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A general procedure is presented for the nonlinear analysis of the forced response of structural 
elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into 
account. All excitations are considered, with special consideration given to resonant excitations. The 
general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher 
mode may lead to a larger response in a lower interacting mode, contrary to the results of linear 
analyses. 
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INTRODUCTION 

Slender beams and thin plates supported in such a way 
as to restrict movement at the ends and along the edges 
experience mid-plane stretching when deflected. The 
influence of this stretching on the dynamic response in- 
creases with the amplitude of the response. Consequent- 
ly; an analysis which accounts for mid-plane stretching 
can provide insight into the relatively large-amplitude 
oscillations that might exist in a resonant situation. 

Woinowsky-Krieger t and Burgreen •' considered the 
free oscillations of a beam having hinged ends a fixed 
distance apart. For slender beams this situation can 
be accurately described with nonlinear strain-displace- 
ment equations and a linear stress-strain law. Ex- 
pressing the solution as a product of a function of time 
and a linear free-oscillation mode, they solved the non- 
linear equation for the temporal function exactly in 
terms of Jaco. bi-elliptic functions. Burgreen also con- 
sidered vibrations about the buckled configuration and 
conducted an experiment, the results of which basically 
supported the conclusions of the analysis. In these 
studies (including Burgreen's experiment), no considera- 
tion was given to the possibility of modal coupling or in- 
teraction, in spite of the fact that it seems unlikely that 
the deflection curve for large amplitudes is of the same 
form as the one for small amplitudes. 

MacDonald 5 worked with the same governing equations 
but did not consider axial prestressing,. as Burgreen did. 
He improved the analysis by letting the deflection curve 
be represented at any instant by a Fourier expansion in 
terms of the eigenfunctions of the linear problem; i.e., 
the linear, free-oscillation modes. If the coefficients 
are functions of time, the expansion can continuously 
represent the deflection curve. MacDonald was able to 
solve the nonlinear equations for the coefficients in terms 
of elliptic functions. He commented that the problem is 
inherently nonlinear even for small-amplitude vibrations 
and there is always dynamic coupling of the modes. In 
spite of this, there followed a number of papers on non- 
linear vibrations of beams and plates which did not con- 
sider the modal interactions. Some authors did, how- 
ever, note the possibility. (Some additional references 
are included. ) 

Following MacDonald's approach, Bennett and Eisley ø 
also represented the deflection in terms of the linear 
modes and considered the forced oscillations of a beam 

having clamped ends. But apparently they did not con- 
sider the possibility of a harmonic excitation near one 
natural frequency exciting other natural frequencies. 
The results of their analysis and experiment indicate 
that the response is dominated by the first mode when 
the excitation is near the first natural frequency, but 
they also found higher harmonics. In a later paper, 
Bennett • studied the ultraharmonic motion of a beam 

with hinged ends. The analyses were based on the meth- 
od of harmonic balance. In both papers the stability of 
the solutions was studied. 

Following a similar approach. Tseng and Dugundji e 
represented the deflection curve with an expansion in 
terms of the linear, static buckling modes in studying 
the forced vibrations of a buckled beam. They did not 
find modal interactions. Basing their analysis on the 
method of harmonic balance, they obtained superhar- 
monic and subharmonic solutions. They also conducted 
an experiment; the results are basically in agreement 
with the analysis, the response having the various dif- 
ferent frequencies predicted by the analysis. 

Mei • used a finite-element method to analyze the 
large-amplitude, free oscillations of beams, but he did 
not consider modal couplings. His results agree closely 
with the experimental data of Ray and Bert e for beams 
having hinged ends. 

The same basic approach of expressing the deflection 
as an expansion in terms of the linear modes was used 
by Chu and Herrmann 9 and Chiang and Chen tø in a non- 
linear analysis of the vibration of plates. Using the dy- 
namic form of the yon Karman and Berger equations, 
respectively, they formulated the problem in such a way 
as to allow for modal couplings, but in both studies the 
coupling was neglected. Apparently an analysis, similar 
to that for beams, which includes modal coupling, has 
not yet been done for plates. 

Recently, Nayfeh t• and Atluri •a applied versions of 
the method of multiple scales, in place of harmonic bal- 
ance, to the study of beam vibrations. Three versions 
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of the method of multiple scales are discussed in detail 
in chapter six of the text by Nayfeh. is Using the general 
version, Nayfeh considered a beam with slowly varying 
properties along its length. He did not consider modal 
couplings. Atluri used the derivative expansion version 
to study the free, undamped vibrations of a beam with 
hinged ends, but without axial force. Longitudinal and 
rotary inertia effects were included, and modal couplings 
were considered. 

In the present paper, we describe a general procedure 
that can be used to solve the nonlinear equations govern- 
ing the large-amplitude oscillations of structural ele- 
ments. The deflection is represented by an expansion in 
terms of the linear, free-oscillation modes; modal in- 
teractions are given strong consideration. Emphasis 
is placed on determining the response to a harmonic ex- 
citation; all frequencies are considered, but special em- 
phasis is placed on the case when the excitation frequency 
is near a natural frequency. We specialize the general 
procedure to beams and include the effects of viscous 
damping and axial force. Finally, we present a numeri- 
cal example in which there is strong modal coupling. 
The present results show some interesting features of 
large-amplitude beam oscillations which, to the author's 
knowledge, have never been displayed before. 

I. DESCRIPTION OF THE GENERAL METHOD 

We consider systems which are governed by equations 
of the form 

•-• + L(w)= ½[D(w)+N(w)+p(r, t)], (la) 
where L is a linear spatial operator, D is the damping 
operator, N is a nonlinear spatial operator, p is the 
forcing function, r is the position vector, and ½ is a 
small parameter which appears when the equation is 
written in terms of dimensionless variaNes; N(w) is 
the term which accounts for mid-plane stretching. In 
addition to Eq. la, w must satisfy initial conditions and 
a set of homogeneous boundary conditions of the form 

B(w)= 0 on r, (lb) 

where B is a linear, spatial operator and r is the bound- 
ary of the spatial domain. 

As ½-0, Eq. la reduces to 

+ 0. (2) 
Assuming separation of variables, we put 

w=•um(t)•,,(r) (3) 
m 

and obtain from Eqs, 2 and lb 

d t g' + ('ømUm = 0, (4) 
and 

œ(½m)- ½m= 0, (Sa) 

where 

B(•m)= 0 on F. (5b) 

The summation indicated in Eq. 3 may be a multiple 
summation depending on the number of independent spa- 
tial variables. The eigenfunctions •b m and the eigenval- 
ues w m obtained from Eqs. 5 are the linear, free-oscil- 
lation modes and the natural frequencies, respectively. 
Determination of •b m and w m can be accomplished analyt- 
ically for some cases of interest, but generally one 
should expect to obtain them with a numerical procedure. 

For the nonlinear problem, we also express the solu- 
tion in the form given in Eq. 3. The •b m are the solu- 
tions of Eqs. 5, but the Um are not solutions of Eq. 4, 
as in the linear problem. Instead, the governing equa- 
tions for the Um are a set of coupled, nonlinear, second- 
order, ordinary differential equations which are obtained 
by substituting Eq. 3 into Eq. la, multiplying by •b n 
(where n = 1, 2, ... ) and the weighting function, and inte- 
grating over the spatial domain. The equations which 
result are of the form: 

d•un • [ dum • . d t" + oo•u•= • - 2• Cm•-•-+f•tUl, UZ, ... ) m 

+P,(t)], for n = 1, 2, .... (6) 
We simplify this equation by considering the damping 
matrix C m, to be diagonal (i.e., modal damping), the 
forcing function to be harmonic, and f, to be cubic in 
form. Hence, we put 

Cmn= •JmnCn, 

Pn(t)= Fn cosXt, 
and 

fn = • 

Then, Eqs. 6 become 

d •u n • (_• d u n d--•-•-- + co•u•= e 2c•-•-+ • a•mnUmUoU•+F•cosXt 
for n = 1, 2, .... (7) 

Equations 7 are similar to the Duffing equation and, 
as in the case of the Duffing equation, the straightfor- 
ward expansion contains secular terms of the form t" 
exp(iwt) and, hence, is not uniformly valid. The method 
of multiple scales can be used to construct a uniformly 
valid, asymptotic expansion. 

According to this' method, we assume that each u, is 
a function of different time scales which are defined by 

T n = •"t 

and can be expanded in the form 

u•(t; ½)~ • d u•(To, Ti, ... ), for n = 1, 2, .... (8a) 
•=0 

Derivatives with respect to time transform according to 

d 

dt -Do+ e•i+ ... , (Sb) 
and 

d • 
•-•=Do+2•DoD•+." , (8c) 

Substituting Eqs. 8 into Eqs. 7 and equating coefficients 
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of like powers of 6, we obtain' 

Order 60: 

D•UnO+ conltnO= O, for n = 1, 2, .... (9) 
Order 6: 

u •' - 2DoD 2c D +FnCOSXT o Do•tnl+ conltnl = l•tnO- n O•tnO 

+ • Olnmpq•raO•PO•qO , for n = 1, 2, ... 
m,P,q 

etc. (10) 
It is convenient to write the solution to Eqs. 9 as 

follows. 

UnO--An(Tx, T•., .. . )exp(iwnTo)+CC , lorn-l, 2, ... , 

where cc represents the complex conjugate of the term(s) 
to the left. At this point, the A, are unknown. They are 
determined from the solvability conditions (i.e., elimi- 
nation of secular terms) at the next level of approxima- 
tion. Putting Eqs. 11 into Eqs. 10 leads to 

u i2wn(D•An+Cn A )exp(iwnTo ) Dõ•tnl + con•tnl = -- n 

+ -•F n exp(i XT 0) 

+ • anm•q•4mA•Aqexp[i(Wm+ w•+ wq)T0] 
rn• p•q 

+AmA• • exp[i(w m + w• - coq)To] 
+ Am.•t,A• exp[i( COm - C% + co•)To] 

+A m,•,A,, exp[i(COm - %,- %)To]}+cc, 
for n = 1, 2, .... (12) 

In order to eliminate the secular terms from un•, the 
A m must be chosen so that the coefficient of exp(iconTo) 
is zero. This coefficient will contain F n when X is near 
COn as well as the nonlinear terms associated with any 
combination of corn, %,, co• which nearly equals con, name- 
ly combinations of the form 

COn • COrn + COp + COq • 

or 

COn • COrn + COp -- COq, 

or 

COn • COn- COp- COq- 

The natural frequencies being commensurable is re- 
ferred to as internal resonance. 

As an example, we consider the case in which 

CO4 = C03+ COZ+ COl + 6(71 and k= w4+ 6cr z . 

The detuning parameters c h and •2 are introduced in or- 
der to describe the nearness ,of the approximations con- 
veniently. Then, it follows from Eqs. 12 that secular 
terms will not appear in the unx, for n = 1, 2, and 3, if 

- i2w,(D •A, +c ,A,) +A,•y,•A•,• + a,A 4•, 

x exp(icqT•)= 0 for n = 1, 2, and 3, (13a) 

k, l, and n are different; each is limited to 1, 2, and 3. 
The Yn• and a n are determined by performing the sum- 
mations indicated in Eq. 12. For n-4, secular terms 

are eliminated if 

- 2iw4(D1A4+c4A4)+A4• •'4•A•-•j+ a4AsA2A1 
1 

X exp(- icqT•) + 2F4exp(icruT•)= 0 (13b) 

and for n > 4, secular terms are eliminated if 

- 2iwn(D•An+CnAn)+An •Yn•Ay.•s = 0. (13c) 

It is generally more convenient to consider the equa- 
•ons gove•ing the interactions of the amplitudes and 
phases of the interacting modes. Consequently, we put 

A•= •a•(T•)exp[i•(T•)], for n= 1, 2, ... , (14) 

where a n and •n are real. Because we are only interested 
in the first term of the ex•nsions for un, all Tn for n 
greater th• I are considered consents. Substituting 
Eqs. 14 •to Eqs. 13 and se•rating the result into real 
•d imaginary parts, we obtain 

' • (15a) Wnan= -CnWnan+ • an a4a•a• sin• 1, 

and 

•( • yn: z ) (15b) Wnan•=- • a n as+ ana4ana • cos•x 

for n =1• • and 3; k• l• and n are different and limited to 
1• • and 3. The primes denote differentiation with re- 
spect to Tx• and 

•= •T•+ •4- •s- •2- •, (15c) 

•4a•=-c4•4a4 •a4asaza•sin•+ •4sin•z 0, 

and (15d) 
• • T4•a•+ a4asa2a lcOsgl COSg w4a4•-• a 4 -• 4 

(15e) 
/a2= a 2 T•-/3 4. (15f) 
For n > 4, we have 

! 

COna n = - C n conan• 

and 

• •vn, a• conan l3tn = - •a n ß 

(15g) 

(15h) 

From these equations, we can determine a steady- 
state solution (constant a nand /an in which the ampli- 
tude and phases are functions of the detuning param- 
eters crx and c% the amplitude of the excitation F 4 and 
the damping coefficients cn It follows immediately 
that in the first approximation the response is com- 
posed of that mode having a natural frequency near the 
excitation frequency and possibly all the other modes 
involved in the internal resonance; the remaining modes 
are damped out. If other modes are excited, then the 
response contains several harmonics, and some of them 
may be stronger than the one near the excitation fre- 
quency. 

There are other possible combinations of natural 
frequencies which can produce internal resonances, 
and these situations are treated in a similar way. 

There are resonant situations that can arise when 

is not near any co n . To consider these situations, we 
let F be 0(6 '•) and proceed as above. Now, however, 
the first terms in the expansions for the u n are of the 
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z kw 

w+ '•-X-x dx 

u +•-• dx 

A I B ,, 

FIG. 1. An Element of 

the Beam. 

form 

Uno=An(T1) exp(i C%To) + •Fn(con- X•') 'l exp(iXTo) +cc. 

The right-hand side of the governing equations for the 
un• will contain (among others)factors of the form 

exp{i[(w m + wp+ wq), (win- wp+ wq), (w•- w,- w•), (3X), 
(2x - (x- (x- + }. 

Any situation in which there is a combination of fre- 

quencies tb•at equals, or nearly equals con, involves 
modal interactions. This case contains the so-called 

superharmonic and subharmonic responses. 

Finally, if none of the above situations arise, then 
.to the first approximation the steady-state solution con- 
sists only of the mode being excited. 

II. STABILITY OF THE VARIOUS SOLUTIONS 

Generally, not all the steady-state solutions of Eqs. 
15 are stable. To study the stability, we determine the 
response of the system caused by an infinitesimal per- 
turbation away from a steady-state solution. We put 

an=an+ dan, (16a) 
and 

P'n = P'n+ AP'n, (16b) 

where the tilde indicates the steady-state solution. When 
Eqs. 16 are substituted into Eqs. 15 and only linear 
terms in the perturbations retained, the result is a lin- 
ear set of first-order equations with constant coefficients 
governing the /Xa n and A/xn. These equations have a 
solution proportional to exp(mT•) where m is an eigen- 
value of the coefficient matrix. If none of the m's has 

a positive real part, the motion is considered stable. 

In previous stability studies, the small disturbances 
were put into Eqs. 7 instead of Eqs. 15. This leads to 
coupled equations of the Mathieu type and generally re- 
quires more effort to determine the stability. 

III. FORCED OSCILLATIONS OF PRISMATIC BEAMS 

Referring to Fig. 1, we write the three pertinent 
equations of motion as follows. 

x- momentum: 

ax' (n'cosO-q' sin0)=pA ot,•.; (17a) 
z-momentum. 

O (n' sinO+q'cosO)+P'-c' = ax' • PAot2. ; 
moment of momentum. 

-ax ---7 +n' +• s•O-a• cosO 

+ q' l+,•]cosO+ øx • sinO =pI o• ' (17c) 
h the us•l way, we assume that the loads are re- 

1areal to the displacements as follows. 

(17b) 

00 

n'=EAe' and m'=-EI Ox ' (18) 
where 

e'=S- 1 

and 
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Here, E is the elastic modulus, A and I are the area 
and the moment of inertia of the cross section, and p 
is the density of the beam. 

It is convenient to re-write the equations in terms of 
dimensionless variables (without primes) and in the 
process to introduce a dimensionless parameter which 
can be useful in constructing an asymptotic expansion of 
the solution. Using Eqs. 18 and combining Eqs. 17b 
and 17c to eliminate q•, we obtain 

a--se = 0(•) 
and 

ax4+•-• -= e • +p- 
where 

and 

(19a) 

a,o] (•0b) •c •-F ' 

x' = xL, t' = (9L4/Er•')•/•'t, E =r•'/L •'. 

w' =r•w/L, u'= Er•'u/L, p=p'L•/(røEA) 

c :c% V [g•(p•) •/'-] 

Here, r is the radius of gyration of the cross-section 
area, and L, the characteristic length, may be the 
actual length of the beam or a wavelength of a (linear) 
transverse oscillation. 

Integrating Eq. 19a leads to 

au l(aw) •' e = •-•+• •xx =fir(t) 

u = c(t) + xU(t)-• \ ox ! 

and 

where G and H are arbitrary functions. For boundary 
conditions, we use 

u(0, t)=0 and 6u(/,t)+e(l,t)=0. 

Here, the constant 6 depends on how the beam is sup- 
ported; 6 is zero for no restraint and infinity for a rigid 
restraint. It follows that 

G(t)=O'H(t)=-2(l+6l) \ox / dx, 
and 

(2O) 

(21) 

ax-' +%-F = • %-F •+ p- 2c • . 
This is the form of Eq. la which applies to beams. 

Following the general procedure, we put 

w½,t)=•u,(t)½,(x), 
m 

substitute into Eq. 20, and obtain 

d4•m • 
• x4 - w• • = 0 

and 
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where 

and 

2(•+ ol ) ' 

(22) 

dx z ß \dx dxl 

Equations 22 are of the same form as Eqs. 7, and the 
solution follows the procedure which was described in 
the previous section. In the next section we consider a 
numerical example. 

IV. NUMERICAL EXAMPLE 

We begin by considering a beam with one end hinged 
and the other end clamped. The boundary conditions 

and 

d •'ck m 
½•(0)= o, dX •- (0)= o, ½•(z)= o, 

d½• (z)= o. 
dx 

The solution of Eq. 21 which satisfies these conditions 
is 

½n=En(sinanx- Rnsinhanx) , 

where 

E.= [«/(1 - R•) + (R• sinh2an/- sin2a,1)/4an] '•/•' , 
Rn= sinanl/sinhanl, 

and the a n are the roots of 

tan a•/= tanh a•/. 

The first five roots and frequencies are (for 1 = 1) 

a•l= 3.027 and w•= 15.421, 

a•. l = 7.060 and w•. = 49.970, 

asl = 10. 210 and o%= 104. 24, 

a4/= 13. 352 and w4= 178.28, 

and 

a•l= 16. 493 and ws= 272.02. 

Note that w•. and w l are nearly in the ratio of three to 
one. There may be more commensurable combinations 
of the wn, but we restrict our attention here to this case. 
To express the nearness of w•. to 3w l, we introduce a de- 
tuning parameter crl as follows: 

w•.= 3w,(1 + •a•) , 
where 

• = O. 0801. 

There are two cases or'interest: (A) X near w• and 
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2 - /j/•///// _ 
(' f I = 9.0 • 0_.•,,• •//' 
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FIG. 2. (a) Varia•on of amplinde • of firs• mode wi•h •he exci•ion fr•uency •. (b) Varia•on of amplinde • of second mode 
wilh •2. 

(B) X near w•.. To express the nearness of X to the w., 
we introduce a second detuning parameter (•. as follows. 

X = w.(1 + E•.), for n = 1 and 2. 

For convenience, we put 

A. ' exp(iw •.) for n= 1, 2, = •'d•. 1 .... 

Then following the general procedure, we obtain the 
following from Eqs. 22: 

A. Xnear ('•1 
For n = 1, 

wz(ai+cza•)- •uq3a•azsinlX• 2Fzsin/x2=O (23a) 
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and 

1 

•o•a• •i+ •v(q •a•+q•.a•al+qaa•a•.cosgO 

+al • yl•a•+ •Flcos/•.= 0. 

For n = 2, 

• =0 w•.(ai. + c •. a •.) + • vq oa • sing • 
and 

1 w•w•.a•.•i.+ •v(q4a•+q•a•a•.+qoa•cos g•) 

(23b) 

(24a) 

•'=0 (24b) 
•=3 

For • >2, 

a.+c.a.=O (25a) 
and 

w•w.a. t3• + a n • y.•a• = 0 . (25b) 
$=1 

Here we put 

-- _ , F•_• and g2 = wi(•2T I- •.) 

For the steady-state solution, it follows immediately 
that g•0 for • > 2. However, neither g• nor g• can be 
zero. Consequently, because of the internal resonance, 
when X is near •, the first and second natural modes 
appear in the response. 

Because • 0 for • > 2, the V•t are irrelevant. Using 
l = 2, one finds that the remaining coefficients are 

q•= 3•= -24. 851, 

q•= 4•+ 2•= - 66. 319, 

q•= 2•+ •= - 9.247, 

q4= 3•= - 345. 019, 

q•= 4•+ 2•=- 66,319, 

and 

qo= c•.• = - 3. 082. 

(Note that in this case c•i•k, = ch•k• = •t•. ) 

B. X near w2 

For n = 1, 

• vqaa•a•. sing = 0, (26a) w•(a•+c •a•)- • • 

and 

1 w•a•+ •v(q•a•+q•.a•a•+qaa•a•.cosgO 

+a• y•a•= O. (26b) 

For • = 2, 

• • = 0 (27a) w•½[+c•a•)+ •vqoa•sing •- •F•s•g• 
and 

1 w•w•a•i+ •v(q•a•+q•a•a•+qoa • cosg•) 

+a•ya•a•+2 •cosg• 0. (27b) 

For n > 2, 
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(28a) I =0 an+chart 

and 

w•w, t3',a,+a, • 1/,•a•= 0. (28b) 
$'=1 

Here gl is as defined above, but now 

For the steady-state solution, it follows immediately 
that for n > 2 

an--O. 

Consequently, the •,• are irrelevant. The q y are the 
same as in Case A. In this case a l= 0 is a possible 
steady-state solution, in contrast to Case A where 
neither a• nor a•. could ever be zero. 

For a beam with both ends hinged, there are com- 
mensurable natural frequencies, but ai• = 0 for j • k. 
For a beam with both ends clamped, the first six natur- 
al frequencies, at least, are not commensurable. Con- 
sequently, there is no internal resonance phenomenon 
associated with either case. Only the mode near the ex- 
citing frequency is strongly excited, but higher harmon- 
ics appear in higher-order terms. The governing equa- 
tion for each u, is the familiar Duffing equation with a 
damping and, in some cases, a forcing term. Because 
there is no strong modal coupling for beams having either 
clamped or hinged ends, the experimental and analytical 
results mentioned in the Introduction ought to agree 
closely. 

For some arbitrary values of the forcing amplitude 
and damping coefficients, we solved Eqs. 23-28 and 
integrated Eqs. 22 numerically until a steady-state was 
reached. In Figs. 2(a) and 2(b) the variation of a• and 
a•. with tx•. is shown for several values of the forcing 
amplitude when X is near w•. The result for a• is simi- 
lar to the solution of the Duffing equation for a hardening 
spring. Although a•. cannot be zero, it is small com- 
pared to a, and the response is practically described 
by the first mode. 

In Figs. 3(a)and 3(b) the variation of a• with F• is 
shown for two values of tx•.. The log-log plot in Fig. 3(b) 
can be qualitatively compared with the plot of experi- 
mental data presented by Jacobsen and van der Hyde. •4 
(The behavior of plates is expected to be similar to that 
of beams. ) These results suggest that the change in 
slope found experimentally is a result of restraining the 
mid-plane movement along the edges of the plate. Such 
a restraint makes the behavior of plates and beams 
similar to that of a hardening spring. It should be noted 
that one would obtain similar results for beams with 

either clamped or hinged ends. There is no modal in- 
teraction for these beams, but the response is governed 
by the Duffing equation. 

In Figs. 4(a) and 4(b), the variation of a• and a•. with 
tx•. is shown when X is near w,.. When a • is not zero, only 
the stable portion of the solution is shown. The complete 
solution (stable as well as unstable regions) when a• is 
not zero is shown in Fig. 4(b). It is interesting to note 
that when a• is not zero, it can be as much as six times 
greater than a•.. Hence, the response can be dominated 
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by the first mode even though the exciting frequency is 
near the second natural frequency. 

The variation of a I and a•. with the amplitude of the 
forcing function is shown in Figs. 5(a)and 5(b). The 

log-log plots would be similar to Fig. 3(b) with an added 
branch for the case when a• is not zero. 

These results show that a first approximation of the 
response to a harmonic excitation can involve strong 

J. Acoust. Soc. Am., Vol. 55, No. 2, February 1974 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Fri, 08 May 2015 21:42:46



290 Nayfeh eta/.' Nonlinear response of structural elements 290 

150 

125 

I00 

75 

50 

25 

I I I I I I I 

a•(a•--O) 

az(a• • O) 

)• NEAR •2 (eø'2= 0.05) 
ß = 0.0001 
C--E) 

• STABLE } PERTURBATION ---- -- UNSTABLE SOLUTION 

0 NUMERICAL INTEGRATION 

I00 200 500 400 500 600 700 

• F 2 

(a) 

150 

125 

I00 

75 

50 

25 

I I I I I I 

/ 

j \ 
/ \ 

• I 
_ / j / 

J / 
•J / 

IOO 200 

a 2 

NEAR (•2 (co'2: 0.05) 
= 0.0001 

C: I0 

STABLE } PERTURBATION ------UNSTABLE SOLUTION 

I I i 

0 500 600 700 400 

I 

I 
/ 

/ 
/ 

• / 
,•/ 

500 

(1:,) 

FIG. 5. (a) Variation of al and a2 with F2 (amplitude of excitation when frequency near second natural frequency). (b) Variation of 
al and a2 with F2 when a• is not zero (complete solution). 

modal interactions when the natural frequencies are 
commensurable (internal resonance). In particular, 
for a beam with one end clamped and the other hinged, 

it is possible for the response to be dominated by the 
first free-oscillation mode vibrating at the first natural 
frequency when the excitation frequency is near the sec- 
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ond natural frequency. None of the earlier studies re- 
vealed this possibility. 

The present results emphasize the need to consider 
modal interactions in an nonlinear analysis as well as 
the need for an experiment with a beam having one 
clamped and one hinged end. 
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