 1891, Routh solved the equation for an 

elastic symmetrically suspended catenary comprised of a 

linear elastic material [6], while the previous job Feld 

extended to not symmetrical case, but unfortunately the 

coordinates used in both solutions made their application 

difficult [4]. 

In 1981 Irvine, to avoid this difficulty, adopts a 

Lagrangian approach to the solution of the elastic catenary 

obtaining an expression for the tangent stiffness matrix of a 

non-symmetrical elastic cable. 

Among the various methodologies that have been 

proposed to model cable structures, these are represented 

using two different methods. 

The first method is based on interpolation polynomial 

functions to describe the shape and displacement; this is a 

common method in the development of finite element 

analysis. In this context, the two nodes straight element is 

element used in modeling cables [5]. This element has only 

axial stiffness and it is generally applicable to pre-stressed 

cables. When there are a large curvature loose cables, 

presenting its geometry is performed by a large number of bar 

elements; analysis becomes inefficient while there are more 

degrees of freedom. When you want to model the loose cable, 

the modulus of elasticity is replaced by an equivalent module, 

which takes into account the flexible cable, this rigid as was 

proposed by Ernst [5]. Usually in a cable that has relatively 

high stresses and short length, the approximate equivalent 

module is recommended for good results [7]. Another model 

is the multi-node isoperimetric element, which is achieved by 

adding more nodes to the finite element; the elements are 

usually three or four nodes, which use parabolic interpolation 

functions or cubes respectively. Such cables work well with 

small deflections, but for large deflections must use more 

elements derived continuity between elements is not met [8]. 

The continuity of the derivative can be accomplished by 

adding degrees of rotational freedom to the nodes. This 

model is known as curved elements with degrees of free 

rotation, and this element was developed by Gambhir and 

Batchelor [5], those using cubic polynomials which describe 

the displacement and shape of the cable. Therefore, the 

elements based on polynomial interpolation are generally 

appropriate to model cables with small vertical deflections, as 

mentioned above, cable elements with large vertical 

deflections many elements are employed for the curved 

geometry of the cable, which requires a large number of 

arithmetic operations. This influences the solution time of the 

problem [8]. 

The second method uses analytical formulations taking 

into account effects of applied load along the cable, and 
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describes the real behavior of the cable. In this context, the 

parabolic elastic element is generally used in the cable 

structure analysis, due to its simple shape compared to the 

catenary [5]. Another model is the elastic associated catenary, 

which is an extension of Irvine model developed by 

Ahmadi-Kashani and Bell [2]. In this model, a constant load 

per unit length applied is considered although the cable 

elongation. The positive elongation is produced by an 

increase of the total load carried and this usable model for 

cables subjected to external pressures such as wind, snow or 

other external forces [6]. In this paper it is considered an 

elastic catenary element, which is accurate because the 

equilibrium configuration of a hanging catenary cable is 

nature [7] and this model is appropriate for a perfectly 

flexible cable that is subject to self-weight loads [5]. The 

elastic element catenary formulation is based on the exact 

analytic solution to the elastic catenary developed by O’Brien 

[7]. In this method, only two nodes catenary element without 

internal joints are necessary to model a single cable, this 

element can be used for modeling small and large vertical and 

horizontal deflections. In this way the cable can be 

represented by a single element, which has certain 

advantages, such as reduced number of degrees of freedom 

and considering the elastic cable nonlinear effect in all cases 

[8]. Because of the analytical expressions is continuity 

preserved through the element boundaries. 

Another model used is the inextensible catenary element, 

which is infinitely axially rigid element ( ∞→AE ) which 

prevents increase in length, perfectly flexible ( 0=nEI ), free 

of torsional rigidity and capable of supporting only tensional 

forces [5]. The applications based in this type of elements 

find some difficulties because the curve that relates force and 

displacement is asymptotic, so they tend to experience high 

numerical instability, accusing very difficult or even 

impossible convergence [6]. 

 

II. THEORETICAL BASIS 

A. Element Type Truss 

1) Variational formulation of the element type truss 

The equilibrium equations according to the principle of 

virtual work can be written to the body in nonlinear 

incremental way [9]: 

.21 RRdVdVE
V

T

V

T =++ ∫∫ τδηεδε             (1) 

Decomposing increasing deformation ε  in its linear 

portion ( e ) and nonlinear part (η ), the equation can be 

expressed as: 
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For the space truss element as in Fig. 1, displacement 

( )wvu ,,  may be related to the displacement ( )iii wvu ,,  and 

( )jjj wvu ,,  of the two ends of the element used linear 

interpolation functions such as [9]: 
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Fig. 1. Degrees freedom for a space truss element. 

 

The balance equation is expressed as: 
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where: 

 

ek  is the elastic stiffness matrix: 
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gk  is the geometric stiffness matrix: and the matrices 1s , 

2s  and 3s  of higher order are: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

=

100100

010010

001001

100100

010010

001001

L

F
k g

                 (5) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔΔΔ−Δ−Δ−

Δ−Δ−Δ−ΔΔΔ

=

000000

000000

000000

000000

2 21
wvuwvu

wvuwvu

L

EA
s

        (6) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔΔ−Δ−

ΔΔΔ−Δ−

ΔΔ−

Δ−Δ−ΔΔ

Δ−Δ−ΔΔ

Δ−Δ

=

uwuw

uvuv

uu

uwuw

uvuv

uu

L

EA
s

00

00

002002

00

00

002002

2 22

   (7) 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

hh

hh

L

EA
s

33
6

                      (8) 

161

IACSIT International Journal of Engineering and Technology, Vol. 7, No. 3, June 2015



  

where: 
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B. Element Type Cable 

1) Hypothesis element type cable 

The cross section is constant before and after the 

deformation of the element. 

The element is supposed to be perfectly flexible and acts 

only stressed forces.  

Conservation of the mass of cable element after 

deformation by varying the weight per unit length for each 

cable elongation. 

2) Lagrangian formulation of the element type cable 

The cable is considered an initial length oL , suspended 

between two fixed supports I  and J , which are Cartesian 

coordinates ( )0,0,0  and ( )zyx lll ,,  respectively. Thus, the 

horizontal projections of its length are xl  and yl , while on 

the vertical projection is zl . Be the point P  an internal point 

of the cable element. When the cable is deformed by action of 

its self-weight ( )owL , the point P  moves into a new position 

described by the Cartesian coordinates ( )zyx ,,  and the 

Lagrangian coordinate p , by what is defined as the segment 

length deformed between the origin and the point on the 

deformed geometry corresponding to the point P  on the 

original geometry [10], as shown in Fig. 2. 

 

 
Fig. 2. Coordinates for the elastic catenary. 

 

The geometric constraint that must be met by force 

balanced is: 
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Prestressed cable T , is related to the strain ε  and Hooke's 

law: 
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where E  is the elastic modulus, A  is the constant 

cross-sectional area in the undeformed profile. 

The conditions at the ends of the nodes are: 
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where L  is the length in the deformed profile. 

The Lagrangian s  and the Cartesian coordinates are 

related as shown in the equations (12a), (12b) and (12c): 
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By integrating in Cartesian coordinates x , y and z  takes 

depending on the length of the deformed segment: 

 

( )

⎭
⎬
⎫⎟
⎠
⎞⎜

⎝
⎛ −++−

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ −+−++−−=

3
2

3
2

2
2

1

3
2

3
2

2
2

1
11

ln

ln)(

FFFF

FwsFwsFF
w

F

EA

sF
sx

 (13) 

 

( )

⎭
⎬
⎫⎟
⎠
⎞⎜

⎝
⎛ −++−

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ −+−++−−=

3
2

3
2

2
2

1

3
2

3
2

2
2

1
22

ln

ln)(

FFFF

FwsFwsFF
w

F

EA

sF
sy

 (14) 

 

( ){
}2

3
2

2
2

1

2
3

2
2

2
1

2
3 1

2
)(

FFF

FwsFF
wEA

ws

EA

sF
sz

++−

−++++−=           (15) 

 

By including boundary conditions, we have: 
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Since 
xl , 

yl and 
zl  are written in terms of end forces 

I ( )321 ,, FFF , these can be expressed in small variations 

thereof by a first order linearization to approximate [11]: 
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Or expressed in matrix form: 
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where F is the incremental flexibility matrix, whose 

elements 
ijf  are given as follows: 
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where 
iT  and 

jT  are the cable tension at nodes I  and J  

respectively. The nodal forces 
1F , 

2F , 
3F , 

4F , 
5F , 

6F , 
iT  

and 
jT  are related as: 
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The cable stiffness matrix is obtained by inverting the 

flexibility matrix F as: 
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The tangent stiffness matrix and the corresponding vector 

element internal forces of the cable, expressed in terms of six 

degrees of freedom [8]: 
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C. Cable Element Algorithm 

To determine the tangent stiffness matri x ctK , must first 

determine the 1F , 1F and 3F  forces I  node [12]. To do this, 

we start with an initial estimate of these nodal forces, through 

[8]: 
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By reemplacing the estimated forces (16), the coordinates 

( )zoyoxo lll ,,  of the cable is determined and compared to the 

indicated coordinate of the node ( )zyx lllJ ,, , the difference 

vector is determined ( ) ( ) ( ){ }T
zzoyyoxxo llllllL −−−=Δ , 

which should be less than the requested tolerance. 

If the tolerance is not met, the approach forces from I  

node is corrected using the difference vector as: 
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Forces are then updated: 
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where cK  is the stiffness matrix of equation (22). 

Below the algorithm used is supposed to meet the stiffness 

matrix of a cable element. 

Step 1: Initial data are the coordinates of the nodes 

( )iii zyxI ,,  and ( )jjj zyxJ ,, , physical properties ( E , A , 

w , oL ) and tolerance  tol . 

Step 2: Calculate the relative coordinates between nodes 

I  and J :  ijx xxl −=0 , ijy yyl −=0  and 

ijz zzl −=0 . 
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Step 3: Give an initial approximation of the forces 1F , 

2F , 3F  node I ,  using equation (25). 

Step 4: Update the relative coordinate of the node J   

( )zyx lll ,, , replacing 1F , 2F  and 3F  in equation (16). 

Step 5: Calculate the difference vector: 
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Step 6: If tolL <Δ
∞

,  calculate ctK  and intF  with (23) 

and (24) respectively. Otherwise continue the following 

steps. 

Step 7:  Calculate the correction vector node forces I : 

LKF c Δ=Δ  (27). 

Step 8: Refresh forces the next iteration using (28) and 

return to the Step 4. 

When the initial tension oT  cable in the first node is 

known, the next iteration process is used to determine the 

length of cable not worked. 

Step 1: For initial physical properties w , E , A , the stress 

at node I  ( oT ) and the coordinates of the nodes 

( )iii zyxI ,,  and ( )jjj zyxJ ,,  is required. 

Step 2: Calculate the relative coordinates between nodes 

I  and J :  ijx xxl −=0 , ijy yyl −=0  and 

ijz zzl −=0 . 

Step 3: Initialize the unstressed length oL  and forces of 

node I  ( 1F , 2F , 3F ) as follows: 

222

zoyoxoo lllL ++=                          (29a) 

 

o

o

xo T
L

l
F −=1

                             (29b) 

 

o

o

yo
T

L

l
F −=2

                            (29c) 

 

o

o

zo T
L

l
F −=3

                              (29d) 

Step 4: Update the relative coordinate of node J  

( )zyx lll ,, , replacing 1F , 2F , 3F and oL  in equation (16). 

Step 5: Calculate the vector difference 

( ) ( ) ( ){ }T
zzoyyoxxo llllllL −−−=Δ   the difference between the 

know stress oT  and the estimated iT  (21a):  io TTT −=Δ . 

Step 6: If tolL <Δ
∞

 and tolT <Δ
∞

, calculate ctK  

and intF  with (23) and (24) respectively. Otherwise continue 

with the following Steps. 

Step 7: Calculate cC  for differentiation of the 

expressions (16) and (21a) with respect to 1F , 2F , 3F  and 

oL as: 
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Step 8: Calculate the correction vector: 
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Step 9: Update forces: 111 FFF Δ+= , 222 FFF Δ+= , 

333 FFF Δ+= , length: ooo LLL Δ+=  and return to Step 4. 

D. Description of the Algorithm 

With the algorithms described in the previous section, it is 

possible to determine the configuration of the cable 

supported at nodes I  and J , and whose relative distance is 

( )zoyoxo lll ,, , for it must iterate convergence node J as 

illustrated in Fig. 3. 

 

 
Fig. 3. Configuration in a Step of the iteration. 

 

 
Fig. 4. Cable element after convergence. 
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Fig. 5. Cable with internal nodes. 

 

After satisfied convergence node J, can be calculated 

forces ( 4F , 5F , 6F ) on that node using the equilibrium 

expressions (20). 

Fig. 3 and Fig. 4 only show a cable element I  and J  ends 

which cannot be used when an external load is applied to a 

portion of the cable. Therefore, the cable is divided internally 

as a number of segments or against a known length, using the 

expressions (13), (14) and (15), as shown in Fig. 5. 

 

 
Fig. 6. Forces of each element. 

 

Each segment is possible to determine the forces on the 

nodes added by equilibrium conditions as shown in Fig. 6. 

These nodal forces and the length of each segment are used to 

determine the stiffness matrix of each cable segment. 

The matrix of each cable segment is grouped into an 

overall matrix of the cable, which is used in the nonlinear 

analysis. 

E. Algorithm for Nonlinear Static Analysis 

The algorithms for solving mixed structure in a nonlinear 

condition are illustrated in Fig. 7 and Fig. 8. 

F. Nonlinear Dynamic Analysis 

It is resolved with Newmark method incrementally and 

iteratively. The iterative part is solved by the method of the 

secant stiffness (Secant method) or tangent stiffness (Newton 

method), and then the displacement, velocity and 

acceleration are updated in time tt Δ+ as [13]. 

The mass matrix is concentrated and damping matrix is 

defined as:  

 

KMC KM αα +=  

 

where Mα  and Kα  are factors proportional to the mass 

damping and stiffness of the structure respectively, 

depending on the type of buffer that is supposed predominant 

(proportional to the mass, stiffness or both) [14]. 

 

 
Fig. 7. Flow chart of Secant method. 
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Fig. 8. Flow chart of Newton method. 

III. APPLICATIONS 

A. Cable Suspended with Point Load 

The following application is taken as reference to validate 

different methods to simulate cables. Initially proposed by 

Michalos and Birnstiel, then analyzed by O'Brien and Francis 

(as indicated Huu [8]), Jayaraman and Knudson [11], Tibert 

[5], Andreu [6], Huu and Seung [8]. 

The problem is to determine the displacement of node 2, 

when the prestressed cable under self-weight it is applied a 

concentrated load. The initial configuration and information 

are in Fig. 9 and Table I respectively. 

 

 
Fig. 9. Cable under self-weight and concentrated load. 

 
TABLE I: INITIAL PROPERTIES OF CABLE SUSPENDED. 

 Item Data 

w Cable self-weight  46.12 N/m 

A Cross-sectional area 5.484 cm2 

E Elastic modulus 13100.0 kN/cm2 

Lo1-2 Unstressed cable length 1-2 125.85 m 

Lo2-3 Unstressed cable length 2-3 186.86 m 

 Sag under self-weight at load point 29.276 m 

 

The model used is composed of two cable elements, which 

have been derived from the initial configuration under 

self-weight. The concentrated load is applied incrementally 

to complete this load, with the ten-thousandth of the total 

load (35,586 N/10000) acceptable load increased. 

Fig. 10, the Secant method is fast approaching the solution 

increases fewer and shorter convergence compared to put 

Newton. 

 

 
Fig. 10. Displacement – load increment curves. 

 

Calculated displacements are acceptable when compared 

to the results of various researchers, as shown in Table II. 

B. Tridimensional Truss 

To verify the algorithm developed in space truss, analyze a 

section of tower height 3.00 m subject to a lateral load of 

1000 kg. 
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TABLE II: COMPARISON OF DISPLACEMENT NODE 2. 

Researcher Element type 
Displacements (m) 

Vertical Horizontal 

Michalos and Birnstiel [8] Elastic straight -5.472 -0.845 

O'Brien [8] Elastic catenary -5.627 -0.860 

Jayaraman and Knudson [11] Elastic catenary -5.626 -0.859 

Tibert [5] Elastic parabola -5.601 -0.866 

Tibert [5] Elastic catenary -5.626 -0.859 

Andreu [6] Elastic catenary -5.626 -0.860 

Huu and Seung [8] Elastic catenary -5.626 -0.859 

Present work Elastic catenary -5.627 -0.860 

 

 
Fig. 11. Tridimensional truss. 

 

This model is also used in [15] to verify the difference 

between the two programs. The geometric configuration and 

physical properties are presented in Fig. 11 and Table III 

respectively. 

 
TABLE III: PROPERTIES. 

Section Type 
Area 

(cm
2
) 

E 

(kg/cm
2
) 

Density 

(kg/cm
3
) 

S1 L2”x2”x3/16” 4.62 2038902 0.00785 

S2 L1.5”x1.5”x3/16” 3.40 2038902 0.00785 

S3 PX1.5” 6.90 2038902 0.00785 

S4 Ø5/8” 1.98 2038902 0.00785 

 

The first analysis is linear, for this global elastic stiffness 

matrix is resolved in a single load increase, while the 

nonlinear analysis is performed in increments of 

ten-thousandth of the total external load (1000 kg/10000). 

If we use as parameter the required number of increments 

of charge, the secant method approximates faster to the 

solution, as shown in Fig. 12. 

 

 
Fig. 12. Displacement - load increment curves in nonlinear analysis at node 

loaded. 

C. Tridimensional Truss with Stayed Cables 

The following application aims to engage a space truss 

with stay cables into a single structure, which then determine 

their displacement under self-weight and when the cable is 

prestressed at the bottom with 30 kg, we apply a lateral load 

of 1000 kg. This structure is also analyzed with [15] program 

to verify the nodal displacements. 

Another aim is to verify the amount necessary to obtain 

more accurate results in solving cable elements. 

The physical properties of the reinforcement element are 

similar to those of the application B, while the properties of 

the cable element are found in Table IV. The model used is 

shown in Fig. 13. 

 
TABLE IV: CABLE ELEMENT PROPERTIES. 

Section Type 
Area 

(cm
2
) 

E 

(kg/cm
2
) 

Density 

(kg/cm
3
) 

S5 Ø1/4” 0.32 2038902 0.00785 

 

 
Fig. 13. Tridimensional truss with stayed cables. 

 

Nonlinear analysis by self-weight and the prestressed 

cable, is made in increments of one-hundredth of the load 

(self-weight/100), whereby the deformation shown in Fig. 14. 

It is noted that these displacements are similar when the cable 

edge is subdivided into several elements before applying the 

load side. 

 

 
 Fig. 14. Geometry deformed by self-weight of tridimensional truss with 

stayed cables (not to scale). 

 

When put side loading 1000 kg, loaded displacement for 

various branches of the cable element node is recorded, as 

shown in Fig. 15, in order to determine the required amount 

of cable elements. With this figure, it is showed this trend to 

employ more than 10 cable divisions. It is noted that as more 

cable elements add to it, this differs more with [15] program 

results.
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Fig. 15. Displacement at three directions with  different amounts of cable 

elements. 

 

D. Plane Cable Net 

The structure considered is the cable net as shown in Fig. 

16, whose physical properties are listed in Table V. 

 

 
Fig. 16. Prestressed cable net under vertical loads. 

 
TABLE V: CABLE INFORMATION 

 Item Data 

w Cable self-weight  1.459 N/m 

A Cross-sectional area 146.45 mm2 

E Elastic modulus 82.74 Mpa 

ToH Prestressing force of horizontal members 24.28 kN 

ToI Prestressing force of horizontal members 23.69 kN 

Pv Load point 35.59 kN 

Δz Assumed initial configuration 9.144 m 

 

In the stretched configuration of the Fig. 16, the vertical 

load Pv are applied to the nodes 4, 5, 8 and 9. The analysis is 

performed for load increments of thousandths of Pv 

(Pv/1000). The results of the displacement at node 8 are listed 

in Table VI. 

 
TABLE V: DISPLACEMENT AT NODE 8 

Researcher Element type ux (mm) ux (mm) ux (mm)

Jayaraman and Knudson 

[12] 
Elastic catenary -39.62 -40.20 -446.32 

Tibert [5] Elastic parabola -40.78 -40.78 -453.33 

Tibert [5] Elastic catenary -40.78 -40.78 -450.04 

Huu and Seung [8] Elastic catenary -40.13 -40.13 -446.50 

SAP2000 [15] Elastic catenary -40.47 -40.47 -449.46 

Present work Elastic catenary -40.53 -40.53 -450.12 

E. Tridimensional Dynamic Truss 

Armor with 72 truss elements is shown in Fig. 17 in order 

to verify the effectiveness of predicting the nonlinear effects 

when subjected to seismic acceleration record El Centro 

(1940). This application is shown by Huu [16] and the values 

of its physical properties are presented in Table VII. 

 
TABLE VII: TRIDIMENSIONAL TRUSS INFORMATION 

 Item Data 

A Cross-sectional area 38.485 cm2 

E Elastic modulus 200 GPa 

M Lumped masses 100 kN s2/m 

ξi , ξj Fraction of critical damping 0.05 

 

 
Fig. 17. Space truss with concentrated masses. 

 

Fig. 18 shows the displacement responses at node 19 in x- 

direction. From this figure and Table VIII, differences in 

peak displacements are less than 0.46 %, which reflects a low 

discrepancy between Huu and the present work. 

 

 
Fig. 18. Displacement response at node 19. 

 
TABLE VIII: COMPARISON OF PEAK DISPLACEMENT 

 Huu [16] Present work Difference (%)

Max 132.21 131.60 0.46 

Min -124.46 -124.85 0.31 

 

IV. CONCLUSIONS  

It has demonstrated the possibility of coupling cable and 

truss elements in a structure, and consider the nonlinearity of 

these elements, it has been used for nonlinear Variational 

Formulation given by Yang [9], which allows to deduce 
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matrices including elastic, geometric and higher order effects 

of a truss element, while for the cable element, duly verified 

from analytical equations, allows to deduce nonlinear 

matrices. 

Also in structures composed of cable elements, the secant 

method is best approximates the solution when having less 

load increases (see Fig. 10) while in structures formed by 

truss elements, the secant method is closer to the solution 

when load increases are becoming smaller. 

The results obtained from the elements and the proposed 

methodology, show agreement with the results obtained with 

commercial programs and those results reported by other 

researchers, as noted in Section III. 
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