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NONLINEAR AND DIRECTION CONNECTIONS

JAAK VILMS1

Abstract. Nonlinear connections and direction connections are

two types of connections arising in Finsler geometry. In his work

on generalized sprays, P. Dazord showed that there is a relation-

ship between these two types (nonlinear connections were called

sections by him). This relationship has also been used by J. Grifone

in a work on prolongation of direction connections. In this paper

we examine this relationship in a general setting. In particular, we

show that E. Cartan's condition "D" is necessary and sufficient for

a direction connection to define a nonlinear one. Also, we prove a

nonuniqueness result for direction connections associated to a

given nonlinear one.

1. Connections on vector-bundles. We first recall our definition of

a connection on a vector bundle [5], [ó]. For a smooth (CM) vector

bundle p:E-*M, set E0 = E — 0 and p0 = p\E0. The bundle p~xE over

E is canonically isomorphic to the bundle VE of vertical vectors in

the tangent bundle TE of E. Hence we have the exact sequence

I        p'
(1) O^p^E^TE^p-^TM^-O

of vector bundles over E, where / corresponds to the inclusion map

VEETE and p' is essentially the tangent map p*:TE—>TM.

A smooth nonlinear connection on the vector bundle p : E^>M is a

smooth splitting of (1) over E0. Since TE¡E0= TEo and p~1E\Ea

= p0~1E, such a splitting is given by a smooth linear map V: TE0

—>pölE (i.e. continuous linear on the fibres), satisfying the equation

VJ = id. The splitting can be conveniently described by its connec-

tion map D:TE0—>E defined as D=ro V, where r:p_1E-^E is the

canonical surjection over p. D is continuous linear on the fibres and is

smooth.

The connection on p:E—>M is homogeneous (resp. linear) if the

map D is homogeneous of degree 1 (resp. linear) on the p* fibres of

TE. For a linear connection, the splitting of (1) automatically ex-

tends to all of E ; in fact, a linear connection can be defined as a split-

ting of (1) which is smooth over all of E.
_
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Let us now introduce local coordinates. Suppose locally TM and E

are isomorphic to product bundles UXB and UXE, respectively,

where B and E are real Banach spaces (the reader should substitute

B = Rn, E=Rm if he is not familiar with calculus in Banach spaces)

and UEB is an open set. Then TE0 is locally isomorphic to the prod-

uct bundle iUXE0)XBXE (where E0 = E— 0), and fiberwise for each

(x, a)EUXE,D is defined by a map Dix,a)'.BXE—>£of the form

(2) D(x,a)i\, b) = b + co(x, a)X.

Here co: UXEq-^LÍB, E) is a smooth map (L denotes a space of con-

tinuous linear maps), co is called a local component of the connection.

The connection is homogeneous (resp. linear) iff each w is homo-

geneous of degree 1 (resp. continuous linear) in the second variable,

a. (Hence for a linear connection we can define w(x, 0) = 0 and obtain

a smooth map on UXE.)

2. Linear connections on pôlE—Œ0. Next we consider a linear

connection on the vector bundle pö1E—>E0 and define its torsion.

Since pôlE is locally isomorphic to (UXE0)XE, and T(pô1E) to

((UXE0)XE)X(BXE)XE, the connection map 2D : T(pô lE) -^>pô 1E

of such a connection is, fiberwise for each ((x, a), b)EiUXE0)XE,

given by a map äD((l,a),b) : (¿?X-E) XE^Eoi the form

»((«..).»)((X, c), d) = d + Q((x, a), b)(\, c).

ñ is continuous linear in (X, c) and, the connection being linear, also

in b. Hence 2D must actually be locally of the form

(3) 5D((x,.),»)((X, c), d) m d+ F(„..)(*, X) + C(,.«)(i, c),

where T, C are smooth maps of U X E0 into L2(E, B; E) and

F2(£, £; E), respectively (L2 denotes a space of continuous bilinear

maps).

Although the two parts T and C of the local component of 3D do not,

of course, transform together as a tensor under a change of co-

ordinates, it happens that the C part does define a tensor, which cor-

responds to the Finsler torsion tensor of [l]. (Since p~1E^ VE, one

can transcribe the coordinate change equation of [6, p. 1127] to the

present notation and set p = 0 to see this fact.) Thus there is a smooth

section 3 of the bundle of bilinear maps from p0~1E to p0~1E, which is

locally given by maps 3(l,a) EL2(E, E; E) with 3(»,„)(&, c) = C^,a)ib, c).

We call 3 the torsion tensor of the given linear connection on p0~1E

^E0.

3. Direction connections. We now define direction connections for

vector bundles. Namely, a direction connection for the vector bundle
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p:E—>M is a linear connection on the vector bundle p0~1E—*E0 which

is invariant under the diffeomorphisms of the manifold p0~1E defined

by radial expansions in the fibres of E0—>M.

Let us describe this invariance condition precisely. Radial expan-

sions of the fibres of E0—>M are diffeomorphisms of type a-^f(poe)e,

where/ is a smooth non vanishing real-valued function on M. Tensor-

ing such a map on the right with the identity yields a diffeomorphism

of the total space of the bundle Ea®E—*M. Since this total space is

diffeomorphic with p0~1E, we get a diffeomorphism of p0~1E denoted by

/. The condition of invariance is that the connection map 3D: T(pô1E)

—>pö1E oí the given linear connection satisfies

(4) 33o(/)*=/o£>

for all such diffeomorphisms /.

Next we derive the local coordinate description of direction connec-

tions. Namely, consider a local representation/^, a, b) = (x, <j>(x)a, b)

of a diffeomorphism / defined above, where <b : U—>R is a smooth

nonvanishing function. An easy calculation shows (4) to mean

, .    r(*.<■)(*, X) + Cix,a)(b, c) = r(x,0(l)O)(6, X) + C(x,nz)a)(b, 4>(x)c)

+ C(,,*<»)«)(b, <b'(x)(\)a).

Putting c = 0 and then setting <b constant, we see that (5) is equivalent

to the two conditions that

(6) T(X,a) is homogeneous of degree 0 in a, and

(V)       C(z,a)(b, c) = C(x,*(x)o)(6, <t>(x)c) + C(xMx)a)(b, <t>'(x)(\)a).

Taking <p constant, we see (7) implies

(8) C(X,a) is homogeneous of degree —1 in a.

Setting<f>(x) =exp(— f(x)), where/is a continuous linear functional

on B such that/(X) = 1 (Hahn-Banach Theorem), we get C(X,0)( —, a)

= 0, i.e.

(9) 3e(-,e)=0,

where we identify (pö1E)e with Epe. As a summary, we have

Proposition 1. A linear connection on pö1E—>Eo is a direction con-

nection iff all its local components (T, C) satisfy (6) and (7). Moreover,

a direction connection satisfies (8) and (9).

Corollary. A linear connection on pö1E^>E0 with torsion zero is a

direction connection.
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Remark. In one of his earlier papers on Finsler geometry, M.

Matsumoto [4] studied a more general class of linear connections on

pö1E—>Eo, namely, those invariant under diffeomorphisms of p0~1E

defined by uniform radial expansions in the fibres of E0-^>M, i.e. (4)

holds only for constant/. Locally these connections are characterized

by (6) and (8) (with only constant <b, (5) is equivalent to these

two equations); (9) need not be satisfied. Let us call these connec-

tions weak direction connections (in [4] they were called Finsler

connections). Note that they differ from ordinary direction connec-

tions only by the behavior of the torsion tensor.

4. From 3D to D. Next we turn to the relationship between linear

connections on pö1E-^-E0 and homogeneous nonlinear connections

on p\E-*M.

In this section we derive a necessary and sufficient condition that a

linear connection 3D on pölE—>E0 defines a nonlinear connection D

on p:E^M according to the prescription in [l, §5].

The vector bundle p$xE^>E has a canonical section 13:E0—>pôXE

which is defined as 13(e)=e (using the identification ip0~1E)e = Epe).

Letting 3D denote the connection map, define the map D:TE0—*E

as D = r o 3D o 13*. (This is just the covariant derivative map Z*-+£>ZV,

see [5, §2].)

Proposition 2. For a linear connection 3D on p^E—*E0, the map

D = r o 3D o 13* defines a nonlinear connection on E—>M iff the torsion

of 3D satisfies

(10) 3,(«, -) = 0.

Moreover, if luis a iweak) direction connection then the connection D is

homogeneous.

Proof. We work locally. TE0 is locally UXE0XBXE and
Vix, a) — ix, a, a). Calculating 13* and using (3) we get Dix, a, X, b)

= ix, 6+r(l,0)(a, X) + C(l,a)(ö, &)). By [5, Lemma 1, p. 239] this

defines a nonlinear connection iff Tlx,a-¡ia, X) + C(I,a)(a, b) is linear in X

and independent of b. But this clearly occurs iff Cix,a)ia, b)=0 for all

b, which is precisely (10).

The local component of D is thus given by

(11) w(x, a)\ = r(l,0)(a, X).

In case 3D is a weak direction connection, r(x,„) is homogeneous of

degree 0 in a. Since F(I,0)(è, X) is linear in b, we see w(x, a) is homo-

geneous of degree 1 in a, which means D is homogeneous.    Q.E.D.
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Let us say that in the setting of Proposition 2 the connection 2D

is associated to the connection D. This means that (11) holds for local

components.

Remark. Equation (10) is also known as E. Cartan's condition

"D" (see [4]). This condition must be added to the results of Grifone

in [3], since the step 3D to D is used there. In Dazord [l] only direc-

tion connections with symmetric torsion ("regular") are treated, so

that (9) implies (10).

5. From D to 3D. We now consider the reverse of the situation

just discussed. Our results are as follows.

Proposition 3. For each homogeneous nonlinear connection D on

E-^M, there exists an associated direction connection 3D with torsion zero.

If D is linear, the pullback r~lD is such a 3D.

3D is not unique (even if it is assumed that dimensions are finite,

E= TM, D is linear and comes from a spray, and 3D is symmetric).

Proof. Using VE^-p-^E we apply the proposition of [6, §2], which

assigns to D the linear Berwald connection 3D on pö E^rEo. If w

denotes the local component of D, then that of 3D is by definition

(12) Tix,a)(b, X) = dacc(x, a)(b)\,       C(x,a) = 0.

Hence clearly 3D has torsion zero. If D is homogeneous, then w is

homogeneous of degree 1 in a, whence its derivative with respect to

this variable is homogeneous of one less degree, namely 0. This means

(6) holds for T. Since also (7) holds trivially for C, 3D is a direction

connection by Proposition 1. Now the homogeneity of degree 1 of «

in a implies by Euler's theorem that

(13) daw(x, a)(a)\ = ù>(x, a)\.

But (12) and (13) give (11), which means 3D is associated to D. For

co linear in a, T(Z,„)(b, X) =u(x, &)X. This together with C = 0 means 3D

is the pullback connection r~xD.

To prove the nonuniqueness assertions let M = R2 and E—*M be the

tangent bundle R2XR2—>R2 of M. Let D be the linear connection

defined by a(x, a)\ = (a, \)x, where ( , ) denotes the inner product in

R2. The Berwald connection 3D of D is given by C = 0 and F(,,„>(&, X)

= daco(x, a)(t>)X=(6, \)x. Now define a direction connection 3D0 by

C° = 0 and

T\*.*)(b, X) = [(aO^iXx + aiai(bx\i + b2\i) + (ai)2bi\2](x/\ a |2),

wherea=(oi, a2). Then TlXiá>(a, X) = (a, X)x=co(x, a)X, which means

3D0 is associated to D. But clearly 3D?^ 3D0.
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Both 3D and 3D0 are symmetric, because it can be shown in a

straightforward way from the definition of symmetry given in [l]

that if torsion of 3D is zero, then 3D is symmetric iff the local compo-

nent T is symmetric.

To see that D arises from a spray (see [l], [2]) on M, consider

the spray defined by G(x, a) = —(a, a)x. Then with w as above, we

see that w(x, o)X= — §d0Cr(x, a)(\), which means D comes from the

spray G.    Q.E.D.

Remark. Proposition 3 shows that the uniqueness statement in

Theorem 1 [2] cannot be interpreted to mean one-to-one correspon-

dence between symmetric torsion zero direction connections and their

associated sprays. Therefore, it is not clear what sense this unique-

ness statement could make.

If we add the assumption that 3D is continuously extendible to a

connection on the bundle p~lE-*E, and that D is linear, then we do

get uniqueness for torsion zero associated direction connections. For

(as noted in [l]), the extendibility condition means locally that

r^.a) does not depend on a. Differentiation of (11) then yields

r(l,0)(J, X)=co(x, &)X, which together with C = 0 means that 3D is

equal to the pullback connection r~lD. (See also Matsumoto [4],

where such connections are called simple connections.) However, the

extendibility assumption is too restrictive for Finsler geometry.
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