NONLINEAR AND DIRECTION CONNECTIONS

Abstract

JAAK VILMS ${ }^{1}$ Abstract. Nonlinear connections and direction connections are two types of connections arising in Finsler geometry. In his work on generalized sprays, P. Dazord showed that there is a relationship between these two types (nonlinear connections were called sections by him). This relationship has also been used by J. Grifone in a work on prolongation of direction connections. In this paper we examine this relationship in a general setting. In particular, we show that E . Cartan's condition " D " is necessary and sufficient for a direction connection to define a nonlinear one. Also, we prove a nonuniqueness result for direction connections associated to a given nonlinear one.

1. Connections on vector-bundles. We first recall our definition of a connection on a vector bundle [5], [6]. For a smooth (C^{∞}) vector bundle $p: E \rightarrow M$, set $E_{0}=E-0$ and $p_{0}=p \mid E_{0}$. The bundle $p^{-1} E$ over E is canonically isomorphic to the bundle $V E$ of vertical vectors in the tangent bundle $T E$ of E. Hence we have the exact sequence

$$
\begin{equation*}
0 \rightarrow p^{-1} E \xrightarrow{J} T E \xrightarrow{p^{\prime}} p^{-1} T M \rightarrow 0 \tag{1}
\end{equation*}
$$

of vector bundles over E, where J corresponds to the inclusion map $V E \subset T E$ and p^{\prime} is essentially the tangent map $p_{*}: T E \rightarrow T M$.

A smooth nonlinear connection on the vector bundle $p: E \rightarrow M$ is a smooth splitting of (1) over E_{0}. Since $T E \mid E_{0}=T E_{0}$ and $p^{-1} E \mid E_{0}$ $=p_{0}^{-1} E$, such a splitting is given by a smooth linear map $V: T E_{0}$ $\rightarrow p_{0}^{-1} E$ (i.e. continuous linear on the fibres), satisfying the equation $V J=$ id. The splitting can be conveniently described by its connection map $D: T E_{0} \rightarrow E$ defined as $D=r \circ V$, where $r: p^{-1} E \rightarrow E$ is the canonical surjection over $p . D$ is continuous linear on the fibres and is smooth.

The connection on $p: E \rightarrow M$ is homogeneous (resp. linear) if the $\operatorname{map} D$ is homogeneous of degree 1 (resp. linear) on the p_{*} fibres of $T E$. For a linear connection, the splitting of (1) automatically extends to all of E; in fact, a linear connection can be defined as a splitting of (1) which is smooth over all of E.

Received by the editors June 23, 1970.
AMS 1969 subject classifications. Primary 5385, 5350.
Key words and phrases. Finsler geometry, nonlinear connection, direction connection, E. Cartan's condition "D", spray.
${ }^{1}$ Supported by the NSF.

Let us now introduce local coordinates. Suppose locally $T M$ and E are isomorphic to product bundles $U \times B$ and $U \times E$, respectively, where B and E are real Banach spaces (the reader should substitute $B=R^{n}, E=R^{m}$ if he is not familiar with calculus in Banach spaces) and $U \subset B$ is an open set. Then $T E_{0}$ is locally isomorphic to the product bundle ($U \times E_{0}$) $\times B \times E$ (where $E_{0}=E-0$), and fiberwise for each $(x, a) \in U \times E, D$ is defined by a $\operatorname{map} D_{(x, a)}: B \times E \rightarrow E$ of the form

$$
\begin{equation*}
D_{(x, a)}(\lambda, b)=b+\omega(x, a) \lambda . \tag{2}
\end{equation*}
$$

Here $\omega: U \times E_{0} \rightarrow L(B, E)$ is a smooth map (L denotes a space of continuous linear maps). ω is called a local component of the connection.

The connection is homogeneous (resp. linear) iff each ω is homogeneous of degree 1 (resp. continuous linear) in the second variable, a. (Hence for a linear connection we can define $\omega(x, 0)=0$ and obtain a smooth map on $U \times E$.)
2. Linear connections on $p_{0}^{-1} E \rightarrow E_{0}$. Next we consider a linear connection on the vector bundle $p_{0}^{-1} E \rightarrow E_{0}$ and define its torsion.

Since $p_{0}^{-1} E$ is locally isomorphic to $\left(U \times E_{0}\right) \times E$, and $T\left(p_{0}^{-1} E\right)$ to $\left(\left(U \times E_{0}\right) \times E\right) \times(B \times E) \times E$, the connection map $\mathcal{D}: T\left(p_{0}^{-1} E\right) \rightarrow p_{0}^{-1} E$ of such a connection is, fiberwise for each $((x, a), b) \in\left(U \times E_{0}\right) \times E$, given by a map $\mathscr{D}_{((x, a), b)}:(B \times E) \times E \rightarrow E$ of the form

$$
\mathscr{D}_{((x, a), b)}((\lambda, c), d)=d+\Omega((x, a), b)(\lambda, c)
$$

Ω is continuous linear in (λ, c) and, the connection being linear, also in b. Hence \mathscr{D} must actually be locally of the form

$$
\begin{equation*}
\mathscr{D}_{((x, a), b)}((\lambda, c), d)=d+\Gamma_{(x, a)}(b, \lambda)+C_{(x, a)}(b, c) \tag{3}
\end{equation*}
$$

where Γ, C are smooth maps of $U \times E_{0}$ into $L^{2}(E, B ; E)$ and $L^{2}(E, E ; E)$, respectively (L^{2} denotes a space of continuous bilinear maps).

Although the two parts Γ and C of the local component of \mathscr{D} do not, of course, transform together as a tensor under a change of coordinates, it happens that the C part does define a tensor, which corresponds to the Finsler torsion tensor of [1]. (Since $p^{-1} E \approx V E$, one can transcribe the coordinate change equation of [$6, p .1127$] to the present notation and set $\mu=0$ to see this fact.) Thus there is a smooth section J of the bundle of bilinear maps from $p_{0}^{-1} E$ to $p_{0}^{-1} E$, which is locally given by maps $J_{(x, a)} \in L^{2}(E, E ; E)$ with $J_{(x, a)}(b, c)=C_{(x, a)}(b, c)$. We call J the torsion tensor of the given linear connection on $p_{0}^{-1} E$ $\rightarrow E_{0}$.
3. Direction connections. We now define direction connections for vector bundles. Namely, a direction connection for the vector bundle
$p: E \rightarrow M$ is a linear connection on the vector bundle $p_{0}^{-1} E \rightarrow E_{0}$ which is invariant under the diffeomorphisms of the manifold $p_{0}^{-1} E$ defined by radial expansions in the fibres of $E_{0} \rightarrow M$.

Let us describe this invariance condition precisely. Radial expansions of the fibres of $E_{0} \rightarrow M$ are diffeomorphisms of type $e \rightarrow f\left(p_{0} e\right) e$, where f is a smooth nonvanishing real-valued function on M. Tensoring such a map on the right with the identity yields a diffeomorphism of the total space of the bundle $E_{0} \otimes E \rightarrow M$. Since this total space is diffeomorphic with $p_{0}^{-1} E$, we get a diffeomorphism of $p_{0}^{-1} E$ denoted by \hat{f}. The condition of invariance is that the connection map $\mathfrak{D}: T\left(p_{0}^{-1} E\right)$ $\rightarrow p_{0}^{-1} E$ of the given linear connection satisfies

$$
\begin{equation*}
\mathfrak{D} \circ(\hat{f})_{*}=\hat{f} \circ \mathscr{D} \tag{4}
\end{equation*}
$$

for all such diffeomorphisms \hat{f}.
Next we derive the local coordinate description of direction connections. Namely, consider a local representation $\hat{f}(x, a, b)=(x, \phi(x) a, b)$ of a diffeomorphism \hat{f} defined above, where $\phi: U \rightarrow R$ is a smooth nonvanishing function. An easy calculation shows (4) to mean

$$
\begin{align*}
\Gamma_{(x, a)}(b, \lambda)+C_{(x, a)}(b, c)= & \Gamma_{(x, \phi(x) a)}(b, \lambda)+C_{(x, \phi(x) a)}(b, \phi(x) c) \tag{5}\\
& +C_{(x, \phi(x) a)}\left(b, \phi^{\prime}(x)(\lambda) a\right) .
\end{align*}
$$

Putting $c=0$ and then setting ϕ constant, we see that (5) is equivalent to the two conditions that

$$
\begin{gather*}
\Gamma_{(x, a)} \text { is homogeneous of degree } 0 \text { in } a, \text { and } \tag{6}\\
C_{(x, a)}(b, c)=C_{(x, \phi(x) a)}(b, \phi(x) c)+C_{(x, \phi(x) a)}\left(b, \phi^{\prime}(x)(\lambda) a\right) . \tag{7}
\end{gather*}
$$

Taking ϕ constant, we see (7) implies

$$
\begin{equation*}
C_{(x, a)} \text { is homogeneous of degree }-1 \text { in } a . \tag{8}
\end{equation*}
$$

Setting $\phi(x)=\exp (-f(x))$, where f is a continuous linear functional on B such that $f(\lambda)=1$ (Hahn-Banach Theorem), we get $C_{(x, a)}(-, a)$ $=0$, i.e.

$$
\begin{equation*}
J_{e}(-, e)=0 \tag{9}
\end{equation*}
$$

where we identify $\left(p_{0}^{-1} E\right)_{e}$ with $E_{p e}$. As a summary, we have
Proposition 1. A linear connection on $p_{0}^{-1} E \rightarrow E_{0}$ is a direction connection iff all its local components (Γ, C) satisfy (6) and (7). Moreover, a direction connection satisfies (8) and (9).

Corollary. A linear connection on $p_{0}^{-1} E \rightarrow E_{0}$ with torsion zero is a direction connection.

Remark. In one of his earlier papers on Finsler geometry, M. Matsumoto [4] studied a more general class of linear connections on $p_{0}^{-1} E \rightarrow E_{0}$, namely, those invariant under diffeomorphisms of $p_{0}^{-1} E$ defined by uniform radial expansions in the fibres of $E_{0} \rightarrow M$, i.e. (4) holds only for constant f. Locally these connections are characterized by (6) and (8) (with only constant ϕ, (5) is equivalent to these two equations); (9) need not be satisfied. Let us call these connections weak direction connections (in [4] they were called Finsler connections). Note that they differ from ordinary direction connections only by the behavior of the torsion tensor.
4. From D to D. Next we turn to the relationship between linear connections on $p_{0}^{-1} E \rightarrow E_{0}$ and homogeneous nonlinear connections on $p: E \rightarrow M$.
In this section we derive a necessary and sufficient condition that a linear connection D on $p_{0}^{-1} E \rightarrow E_{0}$ defines a nonlinear connection D on $p: E \rightarrow M$ according to the prescription in $[1, \S 5]$.

The vector bundle $p_{0}^{-1} E \rightarrow E$ has a canonical section $v: E_{0} \rightarrow p_{0}^{-1} E$ which is defined as $V(e)=e$ (using the identification $\left.\left(p_{0}^{-1} E\right)_{e}=E_{p e}\right)$. Letting \mathbb{D} denote the connection map, define the map $D: T E_{0} \rightarrow E$ as $D=r \circ D \circ V_{*}$. (This is just the covariant derivative map $Z \mapsto D_{z} \mathcal{V}$, see [5,82].)

Proposition 2. For a linear connection D on $p_{0}^{-1} E \rightarrow E_{0}$, the map $D=r \circ D \circ V_{*}$ defines a nonlinear connection on $E \rightarrow M$ iff the torsion of \mathfrak{D} satisfies

$$
\begin{equation*}
J_{e}(e,-)=0 . \tag{10}
\end{equation*}
$$

Moreover, if D is a (weak) direction connection then the connection D is homogeneous.

Proof. We work locally. $T E_{0}$ is locally $U \times E_{0} \times B \times E$ and $\mathcal{V}(x, a)=(x, a, a)$. Calculating V_{*} and using (3) we get $D(x, a, \lambda, b)$ $=\left(x, b+\Gamma_{(x, a)}(a, \lambda)+C_{(x, a)}(a, b)\right)$. By [5, Lemma 1, p. 239] this defines a nonlinear connection iff $\Gamma_{(x, a)}(a, \lambda)+C_{(x, a)}(a, b)$ is linear in λ and independent of b. But this clearly occurs iff $C_{(x, a)}(a, b)=0$ for all b, which is precisely (10).

The local component of D is thus given by

$$
\begin{equation*}
\omega(x, a) \lambda=\Gamma_{(x, a)}(a, \lambda) . \tag{11}
\end{equation*}
$$

In case D is a weak direction connection, $\Gamma_{(x, a)}$ is homogeneous of degree 0 in a. Since $\Gamma_{(x, a)}(b, \lambda)$ is linear in b, we see $\omega(x, a)$ is homogeneous of degree 1 in a, which means D is homogeneous. Q.E.D.

Let us say that in the setting of Proposition 2 the connection \mathbb{D} is associated to the connection D. This means that (11) holds for local components.

Remark. Equation (10) is also known as E. Cartan's condition " D " (see [4]). This condition must be added to the results of Grifone in [3], since the step \mathscr{D} to D is used there. In Dazord [1] only direction connections with symmetric torsion ("regular") are treated, so that (9) implies (10).
5. From D to \mathscr{D}. We now consider the reverse of the situation just discussed. Our results are as follows.

Proposition 3. For each homogeneous nonlinear connection D on $E \rightarrow M$, there exists an associated direction connection D with torsion zero. If D is linear, the pullback $r^{-1} D$ is such a D.
D is not unique (even if it is assumed that dimensions are finite, $E=T M, D$ is linear and comes from a spray, and D is symmetric).

Proof. Using $V E \approx p^{-1} E$ we apply the proposition of $[6, \S 2]$, which assigns to D the linear Berwald connection D on $p_{0}^{-1} E \rightarrow E_{0}$. If ω denotes the local component of D, then that of \mathscr{D} is by definition

$$
\begin{equation*}
\Gamma_{(x, a)}(b, \lambda)=\partial_{a} \omega(x, a)(b) \lambda, \quad C_{(x, a)}=0 \tag{12}
\end{equation*}
$$

Hence clearly D has torsion zero. If D is homogeneous, then ω is homogeneous of degree 1 in a, whence its derivative with respect to this variable is homogeneous of one less degree, namely 0 . This means (6) holds for Γ. Since also (7) holds trivially for C, \mathscr{D} is a direction connection by Proposition 1. Now the homogeneity of degree 1 of ω in a implies by Euler's theorem that

$$
\begin{equation*}
\partial_{a} \omega(x, a)(a) \lambda=\omega(x, a) \lambda . \tag{13}
\end{equation*}
$$

But (12) and (13) give (11), which means D is associated to D. For ω linear in $a, \Gamma_{(x, a)}(b, \lambda)=\omega(x, b) \lambda$. This together with $C=0$ means \mathscr{D} is the pullback connection $r^{-1} D$.

To prove the nonuniqueness assertions let $M=R^{2}$ and $E \rightarrow M$ be the tangent bundle $R^{2} \times R^{2} \rightarrow R^{2}$ of M. Let D be the linear connection defined by $\omega(x, a) \lambda=\langle a, \lambda\rangle x$, where \langle,$\rangle denotes the inner product in$ \boldsymbol{R}^{2}. The Berwald connection \mathfrak{D} of D is given by $C=0$ and $\Gamma_{(x, a)}(b, \lambda)$ $=\partial_{a} \omega(x, a)(b) \lambda=\langle b, \lambda\rangle x$. Now define a direction connection D^{0} by $C^{0}=0$ and

$$
\Gamma_{(x, a)}^{0}(b, \lambda)=\left[\left(a_{1}\right)^{2} b_{1} \lambda_{1}+a_{1} a_{2}\left(b_{1} \lambda_{2}+b_{2} \lambda_{1}\right)+\left(a_{2}\right)^{2} b_{2} \lambda_{2}\right]\left(x /|a|^{2}\right),
$$

where $a=\left(a_{1}, a_{2}\right)$. Then $\Gamma_{(x, a)}^{0}(a, \lambda)=\langle a, \lambda\rangle x=\omega(x, a) \lambda$, which means D^{0} is associated to D. But clearly $D \neq D^{0}$.

Both \mathscr{D} and \mathscr{D}^{0} are symmetric, because it can be shown in a straightforward way from the definition of symmetry given in [1] that if torsion of \mathfrak{D} is zero, then \mathfrak{D} is symmetric iff the local component Γ is symmetric.

To see that D arises from a spray (see [1], [2]) on M, consider the spray defined by $G(x, a)=-\langle a, a\rangle x$. Then with ω as above, we see that $\omega(x, a) \lambda=-\frac{1}{2} \partial_{a} G(x, a)(\lambda)$, which means D comes from the spray G. Q.E.D.

Remark. Proposition 3 shows that the uniqueness statement in Theorem 1 [2] cannot be interpreted to mean one-to-one correspondence between symmetric torsion zero direction connections and their associated sprays. Therefore, it is not clear what sense this uniqueness statement could make.

If we add the assumption that \mathfrak{D} is continuously extendible to a connection on the bundle $p^{-1} E \rightarrow E$, and that D is linear, then we do get uniqueness for torsion zero associated direction connections. For (as noted in [1]), the extendibility condition means locally that $\Gamma_{(x, a)}$ does not depend on a. Differentiation of (11) then yields $\Gamma_{(x, a)}(b, \lambda)=\omega(x, b) \lambda$, which together with $C=0$ means that D is equal to the pullback connection $r^{-1} D$. (See also Matsumoto [4], where such connections are called simple connections.) However, the extendibility assumption is too restrictive for Finsler geometry.

References

1. P. Dazord, Sur une généralisation de la notion de "spray," C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A543-A546. MR 35 \#949.
2. ———Connexion de direction symetrique associêe d un "spray" généralisé, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A576-A578. MR 35 \#950.
3. J. Grifone, Prolongement lináaire d'une connexion de directions, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A90-A93. MR 39 \#6228.
4. M. Matsumoto, A global foundation of Finsler geometry, Mem. Coll. Sci. Univ Kyoto Ser. A Math. 33 (1960/61), 171-208. MR 23 \#A2176.
5. J. Vilms, Connections on tangent bundles, J. Differential Geometry 1 (1967), 235-243. MR 37 \#4742.
6. - Curvature of nonlinear connections, Proc. Amer. Math. Soc. 19 (1968), 1125-1129. MR 38 \#6490.

Purdue University, Lafayette, Indiana 47907

