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The surface tension driven breakup of viscoelastic filaments into droplets 

is qualitatively different from that of Newtonian liquid filaments. Dis- 
turbances on filaments of dilute polymer solutions often grow to a config- 

uration consisting of nascent droplets connected by a thin ligament; the 

breakup time for this configuration is much longer than that predicted by 
extensions of Rayleigh’s linear stability theory. We present here a nonlinear 

analysis of surface tension driven breakup of viscoelastic filaments using two 

complementary approaches that give equivalent results: a transient finite 

element solution and a one-dimensional thin filament approximation. We 
show that significant nonlinear effects lead to the experimentally-observed 

nascent droplet-ligament configuration, and we predict the entire evolution 
of the filament profile. Agreement with available experimental data for 
profile evolution and breakup of jets of Newtonian fluids and dilute poly- 

mer solutions is excellent. 

Introduction 

The surface tension-driven breakup of a liquid filament into droplets is an 

important step in a variety of processes. Applications in a wide range of 
industries have recently been enumerated by Schiimmer and Tebel [l]. The 

mechanisms governing the breakup of filaments of Newtonian fluids seem 

generally to be understood; the subject has been broadly reviewed by Bogy 

[2] and McCarthy and Molloy 131. This is not the case for the breakup of 
filaments of polymeric liquids. It is observed experimentally that jets of 
polymer solutions generally take longer to break up into droplets than jets of 
purely viscous liquids of comparable shear viscosity; sometimes breakup 
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does not occur at all [4]. This phenomenon is usually interpreted in terms of 

the known large resistance of polymer solutions to elongational stretching 

deformations, but the concept has not been quantified through an analysis 

of the fluid mechanics. 

The breakup of liquid filaments was first analyzed by Rayleigh [5] using 

linear stability theory. Rayleigh assumed an equivalence between spatial and 

temporal growth of disturbances, and thus calculated the growth of infinites- 

imal periodic disturbances on a stationary liquid cylinder. This approach 

precludes any consideration of velocity profile rearrangement on the jet in 

the neighborhood of the nozzle, and it assumes that the disturbance wave- 

length remains constant as the disturbance evolves. Most subsequent investi- 

gators have followed Rayleigh’s basic approach, and have thus been limited 

to the early stages of disturbance growth. The notable exception has been 

the recent work of Bogy and others [6] using a one-dimensional Cosserat 

director theory or the equivalent to study the nonlinear mechanics, enabling 

prediction of the development of satellite droplets in the absence of viscos- 

ity. The Cosserat theory used by Bogy is developed ub initio as a one-dimen- 

sional theory [7] and contains other one-dimensional approximations ob- 

tained from the full Navier-Stokes equations as special cases. 

The linear stability analysis has been carried out for a general linear 

viscoelastic liquid [4,8]. This result is in fact general for any Simple Fluid, 

since the disturbance is about the rest state and the strains are infinitesimal. 

The conclusion is that in all cases a disturbance will grow more rapidly on a 

viscoelastic filament than on a Newtonian filament with the same shear 

viscosity. This result is expected, since the initial resistance to deformation 

of a viscoelastic liquid is always less than for the corresponding Newtonian 

liquid. The linear theory has often been interpreted as being inconsistent 

with the experimental observations of a longer time to breakup, but this is 

simply the result of an inappropriate application of a linear theory to an 

inherently nonlinear phenomenon. Goren and Gottlieb [9] have argued that 

unrelaxed tensile stresses generated in the nozzle may explain the retarded 

breakup, and have repeated the linear analysis including such terms. Large 

initial tensile stresses will delay the initial growth, but are unlikely to be 

relevant to the ultimate breakup mechanism. 

We present here the results of a dynamical analysis of the growth of 

surface tension-driven disturbances on thin filaments of Newtonian and 

viscoelastic liquids. The results incorporate the linear theory during the early 

stages of disturbance growth, but they include the system nonlinearities and 

are also valid at long times approaching filament breakup. Two complemen- 

tary approaches have been used, giving the same result. One is a new zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Galerkin/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfinite element numerical algorithm for solving transient free- 

surface flows of viscoelastic liquids; the algorithm is described in detail 
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elsewhere [lo]. The other is a one-dimensional theory for viscoelastic fila- 

ments obtained by averaging the momentum equation over the filament 

cross section at each axial position, in much the same way as has tradition- 

ally been done in the analysis of fiber spinning [ll], but retaining the finite 

curvature in the one-dimensional equations. Preliminary results of these 

analyses were summarized in the Proceedings of the IX International Con- 

gress of Rheology [12,13]. The major conclusion is that disturbances on 

viscoelastic jets do grow more rapidly at short times than on Newtonian jets, 

as predicted by linear stability theory, but there is a retardation of the 

disturbance growth and stabilization of the viscoelastic jets at long times as 

a consequence of the buildup of large extensional stresses. Nonlinearities 

associated with inertial stresses lead to the development of the satellite 

droplets often observed on Newtonian jets (e.g. [14-18]), and satellite 

droplet formation is retarded by the effect of elasticity. A residual tensile 

stress from the nozzle will delay the initial disturbance growth, but the 

stabilization due to the buildup of extensional stresses controls the final 

breakup mechanism and, ultimately, the breakup time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Formulation 

We assume that an infinitely-long uniform liquid cylinder of initial radius 

R, is perturbed slightly with a periodic ax&symmetric disturbance of wave- 

length 2L. The wavelength is then assumed to remain constant as the 

surface tension-driven disturbance grows in time. This assumption is con- 

sistent with photographic evidence of the breakup of filaments forced with a 

constant frequency, as shown in Fig. 1 [14,19]. We further assume for 

convenience that the initial disturbance is symmetric about the midpoint, so 

only one-half wavelength need be considered. This assumption only ap- 

proximates the observed spatial growth of the disturbance; it reduces the 

scope of the problem considerably and is not expected to be a serious 

restriction. 

The geometry is shown schematically in Fig. 2. The flow field is defined 

by the ax&symmetric Cauchy momentum equation (neglecting gravity) and 

the appropriate stress constitutive equations. The following kinematical and 

stress conditions hold at the free surface: 

g+ug=v, 

(-pI+T).n=o 

n’ 

(1) 

(2) 
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Fig. 1. Stages in the breakup of a N~onian jet; after photographic data of Goedde and 

Yuen [14]. Successive frames are separated by 1.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 10e3 s. 

U and V are the axial and radial components, respectively, of the velocity 

vector V, and T is the extra-stress; u is the surface tension. Symmetry 

requires the following conditions at z = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL: 

U=aZ=aL=. 
i3V aR o 

(3) 

The extra-stress for the visu~lastic liquid is described by the Oldroyd-B or 

Maxwell models. The former includes the latter as a special case and is given 

by 

T+&E=Zq , (44 

D=t[vv+ (vY)+], (4b) 

~=~+Y.v( )-(Vv)+*( )-( )*vv. 

n ---- --_- --_ 
R 1-L z R 

w 

Fig. 2. Schematic of a deforming liquid filament. 



83 

A, is the polymer relaxation time, n is the viscosity, and A, is the 

retardation time. The Maxwell flmd corresponds to A, = 0, while the Newto- 

nian fluid limit is recovered for A, = AT. Equation (4) is derivable from 

molecular theory as a first approximation to the stress in a polymer solution, 

with A, = $,TJ,/~, where qS is the viscosity of the solvent. 

All results are expressed in terms of a set of dimensionless variables that 

are natural to the problem, as follows: 

r = R/R,,, 5 = z/L, 8 = at/qRo. 

Four dimensionless parameters characterize the system, 

a accounts for finite curvature; j3 is a measure of the inertial stresses relative 

to surface tension; q2/paR, is the square of the Ohnesorge number. 

~(1 - A) is a measure of viscoelasticity, and might be considered a Deborah 

number for the disturbance growth; in the Maxwell limit (A = 0) $ is the 

ratio of surface tension stresses to the elastic shear modulus. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SolutlOn 

Calculations using either the finite element or thin filament approaches 

were usually begun with an initial dimensionless radius profile 

r=l +r cos nl, (5) 

with c typically equal to 0.05. This is sufficient to define the complete initial 

state in the absence of inertia and elasticity (/I = 9 = 0). The profile will, of 

course, lose the sinusoidal character when nonlinear effects become im- 

portant. For /I or 9 different from zero the initial velocity and extra-stress 

must also be specified. The particular choice determines the nature of the 

18 

J 

Fig. 3. Disturbance growth on a Newtonian filament, c = 0.05, a = 0.10, /3 = 0, using the 

fiite element code. The dashed line at 8 = 21 is the solution using the thin filament 

approximation. 
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Fig. 4. Disturbance growth on a Newtonian filament, E = 0.05, (Y = 0.10, /3 = 1080, using the 

finite element code. The dashed line at 8 = 66.8 is the solution using the thin filament 

approximation. 

initial portion of the transient, before the fastest growing linear mode begins 

to dominate or nonlinear effects take over. The initial velocity and stress 

distribution corresponding to the linearized solution of the momentum 

equation with the radial profile given by eqn. (5) must be used if direct 

comparison is to’ be made with linear stability theory; this velocity and stress 

distribution is given in an appendix to Keunings [lo]. 

The‘transient finite element algorithm is described in detail in Keunings 

[lo]. Figures 3 and 4 show the computed flow domain and the finite element 

mesh for a Newtonian jet with e = 0.05, (Y = 0.10, and /3= 0 and 1080, 

respectively. The latter value is typical of the experiments on aqueous 

glycerol solutions by Goedde and Yuen [14]. 

The thin filament equations are presented in Appendix A. The dashed 

lines defining flow domains in Figs. 3 and 4 at 8 = 21 and 8 = 66.8, 

respectively, are the computed results from the thin filament equations. 

Clearly, agreement between the two methods is excellent. This comparison 

justifies the use of the thin filament equations for parametric studies, since 

their numerical solution is much less costly than solutions using the finite 

element code. 
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Newtonian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluids 

The effect of inertia relative to viscosity is dramatically illustrated by 

comparison of Figs. 3 and 4. Disturbance growth on the highly viscous 

filament is much more rapid (in units of dimensionless time which, it must 

be remembered, scales with n-l). The thinnest point on the viscous jet is 

always at the midpoint between the nodes (which we denote as the neck), 

and thus uniform droplets of volume 27rRiL are expected at breakup. The 

thinnest point moves away from the neck when inertia is important, and 

breakup will occur as primary drops with connecting ligaments; the liga- 

ments will form satellite drops if no post-merging with a primary drop 

occurs. This highly nonlinear phenomenon is indeed what is observed 

experimentally, and Fig. 4 agrees remarkably well with photographs of 

glycerol/water jets taken by Goedde and Yuen [14]. 

It is convenient to plot the logarithm of the disturbance amplitude, 

1 r - 11, versus time in order to make comparisons with the linear theory. 

This quantity has a value E ]cos al 1 at 8 = 0, and will equal unity if r = 0. 

The intercept when 9 = 0 is equal to E both at the point of maximum swell 

({ = 0) and at the neck (S = l), with a value less than E at all points in 

between. According to the linear stability theory a semi-logarithmic plot of 

disturbance amplitude will be a straight line with slope y, where y is the 

dimensionless growth rate for the given wavelength. y is given by the 

solution of an implicit algebraic equation (see Appendix B) in which (Y and 

R appear as parameters. 

0 Minimum 

10-Z 

0 20 40 60 60 100 

8 

Fig. 5. Computed disturbance amplitude for a glycerol/water jet, a = 0.094, /3 = 1400. The 

intercept at B = 0 is determined by fitting data of Goedde and Yuen [14]. The dashed line is 

the amplitude from linear stability theory. 
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Figure 5 shows the computed disturbance amplitude for a = 0.094, /3 = 

1400 at the swell, the neck, and at the thinnest point between, which moves 

from the neck at 19 = 0 to 3 = 0.4 at breakup. These parameters correspond 

to a particular experiment of Goedde and Yuen [14]. The dashed line is the 

disturbance computed from the linear stability analysis. The linear theory 

agrees well with the nonlinear analysis at short times, as it must, but 

substantial deviations begin to occur at 8 = 50. Mass is conserved in the 

linear theory only to order E, and large errors in mass conservation also 

result from the linear theory calculations beyond this point. Breakup is 

always predicted to occur at the neck in the linear theory; the breakup time 

computed by extrapolating the linear curve to 1 r - 11 = 1 does not differ 

significantly from that computed using the nonlinear theory, despite the 

gross error in shape. This agreement in the predicted time to breakup occurs 

because of a cancellation of second order terms. 

The data in Fig. 5 are taken from photographs published by Goedde and 

Yuen [14] for the breakup of glycerol/ water jet. The close agreement at the 

three points (swell, neck, and thinnest point) shows that the nonlinear jet 

profile has been computed correctly at breakup. It is notable, however, that 

none of the data lie in the linear regime. There is therefore no way of 

computing the initial perturbation amplitude, and the data set can be shifted 

horizontally in the absence of information about the time-of-flight from the 

nozzle (which is not given). 

The data in Fig. 6 for a water jet are taken from analyzed photographs in 

the thesis of Chin [20], who studied the breakup of horizontal jets. The 

disturbance was introduced by vibration of the nozzle. The location of the 

IO' 1 I I 
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Fig. 6. Computed disturbance amplitude for a water jet, a = 0.1355, B = 4.11~10’. The 

intercept at B = 0 is determined by fitting data of Chin [20] in the linear region. 
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Fig. 7. Computed amplitudes of first three harmonics of disturbance on a water/ii jet, 

a = 0.19, /3 = 2.5 x 104. T‘he intercept of A, at B = 0 is determined by fitting data of Taub 

[15] in the linear region. 

jet centerline (S = 0) was computed by accounting for “droop” because of 

gravity. The experimental parameters were cy = 0.1355, p = 4.11 X 105. Only 

the intercept at 8 = 0, corresponding to the initial perturbation of c: = 0.0073, 

was fit in these calculations. 

Taub [15] reported the evolution of the shape of a water/ink jet in terms 

of the temporal growth of the Fourier coefficients in an expansion in the 
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Fig. 8. Computed radii of primary and satellite drops for water jets as a function of 

disturbance wavenumber. The filled symbols are data of Rutland and Jameson [17] and the 

open symbols are data of Lafrance [18]. 



form 

r= 1 +A@) cos r{+&(e) cos 2a{+A&?) cos 3s3+ . . . . (6) 

Figure 7 shows some of Taub’s data and the computed result for (Y = 0.19, 

p = 2.5 x 104, which corresponds to a water jet with R, = 0.0159 mm, 

L = 0.084 mm, 77 = 1 cp, p = 1 g/cm3, and u = 55.7 dyne/cm. (The surface 

tension was determined by Taub by fitting several sets of data to Yuen’s [16] 

nonlinear analysis.) The initial perturbation c = 10m3 is fit by extrapolating 

the linear curve (A,) to 9 = 0; there are no other adjustable parameters. The 

agreement with the measured higher harmonics is excellent. Improvements 

over Yuen’s analysis are apparent near breakup, both in predicting breakup 

time and in the details of the Fourier coefficient behavior. 

Figure 8 shows the radius r, (made dimensionless with R,) of the 

primary and satellite drops produced for different disturbance wavenumbers 

k, where k = sm. The data are from Rutland and Jameson [17] and Lafrance 

[X3]. The lines are the drop sizes predicted from the nonlinear analysis using 

the fluid properties of water and E = 0.01. Final drop sizes are well predicted 

by the analysis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Viscoelastic liquids 

A comparison between disturbance growth on Newtonian jet and on a jet 

of an Oldroyd-B fluid is shown in Fig. 9 for (Y = 0.1, fl= 0; the viscoelastic 

parameters are + = 30, A = 0.25. To the extent that the Oldroyd-B theory 

models real systems, this would correspond to a 1 mm radius jet of an 

aqueous polymer solution with X, = 0.17 s. (A ratio q&l = 0.25 is outside 

the range of validity of the dilute solution theory, however.) Consistency 

with the given value of + requires B = 45, which is negligibly small, and the 

calculations were therefore done for B = 0 in order to examine the effect of 

fluid elasticity without inertia. These calculations were carried out using the 

finite element analysis; nearly identical results are obtained using the thin 

filament theory up to 9 = 8, after which numerical instability is encountered 

for the viscoelastic liquid with the spatial resolution employed. Initial 

conditions for the velocity and stress were taken to be those for inertialess 

flow of a Newtonian liquid. 

The disturbance initially grows much more rapidly on the viscoelastic 

filament, completely in accordance with our expectations and with the linear 

theory. For value of 8 greater than nine the shape of the viscoelastic jet is 

nearly stabilized into the nascent droplet-connecting ligament configuration 

seen experimentally; the disturbance continues to grow on the Newtonian 

filament, however. The Newtonian filament breaks up for 8 slightly greater 

than 21, while there is virtually no further deformation of the viscoelastic 

filament as seen on this time scale. 
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Fig. 9. Computed disturbance growth for a = 0.1, /3 = 0, on jets of a Newtonian fluid 

(dashes) and an Oldroyd-B fluid (solid) with Q = 30, A = 0.25. 

Figure 10 shows the disturbance amplitude for the visuxlastic liquid at 

the swell and at the neck (which remains the thinnest point for /3 = 0), 

computed with the finite element code using initial conditions consistent 
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Fig. 10. Computed disturbance amplitude for a jet of an Oldroyd-B fluid, a = 0.1, fl= 0, 

C$ = 30, A = 0.25. The dashed line is the amplitude from linear stability theory. 



with the linear stability analysis (Appendix B); the dashed line shows the 

disturbance growth given by the linear stability analysis. Agreement with the 

linear theory is excellent up to about 8 = 4. There is a sharp transition 

thereafter, however, and whereas extrapolation of the linear theory would 

predict breakup at 8 = 6, breakup does not occur at all over the time scale 

for which the calculations were carried out. 

The formation of satellite droplets is suppressed when inertial effects are 

present in viscoelastic filaments. The initial disturbance growth is again 

identical to that predicted by the linear stability analysis, but the subsequent 

shape develops as though a satellite drop will form, as in Fig. 4. Viscoelastic 

effects hinder the separation of the ligament from the primary drop, how- 

ever. 

The rheological model used here has a constant shear viscosity, while the 

polymer solutions used in breakup studies have usually been shear thinning. 

The qualitative features of the nonlinear mechanics will remain unchanged, 

however. There is no contradiction between the linear stability analysis and 

the experiments, but any attempt to apply the linear theory to a breakup 

calculation is clearly inappropriate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Asymptotic behavior 

The viscoelastic filament is often observed experimentally to approach an 

apparently stable configuration that can be approximated by two large 

droplets connected by a long cylinder of uniform radius. Figure 11 is taken 

from Goldin et al. [4], for example. The pressure in the droplets can be taken 

to be approximately atmospheric, in which case the thin filament equations 

simplify to the equation describing uniform uniaxial extension of a viscoe- 

lastic cylinder as a result of .radial compressive stresses resulting from 

surface tension. The radius of the cylinder of a Maxwell fluid decreases 

uniformly according to the equation 

Equation (7) is equivalent to a special case of eqn. (66) of Schimmer and 

Tebel [l]. The Newtonian fluid is recovered in the limit $J + 0, with a 

solution 

+-+o: r --+ constant - 8/6. (8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 11. Shape of a jet of a polymer solution, after Goldin et al. [4]. 
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Fig. 12. Computed dimensionless radius at the neck, fi = 0, for jets of a Newtonian fluid and 

a Maxwell fluid (A = 0) with $I = 2. The Maxwell fluid approaches the asymptotic behavior 

defined by eqn. (9). 

An analytical solution is not available for the Maxwell fluid, but for 8 z+ $ 

the long time asymptote is obtained as 

ti B +: In r 3 const - e/ 3+. (9) 

It is clear from the asymptotic behavior for the two flmd models that a 

Newtonian filament in this configuration would rupture in a finite time of 

order 8 = 6 (t = 67&/ a), while a viscoelastic filament would thin much 

more slowly; the exponential approaches zero for 6 - 99, corresponding to 

t - 9X,. The latter time is longer than the Newtonian breakup time scale 

provided $I z== 1, which is therefore the condition for viscoelastic dominance 

of the breakup process. 

This asymptotic behavior can be seen in Fig. 12, where the dimensionless 

radius at the neck is plotted versus time for / 3 = 0 for a Newtonian filament 

and for a Maxwell liquid with + = 2. The broken lines are the linear stability 

analysis. The figure graphically illustrates the more rapid disturbance growth 

I .2 
I ’ 

I I 
I 

Fig. 13. Computed dimensionless stretch rate at 

for a Maxwell fluid. Note that 8/$ = t/A,. 

c = 0.4 as a function of dimensionless time 
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for the viscoelastic liquid, followed by the transition to the asymptotic 

exponential decay defined by eqn. (9). In contrast, the Newtonian filament 

breaks up in a finite time. 

The stabilization of filaments of polymer solutions is usually attributed to 

a resistance to extensional deformations with stretch rates of the order of 

:A, and greater (e.g. [19]); this is the value at which extensional stresses 

grow without bound for a Maxwell liquid for times that are long relative to 

A, [21]. The computed stretch rate l?, at [ = 0.4 for disturbance growth on a 

filament of a Maxwell liquid, $J = 2 and B = 0, is shown in Fig. 13. Clearly 

the long-time stabilization corresponds to the rapid growth of A &. It is this 

nonlinear behavior resulting from the buildup of extensional stresses that 

inhibits the breakup of viscoelastic jets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Non-zero tensile stresses 

Goren and Gottlieb [9] have argued that unrelaxed tensile stresses gener- 

ated during extrusion will retard the disturbance growth, and they have 

repeated the linear stability analysis for an Oldroyd 8-constant fluid with 

non-zero initial values of the tensile stresses. There is an approximation in 

their analysis, where they assume that stress relaxation is slow relative to 

disturbance growth, and hence yX, * 1. 

A non-zero initial stress can be incorporated in the nonlinear analysis 

without approximation. One additional parameter, denoted T,, is intro- 

Fig. 14. Computed disturbance amplitude for a jet of 50 ppm Polyox WSRN-12K in water, 

a = 0.2, /3 = 1.47 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo’, A = 0.96, Q = 116.7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, = 0.47. The dashed line is the slope of the 

amplitude from linear stability theory following relaxation of the initial stress. The intercept 

c = 0.03 at B = 0 is determined by fitting data of Chin [20]. 
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Fig. 15. Computed disturbance amplitude for a jet of 25 ppm Polyox WSRNdOK in water, 

a = 0.2, /3 =1.47x105, A = 0.96, + = 475, T, =1.76. The dashed line is the slope of the 

amplitude from linear stability theory following relaxation of the initial stress. The intercept 

E = 0.03 at 8 = 0 is determined by fitting data of Chin [30]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

duced; this is the tensile stress at 8 = 0 normalized with respect to a/R,,. 

Goren and Gottlieb’s linear theory, when valid, gives results at short times 

that are identical to those obtained from the thin filament theory. The linear 

theory cannot describe the nonlinear effects at long time, however, and 

predicts breakup times that are too short. 

Figures 14 and 15 show data from the thesis of Chin [20] for aqueous 

solutions of 50 wppm Polyox WSRN-12K and 25 wppm Polyox WSRN-60K, 

respectively. The measured surface tension was 64.9 dyne/ cm and the 

measured solution viscosity was 1.04 cp for both solutions. A, was computed 

from the molecular theory of Williams [22] to be 1.9 X 10m4 s and 7.8 x 10Y4 

s, respectively. The vibrating nozzle of radius R, = 0.102 mm produced a 

wavelength 2 L of 1 mm. These properties and dimensions correspond to 

a =0.2, B= 1.47 x 105, and A =0.96, with += 116.7 for Fig. 14 and 

+ = 475 for Fig. 15. The scatter near 8 = 0 may reflect the difficulty of 

measuring small perturbation quantities, but it might be related to the 

imposition of a finite oscillatory initial velocity [23]. 

The initial dimensionless tensile stress T, was computed using the cup 

(flow rate) average for fully-developed tube flow: 

32(1 - Ah) 

39 

x,7 * 

(-1 Ro ’ 
(10) 

where v is the average velocity. This calculation neglects the effect of flow 

rearrangement near the tube exit [24], but is should give a reasonable 
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estimate of the correct order. The computation using the nonlinear theory is 

shown as the solid line in Figs. 14 and 15. The only adjustable parameter is 

the initial disturbance amplitude, which was taken to be e = 0.03 to fit the 

data as 8 approaches zero. The same value was used for both experiments, 

since the same voltage was applied to vibrate the nozzle. The calculation was 

carried out until the asymptotic behavior described by eqn. (9) was reached, 

after which the curve was extended using the asymptotic theory. 

The analysis fits the experimental data extremely well. Similar results are 

obtained for the remainder of Chins data; see Bousfield [25]. Even better 

agreement can be obtained by varying T, by up to 40 percent, which is well 

within the uncertainty of the estimate, but this does not seem warranted by 

the precision of the data. The dashed line shows the slope computed from 

the linear growth rate without considering the initial stress. The Goren and 

Gottlieb theory is not applicable for these parameters and is not shown. 

Stress relaxation and linear growth are seen to occur on comparable time 

scales, and there is a region of approach to the constant growth rate 

computed from linear theory. The viscoelastic nonlinearity dominates the 

breakup, however, and extrapolation of the linear theory would greatly 

underestimate the breakup time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conclusion 

The breakup of a liquid filament into droplets is an inherently nonlinear 

phenomenon, which can be described both by numerical solution of the full 

momentum and constitutive equations and by one-dimensional “thin fila- 

ment” analysis. The theory is completely predictive, requiring only the initial 

perturbation. The initial surface tension-driven deformation grows much 

more rapidly on polymeric filaments than on filaments of Newtonian 

liquids, but the extensional stresses stabilize the viscoelastic filaments and 

retard breakup. Inertia causes the formation of satellite droplets in low 

viscosity liquid jets; viscoelasticity acts to retard satellite droplet formation 

and to maintain the thinnest point on the filament at the midpoint between 

droplets. A residual tensile stress from the nozzle flow will retard the initial 

disturbance growth, but the nonlinear extensional stresses control the final 

breakup mechanism. 

Appendix A 

Thin filament equations 

The thin filament equations are derived by averaging the ax&symmetric 

momentum equations over the filament cross-section at each axial position, 
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with the assumption that the axial velocity U is a function only of the axial 

coordinate, z, and that radial inertial terms can be neglected. Details are 

contained in Bousfield [25]. The equations for a Newtonian fluid are 

obtained as follows: 

f = (E + F)/ 6r, (Al) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi1E/r2 d#l/ r’ d{, (A2) 

E = -+‘ti d[ + r(l + ,2$)-1’2 + a2r2rc5(1 + “2r;)-3’2, (A3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

where 

f = r, + urs, 

ic=u,+uu~, 

u= -2 
/ 

s 
r- ‘f d{. 

0 

Subscripts denote partial differentiation. These equations are equivalent to a 

spatial integration of the Cosserat director theory used by Bogy [6], eqn. S), 

except that the radial inertial terms and one viscous term, n( R2~z,)r, are not 

included. 

For an Oldroyd-B fluid, the thin filament equations are 

~= (G+H+I+J)r 

2(K-M) ’ 
(fw 

J ‘(H+I+J),‘(K-44) d{ 

G=- ’ 

I 
ll,‘(K- M) d{ ’ 

0 

H = -j3$$r2( ue8 + 2~24,~ + u2uss) d[ - $‘ti&, 

I= - 
a24qq8 a2cpr2rtc8 3a4t$w2r3jrsrre 

- - 

(1 + a2rf)3’2 (1 + a2rl)3’2 (1 + a2rl)“’ ’ 

J= 
r 

+ 
a2r2rcc 

(1 + a2ryzjl’2 (1 + a2r:)3’2 

-6c#A(ri’-t2), 

K= c#w2(T,, + 2~~~) + 3r2 + 6$&-t, 

n4= 
a2+r2rSS 

2(1 + “,:,)1’2 - (1 + a2ri)3’2 ’ 

646) 

(A? 

( w 

(A% 

(AW 

(All) 



where 

i: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArsr -  2urC, -  uerr + uu,ys + u2rss 6412) 

and rn and r2* are extra-stress components in the axial and radial direc- 

tions, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix B 

Linear stabiliv theory 

Disturbances with an initial value given by eqn. (5) grow in the limit 

c+Oas 

r=l+e cos 7r{exp(y@). (A13) 

The growth rate y is given by the solution of the algebraic equation [4] 

Y+ 
277*7lWra) 

1 

1 _ 27r( IT* + Xj3/+‘/‘l,( 7Ta) 

B 
(2r2 + Ys/w1((~* + Ymy*4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

7r(l - a2a2)I,( 7ra) 

= a?-&( mY)(27r2 + (Y/3/$ * 
(A14) 

I,, denotes the modified Bessel function of order n. 17 is a function of y; if 

the linearized shear stress equation is 

(A19 

with r, the shear rate and a,, = b, = 1, then 

77 = c b,,y” 
I 

c a,y”. 
n=O n=O 

(+j is the complex viscosity.) 

For the Oldroyd-B fluid, 

(A16) 

i= 1 +hv 

1+X,y’ (Ala 

The second term on the left of eqn. (A14) vanishes identically in the limit of 

p + 0, and we have 

(1 - 7r’a’)I,( 7T,) 

‘+O’ ‘= 2m7jIo(7ra) . (AW 

Growth only occurs in this limit for a -C V. For a + 0 we obtain the result 

a-0, p+O: 
(1+ Yd 

’ = 6(1+ yA+) ’ 
6419) 
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We thus recover y = l/6 for the Newtonian fluid, y + 1/6R for large +, 

and 

a-,0, p+o, A=O: 
1 

- y= 6-4, Wo) 

for the Maxwell fluid. 
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