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Abstract—The assessment of the mechanical properties of
respiratory system is typically done by oscillating flow into t
lungs via the trachea, measuring the resulting pressure ge
ated at the trachea, and relating the two signals to each oth
terms of some suitable mathematical model. If the perturb
flow signal is broadband and not too large in amplitude, lin
behavior is usually assumed and the input impedance ca
lated. Alternatively, some researchers have used flow sig
that are narrow band but large in amplitude, and invoked n
linear lumped-parameter models to account for the relations
between flow and pressure. There has been little attempt, h
ever, to deal with respiratory data that are both broadband
reflective of system nonlinearities. In the present study,
collected such data from mice. To interpret these data, we
developed a time-domain approximation to a widely us
model of respiratory input impedance. We then extended
model to include nonlinear resistive and elastic terms.
found that the nonlinear elastic term fit the data better than
linear model or the nonlinear resistance model when amplitu
were large. This model may be useful for detecting overin
tion of the lung during mechanical ventilation. ©2003 Bio-
medical Engineering Society.@DOI: 10.1114/1.1553453#

Keywords—Input impedance, Resistance, Elastance, F
quency domain, Time domain.

INTRODUCTION

The assessment of the mechanical properties of
respiratory system is typically done by oscillating flo
into the lungs via the trachea, measuring the result
pressure generated at the trachea, and relating the
signals to each other in terms of respiratory resista
and elastance.1,4,5,9,21,22,29,31Both resistance and elastan
depend markedly on the oscillation frequency, and t
dependence is most pronounced over the breathing
quency range.11,23 Consequently, multifrequency analys
of respiratory mechanics are usually performed in
frequency domain through the evaluation of the mecha
cal input impedance (Zin) of the respiratory system.Zin

is most often determined by the forced oscillation tec
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nique in which the lungs are perturbed with a broadba
flow.6,7,10–12,23,24,31The determination ofZin is predicated
on the assumption that the respiratory system
linear,20,23 a requirement which is usually achieved b
using small flow amplitudes.

Lutchen and co-workers14,18 have developed and ap
plied a specially designed broadband flow wave fo
that serves the dual purpose of ventilating the lungs i
manner sufficient for maintaining gas exchange, while
the same time allowingZin to be determined up to abou
8 Hz. To achieve the first purpose, the peak-to-pe
amplitude of this optimal ventilator wave form~OVW!
cannot be too small. However, this works against
linearity requirement for the calculation ofZin . Fortu-
nately, the harmonic distortion that arises when a n
linear system is excited by a broadband input can
minimized by having the frequencies present in the p
turbing flow wave form satisfy the no-sum–no-differen
~NSND! criterion of Suki and Lutchen.27 However, this
means that all the non-NSND frequencies in press
arising from the perturbing flow signal are discarded
the determination ofZin . These harmonics could poten
tially amount to a significant fraction of the total powe
in pressure, if the system is highly nonlinear.

Our goal was to develop a means of taking nonl
earities into account when the rather large amplitudes
the OVW are applied to the respiratory system. A
though, in principle, such an analysis could be perform
in the frequency domain, this would involve a comp
cated series of integrals such as the Volterra series.16,26,33

We, therefore, undertook our analysis in the time dom
because this allowed us to use anatomically ba
lumped-parameter models that can account for both
nonlinear and multicompartmental behavior of the res
ratory system.

METHODS

Experimental Procedures

We studied four normal Balb/c mice weighing 22
60.5 g (mean6SD). Each mouse was anesthetiz
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319Mouse Respiratory Mechanics
~pentobarbital sodium, 90 mg/kg ip!, paralyzed~pancuro-
nium bromide, 1 mg/kg ip!, tracheostomized~18 gauge
metal cannula!, and mechanically ventilated with a tida
volume of 0.25 mL and a breathing frequency of 2
breaths/min using a small animal ventilator~flexiVent,
SCIREQ, Montreal, Canada!. The flexiVent is a
computer-controlled piston pump that can function bo
as a conventional mechanical ventilator and as a sys
identification device when its piston is made to follow
appropriate volume displacement wave form.3,10,25 Posi-
tive end-expiratory pressure~PEEP! was set by connect
ing the expiratory line of the ventilator to a water co
umn.

The animals were ventilated for 6 min periods agai
three different levels of PEEP~0, 3, and 6 cm H2O) in
random order. At each level of PEEP, the lungs were fi
inflated twice to a pressure of 25 cm H2O in order to
standardize lung volume history. After an addition
minute of regular ventilation, four different amplitude
~0.1, 0.2, 0.3, and 0.4 mL! of the same 8 s broadban
volume perturbation were applied sequentially. The d
ferent amplitudes were applied in random order with 1
min of regular ventilation between each perturbation. A
ter the three PEEP trials were complete, the proced
was repeated at a final PEEP level of 9 cm H2O. We
applied the PEEP of 9 cm H2O only at the end of the
experiment to prevent any resulting overinflation dama
to the lung from affecting the measurements at the low
PEEP levels.

Each volume perturbation was applied by interrupti
mechanical ventilation, allowing the animal to expire f
1 s against the applied PEEP, and then oscillating
ventilator piston according to the volume perturbati
signal. During this procedure, the piston volume d
placement (Vcyl) and the pressure inside the cylind
(Pcyl) were filtered at 300 Hz~six-pole Bessel! and
sampled at 1024 Hz. The data were then digitally lo
pass filtered~six-pole Bessel! at 30 Hz and decimated t
a sampling rate of 128 Hz prior to subsequent analy

Volume Perturbation

An OVW-type volume perturbation was generat
along the lines originally developed by Lutchenet al.18

First, a set of 50,000 8 s signals was generated. Ea
signal had the same spectral content; the frequencie
the sinusoidal components spanned the range of 0
10.25 Hz and were mutually prime,7 while the ampli-
tudes decreased hyperbolically with frequency. T
phases of each component were chosen randomly. F
this initial set of perturbations we selected only tho
that crossed the mean value four times, correspondin
two breathing cycles. From this subset of signals,
chose the smoothest as the perturbation signal to be
in the present study. Smoothness was measured as
f

d
e

integral of the absolute value of the second derivative
the signal. Finally, the points in the perturbation sign
were cyclically permuted so that it began with its min
mum value. This ensured that when the signal was
plied to an animal’s lungs, the resulting changes in lu
volume would occur above the lung volume defined
the level of PEEP. This volume perturbation signal w
scaled to have peak-to-peak excursions of 0.1, 0.2,
and 0.4 mL.

Data Analysis

Table 1 lists the symbols and abbreviations used
the following mathematical development. The measu
Vcyl and Pcyl were corrected for gas compressibili
within the flexiVent cylinder and for resistive and acce
erative losses in the connecting tubing and endotrach
tube as described previously.3 This yielded the volume
(V) and the pressure (Pao) applied directly at the airway
opening of the animal.V was differentiated numerically
to yield flow (V̇) by fitting line segments to each thre
consecutive points in the signal and taking the slope
the segment as the derivative of the signal at the cen
point. These data were fit to four models, as follows:~i!
the constant-phase model of the lung in the freque
domain, ~ii ! a time-domain approximation to th
constant-phase model,~iii ! a time-domain nonlinear ex
tension of the constant-phase model containing a flo

TABLE 1. List of symbols and abbreviations.

t time

Vcyl change of gas volume in flexiVent cylinder
Pcyl pressure in flexiVent cylinder
V volume change at tracheal opening

V̇ flow at tracheal opening

Pao pressure at tracheal opening
Zin respiratory input impedance
Zti input impedance of respiratory tissues
Pti pressure across respiratory tissues
f frequency
R resistance
G tissue viscous parameter
H tissue elastic parameter
I inertance
a parameter relating G and H
S Heaviside step function
G gamma function
R1 linear resistive constant in nonlinear model
R2 nonlinear resistive constant in nonlinear model
E nonlinear elastic parameter
PEEP positive end-expiratory pressure
i positive square root of 21
ENV estimated noise variance
DENV percent change in estimated noise variance
kd index of nonlinearity
PNI power in output signal at frequencies not present in

the input signal
PTOT total power in output signal
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320 MORIYA, MORAES, and BATES
dependent resistance, and~iv! a time-domain nonlinea
extension of the constant-phase model containing
volume-dependent elastance.

We also estimated the degree of nonlinearity in
data in terms of the nonlinear indexkd used by Zhang
et al.,32 thus

kd5A PNI

PTOT
, ~1!

wherePTOT is the total power in thePao and PNI is the
power inPao at those frequencies not present in the inp
V̇ signal.

Constant-Phase Model

The constant-phase model12 is described by

Zin~ f !5R1 i2p f I 1
G2 iH

~2p f !a , ~2!

whereR is a Newtonian resistance,I is an inertance,G
characterizes viscous dissipation of energy in the lu
tissues,H characterizes energy storage in the lung
sues,i is the imaginary unit,f is frequency, and

a5
2

p
arctanS H

GD . ~3!

R has been taken previously to be a useful estimate
overall airway tree resistance,10 although it may contain
a contribution from the chest wall.I reflects mainly the
mass of the gas in the central airways.23 We have shown
previously10 that I is not discernible in data collecte
from mice below 10 Hz, so henceforth we will negle
the second term in Eq.~2!. Although this model was
originally proposed specifically to describe the lung12

we have also shown that it provides a good descript
of the entire respiratory system, including the ch
wall.10

Zin was calculated as described previously.10,25 The 8
s data records were divided into three 4 s blocks that
overlapped by 50%. The first block in each record w
discarded and the auto- and cross-power spectra of
remaining two blocks were averaged. The cross-po
spectra were then divided by the autopower spectra
yield a transfer function. This transfer function was co
rected for the effects of gas compressibility in the ve
tilator cylinder and the impedance of the channel lead
to the animal as described previously.25 This correction
was achieved using dynamic calibration signals ofPcyl

and Vcyl obtained from the flexiVent prior to connectin
the animal by applying the volume perturbation throu
f

e

the tracheal cannula first when it was completely clos
and then again when it was open to the atmosph
Finally, the corrected transfer function was divided
i2p f to yield Zin .

The constant-phase model@Eq. ~2!# was fit to Zin

using the following iterative scheme. First, parametera
was set equal to 1.0, and the remaining parameters (R, I ,
G, andH) were estimated by multiple linear regressio
The values ofG and H were then used in Eq.~3! to
obtain a new value fora. Using this new value fora, the
parametersR, I , G, and H were then reestimated b
multiple linear regression, allowing a second reestim
tion of a, and so on. This procedure was repeat
ten times~we found that the parameter values typica
converged to about four significant figures within fiv
iterations!.

Time-Domain Approximation to the Constant-Phase
Model

The component of Eq.~2! accounting for the me-
chanical impedance of the tissues is

Zti~ f !5
G2 iH

~2p f !a . ~4!

In the time domain this corresponds to an impuls
response function12,13

zti~ t !5At2kS~ t !, ~5!

whereS(t) is the Heaviside step function defined as

S~ t !51, t>0,
~6!

S~ t !50, t,0.

A andk are constants andt is time.G andH are related
to A and k as follows:

G5AG~a!cosS ap

2 D , ~7!

H5AG~a!sinS ap

2 D , ~8!

k512a, ~9!

where G~a! is the gamma function ofa defined as
*0

`ta21e2tdt.
zti(t) can be rewritten2
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321Mouse Respiratory Mechanics
zti~ t !5Ae2k ln(t)S~ t !,

zti~ t !5AH 11@2k ln~ t !#1
@2k ln~ t !#2

2!
1¯

1
@2k ln~ t !#n

n!
1¯J S~ t !, ~10!

zti~ t !'$A@12k ln~ t !#%S~ t !,

provided the absolute value ofk ln(t) is small compared
to unity, where ln(t) is the natural logarithm oft.

In the frequency domain, the pressure across the
sues due to the applied flow is

Pti~ f !5V̇~ f !Zti~ f !, ~11!

so in the time domain

Pti~ t !5V̇~ t ! ^ zti~ t !, ~12!

where ^ denotes the operation of convolution. Subs
tuting Eq. ~10! into Eq. ~12! gives

Pti~ t !5V̇~ t ! ^ $A@12k ln~ t !#S~ t !%. ~13!

But

V̇~ t ! ^ @AS~ t !#5AV~ t !, ~14!

and

V̇~ t ! ^ @Ak ln~ t !S~ t !#5Ak$V̇~ t ! ^ @ ln~ t !S~ t !#%.
~15!

Therefore,

Pti~ t !5AV~ t !2Ak$V̇~ t ! ^ @ ln~ t !S~ t !#%. ~16!

By adding a term inR to Eq. ~16! we obtain a time-
domain approximation to the constant-phase model, th

Pao~ t !5RV̇~ t !1AV~ t !2Ak$V̇~ t ! ^ @ ln~ t !S~ t !#%.
~17!

In order to use Eq.~17!, the signals cannot begin att
50 because ln(0)→2`. To avoid this situation, we de
fined all signals as starting att50.01 s.

A further consideration regarding the use of Eq.~17!
is that it is only valid when the magnitude ofk ln(t) is
small compared to unity, because only then is the
-

:

proximation made in the last line of Eq.~10! valid. This
obviously is not true in general becausek ln(t) tends to
infinity as t tends to infinity and to minus infinity ast
tends to zero. Our requirement here is that Eq.~10! holds
over the length of our signals, i.e., fromt
50.01– 8.01 s. We tested this by computingzti(t) in Eq.
~10! over this time scale using both the exact express
@first line of Eq. ~10!# and its first-order series approx
mation @last line of Eq.~10!#, with a representative value
for k of 0.1. We found the two estimates agreed over
8 s period to within an average of 1.2%, with a standa
deviation of 0.9%. Thus, we conclude that the trunca
series approximation forzti(t) is sufficiently accurate for
our purposes.

Time-Domain Nonlinear Extensions of the Constant
Phase Model

We extended Eq.~17! in two ways by the addition of
ad hocnonlinear terms. The first extension was to add
flow-dependent resistance, thus

Pao~ t !5R1V̇~ t !1R2V̇uV̇u1AV~ t !

2Ak$V̇~ t ! ^ @ ln~ t !S~ t !#%, ~18!

where uV̇u denotes the absolute value ofV̇ and is re-
quired in the above equation because the resistive p
sure drop in the lungs reverses sign with a reversal of
direction of V̇.

The second extension of the model was to add
volume-dependent elastance term as follows:

Pao~ t !5RV̇~ t !1EV2~ t !1AV~ t !

2Ak$V̇~ t ! ^ @ ln~ t !S~ t !#%. ~19!

Both nonlinear models@Eqs. ~18! and ~19!# were fit to
the data using multiple linear regression. The convo
tion in the final term of each equation was calculat
using the Euler integration.

Model Comparison

We compared the performances of the time-dom
approximation of the constant-phase model@Eq. ~17!#
and the original frequency-domain formulation@Eq. ~2!#
in terms of the percentage differences between the
rametersR, G, and H estimated by the two models.

The estimated noise variance~ENV! was used as an
index of the goodness of fit of the model, where

ENV5
1

n2m (
i 51

n

~Pi2 P̂i !
2, ~20!
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322 MORIYA, MORAES, and BATES
where Pi is the measured pressure,P̂i is the pressure
predicted by the model,n is the sample size, andm is
the number of free model parameters. The lower
value of ENV, the better the model fits the data. Wh
two different models are fit to the same set of data,
model of higher order invariably produces a lower val
of ENV. In order to decide if the reduction in ENV i
statistically significant, we calculated the percent i
provement in ENV, thus

DENV5100FENV12ENV2

ENV1
G , ~21!

FIGURE 1. Nonlinear index k d †Eq. „1…‡.
where ENV1 is the larger of the two values of ENV
Provided the noise in the data is normally distributed,
ratio of ENV1 to ENV2 follows anF distribution whose
number of degrees of freedom is determined byn and
the number of parameters in the two models. Using
appropriateF distribution, we determined that ifDENV
is greater than about 30%, then it is less than 5% lik
that ENV1 and ENV2 are estimates of the same popul
tion variance. Thus, whenDENV.30% we concluded
that model 2 gave a significantly better fit to the da
than did model 1. Otherwise, model 2 was taken as
better than model 1. We must note, however, that
above reasoning is only valid if the residuals betwe
data and model fit are normally distributed. In our ca
they clearly were not, so we must take the 30% le
quoted above as a nominal discriminatory level. From
practical point of view, then, we are interested in valu
of DENV that are either considerably greater than or le
than 30%.

RESULTS

Figure 1 shows the nonlinear indexkd @Eq. ~1!# for all
the tidal volumes and PEEP levels studied.kd does not
depend in any significant way~ANOVA, Tukey posthoc
comparison! on tidal volume or PEEP.

Table 2 gives the parameter values of the consta
phase model@Eq. ~2!# obtained by fitting the model to
Zin( f ) in the frequency domain. The percentage diffe
ences between the parametersR, G, andH estimated by
the constant-phase model@Eq. ~2!# and the time-domain
approximation of this model@Eq. ~17!# were calculated
for every combination of tidal volume and PEEP leve
TABLE 2. Values of R, G, and H „meanÁstandard deviation … for the constant-phase model
†Eq. „2…‡.

R (cm H2O s mL21)

Tidal volume PEEP 0 PEEP 3 PEEP 6 PEEP 9

0.1 mL 0.29660.116 0.38860.066 0.34960.053 0.46460.038
0.2 mL 0.38360.113 0.37760.132 0.42960.098 0.60660.052
0.3 mL 0.49860.248 0.41560.128 0.50960.144 0.67660.080
0.4 mL 0.53560.250 0.49960.181 0.70560.135 0.60360.119

G (cm H2O s mL2(11a))

0.1 mL 5.17461.211 3.71160.678 3.32660.199 4.80760.111
0.2 mL 4.33160.878 3.03060.678 2.73160.370 4.32460.361
0.3 mL 3.63060.632 2.68960.669 2.02260.489 3.88360.228
0.4 mL 3.43360.844 2.39160.601 1.01960.590 6.02760.959

H (cm H2O s mL2(11a))

0.1 mL 32.13669.088 22.67866.882 20.29362.406 45.73764.858
0.2 mL 26.04364.947 21.73566.312 23.20861.979 64.08567.783
0.3 mL 24.67363.999 21.54866.419 31.95666.787 77.76269.179
0.4 mL 25.01268.181 25.14469.541 47.46167.825 78.86467.107
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323Mouse Respiratory Mechanics
The results are shown in Fig. 2. At a tidal volume of 0
mL and a PEEP of 9 cm H2O we suddenly obtained
dramatic change in the differences in the tissue par
etersG and H. We suspect this may reflect the onset
overinflation injury, and so we do not consider the da
collected under these conditions from now on. For
remainder of the data, the percentage differences inH go
from 0.73% at an amplitude of 0.3 mL and PEEP
9 cm H2O, to 6.56% at 0.1 mL and 6 cm H2O. The per-
centage differences inG go from 5.13% at 0.2 mL and
3 cm H2O, to 45.81% at 0.1 mL and PEEP of 0 cm H2O.
The lowest percentage difference atR is 14.25% at
0 cm H2O and 0.1 mL, while the highest percentage d
ference is 64.43% at 9 cm H2O and 0.1 mL.

Figure 3 shows how the addition of a nonlinear res
tance term@Eq. ~18!# and a nonlinear elastance term@Eq.
~19!# to the time-domain constant-phase model@Eq. ~17!#
improves the goodness of fit.DENV is shown for each
tidal volume and PEEP level investigated. With the no
linear resistance term@Fig. 3~A!# most cases yielded
value of DENV that was far below the nominal 30%

FIGURE 2. Percentage difference between the parameters
estimated by the constant-phase model in the frequency do-
main and the approximation of the constant-phase model in
the time domain.
-

significance level. Only the data from the lowest PE
level at the highest two tidal volumes approached
30% level. In contrast, the addition of a nonline
elastance term caused many of the data sets to ex
the 30%DENV level substantially@Fig. 3~B!#.

DISCUSSION

The use of the constant-phase model to interpret m
surements of Zin has gained a wide following
recently.6,10,12,24However, its use in this regard is pred
cated on the assumption of linear dynamic behavior fr
the respiratory system.20,23 When the imposed oscilla
tions are small, this may be a reasonable assumpt
However, nonlinear behavior of respiratory mechan
can become apparent even at normal tidal volumes,

FIGURE 3. Improvement in fit „DENV… with the addition of a
nonlinear elastance term to the time-domain approximation
of the constant-phase model. The horizontal dashed line
shows the nominal level above which a value of DENV indi-
cates that the nonlinear term produced a significant im-
provement in the goodness of fit of the model.
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324 MORIYA, MORAES, and BATES
pecially when PEEP is elevated.4,15,21,29,30Thus, to be
comfortable with the assumption of small-amplitude li
ear behavior, one is compelled to use oscillation am
tudes that are considerably smaller than normalVT . This
constraint cannot, of course, be applied to the OV
which by definition attempts to deliver a normalVT .
Lutchenet al.18 employ a cunning technique for dealin
with nonlinearities when using the OVW by having th
OVW contain only components satisfying the no-sum
no-difference criterion27 and then calculatingZin only at

those frequencies present in the inputV̇ wave form. This
means that any harmonics inPao, produced by passing

V̇ through a nonlinear system, are discarded. The pr
lem with this approach is that if the nonlinearities a
strong, then a significant amount of information abo
the system is not being used in its assessment.

The parameters of the constant-phase model@Eq. ~2!#
vary with PEEP and tidal volume~Table 2! in character-
istic ways. For example,H is minimal at an intermediate
PEEP level (3 cm H2O at three of the tidal volumes in
vestigated and 6 cm H2O at the remaining tidal volume!.
This has been described before10 and is thought to be
due to strain stiffening of the tissues at higher PEE
and to some degree of airspace closure at PEEP 0G
shows a somewhat similar pattern, no doubt for the sa
reasons.R shows a more curious pattern of increasi
with both PEEP and tidal volume. IfR really is a mea-
sure of airway resistance, one might expect the oppo
to occur as the airways increase in caliber with incre
ing lung volume. However, it is possible that ourR
values include some contribution from the chest w
~this might be more apparent in mice than other spec
as mice have relatively large airways for their lun
size,10 which could make the effect of their tissues onR
relatively more important than in other species!.

Our goal was to develop a method for encapsulat
the mechanical behavior of the respiratory system in
way that retains at least some of the nonlinear inform
tion present in the measured pressure–flow relationsh
We could have attempted this in the frequency domain
terms of a Volterra series.16,26,33However, this series can
rapidly become intractable, and interpreting its vario
terms physiologically is generally not possible. Su
et al.28 investigated an alternative approach in whi
they fit block-structured nonlinear models in the tim
domain to data from dogs. Maksym and Bates19 applied
a similar approach to data from rat lungs. Again, ho
ever, it is not obvious how to interpret the elements
these models in physiologic terms. Also, the fitting pr
cess is somewhat computationally expensive, requir
iteration between the time and frequency domai
Therefore, we decided to develop nonlinear frequen
dependent lumped-parameter models in the time dom
These models are derived from a linear frequen
-

,

.

.

domain model whose utility and interpretation are w
established.10,12,24 Also, by expressing the models i
terms of a truncated exponential expansion@Eq. ~10!#,
we were able to cast them in a form that can be fit
data using multiple linear regression@Eqs.~17!, ~18!, and
~19!#. This poses a relatively low computational burde
Finally, even though the data analyzed in the pres
study were collected under steady-state conditions, E
~17!, ~18!, and ~19! can be fit using recursive leas
squares.17 This would allow them to be applied to
nonstationary data in order to track changing parame
values.

The first step in this process was recasting the lin
constant-phase model in the time domain. This was
straightforward because the constant-phase model ha
impulse response that is infinite att50. Therefore, we
resorted to a time-domain approximation to the consta
phase model that employs convolution with the first tw
terms of the series expansion for a power series, and
started the impulse response att50.01 s in order to
avoid singularities. We then had to address the issue
how equivalent the two model formulations are. T
frequency- and time-domain versions of the consta
phase model weight the data differently when estimat
the model parameters. That is, minimizing the squa
residuals between a predicted and calculatedZin is not
equivalent to minimizing the residuals between measu
and estimatedPao. Consequently, any errors in either th
data or the models would be expected to affect the
rameters differently in the two domains. We thus mig
also expect that differences in the model parameter
tained in the two domains should increase with the
gree of nonlinearity in the data. At the very highest lev
of PEEP and tidal volume the parameter differences
opposite in sign to most of the other cases. We susp
this may have been due to a change in the state of
lung induced by overdistension; it was our impressi
that the mice did not do well being ventilated und
these conditions, which is why we always applied t
highest PEEP and tidal volume after the other data
been collected. For the remaining data in Fig. 2, there
a suggestion that the parameter differences increase
PEEP, however, the effect is not marked so we can
draw any firm conclusions.

The parameterH, which characterizes energy storag
in the tissues, had the lowest percentage differences
tween the frequency- and time-domain models~Fig. 2!.
This can be explained by the fact that most of theP
signal produced by the perturbations reflected sto
elastic energy, because most of the power inV was at
low frequencies. Consequently,H is most strongly deter-
mined by the data and so has the greatest signal-to-n
ratio. In contrast, the highest percentage differences
curred in R, which is the asymptotic value of the rea
part of the impedance as frequency goes to infinity.R is
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325Mouse Respiratory Mechanics
thus the parameter least strongly determined by the d
and so it tends to have the lowest signal-to-noise ra
Nevertheless, the two models produce parameter va
that are at least comparable over the range of condit
we investigated.

The second step in our model development was to
the capacity for the time-domain constant-phase mode
account for nonlinearities. Previous studies4,15,21,30 have
shown that the most important nonlinearity to appe
during mechanical ventilation is invariably a volum
dependent elastance. Therefore, we added anad hocterm
in V2 to our model @Eq. ~19!#. We then assessed th
necessity for this extra term, in any particular case,
examining how much it improved the fit to the data. W
found that the fit was improved significantly as bothVT

and PEEP increased@Fig. 3~B!#. This is explicable on the
basis that the respiratory tissues assume progress
stiffening behavior as lung volume is increased, caus
their pressure–volume properties to become increasin
nonlinear.4,8,15,21,30We also examined the effect of addin
a flow-dependent resistance term to the time-dom
model @Eq. ~18!#. In most cases, this had a minim
effect on DENV @Fig. 3~A!#. Interestingly, DENV ob-
tained with the flow-dependent resistance was larges
the two highest tidal volumes and lowest PEEP le
@Fig. 3~A!#. This is consistent with the notion that turbu
lent flow in the airways would most likely occur whe
the highest gas flows~produced by the high tidal vol
umes! pass through narrowed airways~i.e., at the lowest
lung volume!.

In conclusion, our study has shown that in norm
mice, ventilation with the OVW produces mechanic
behavior that becomes significantly nonlinear as PE
and VT are increased. Although these nonlinearities c
be neglected using a perturbation wave form designe
avoid harmonic distortion, doing so may discard a s
nificant and interesting portion of the data. In particul
by keeping track of the appearance of a volum
dependent nonlinearity, one may be able to detect o
inflation of the lung, or the onset of pathologies th
cause the lung tissues to acquire nonlinear elastic be
ior at lower than normal volumes.
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