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Abstract—The assessment of the mechanical properties of the nique in which the lungs are perturbed with a broadband

respiratory system is typically done by oscillating flow into the g\ 6:7:10-12,23.24.3]rha determination oF,;, is predicated
lungs via the trachea, measuring the resulting pressure gener- ;

ated at the trachea, and relating the two signals to each other in2" tggzsassumptlon that the respiratory system is

terms of some suitable mathematical model. If the perturbing liN€ar;=" @ requirement which is usually achieved by
flow signal is broadband and not too large in amplitude, linear using small flow amplitudes.

behavior is usually assumed and the input impedance calcu-  Lutchen and co-worket$!® have developed and ap-

lated. Alternatively, some researchers have used flow signals plied a specially designed broadband flow wave form

that are narrow band but large in amplitude, and invoked non- . .
linear lumped-parameter models to account for the relationship that serves the dual purpose of ventilating the lungs in a

between flow and pressure. There has been little attempt, how-Manner sufficient for maintaining gas exchange, while at
ever, to deal with respiratory data that are both broadband andthe same time allowing;, to be determined up to about
reflective of system nonlinearities. In the present study, we 8 Hz. To achieve the first purpose, the peak-to-peak
collected such data from mice. To interpret these data, we first amplitude of this optimal ventilator wave forf©VWw)

developed a time-domain approximation to a widely used : :
model of respiratory input impedance. We then extended this cannot be too small. However, this works against the

model to include nonlinear resistive and elastic terms. We linearity requirement for the calculation aj,. Fortu-
found that the nonlinear elastic term fit the data better than the nately, the harmonic distortion that arises when a non-
linear model or the nonlinear resistance model when amplitudes linear system is excited by a broadband input can be
gggeoia{ﬁ:-lggésdﬂﬁggl nT::;yhgr?iclfle\jglnIicl)z;tS)?]tec%SO\S?(;inﬂa- minimized by having the frequencies present in the per-
, ' ; ; ; | i turbing flow wave form satisfy the no-sum—no-difference
medical Engineering Society|DOI: 10.1114/1.1553453 (NSND) criterion of Suki and Lutche® However, this
means that all the non-NSND frequencies in pressure
arising from the perturbing flow signal are discarded in
the determination o¥;,. These harmonics could poten-
INTRODUCTION tially amount to a significant fraction of the total power
in pressure, if the system is highly nonlinear.

The assessment of the mechanical properties of the Our goal was to develop a means of taking nonlin-
respiratory system is typically done by oscillating flow earities into account when the rather large amplitudes of
into the lungs via the trachea, measuring the resulting the OVW are applied to the respiratory system. Al-
pressure generated at the trachea, and relating the twdhough, in principle, such an analysis could be performed
signals to each other in terms of respiratory resistancein the frequency domain, this would involve a compli-
and elastanck*®921.2229.3B0th resistance and elastance cated series of integrals such as the Volterra séfig&>
depend markedly on the oscillation frequency, and this We, therefore, undertook our analysis in the time domain
dependence is most pronounced over the breathing fre-because this allowed us to use anatomically based
quency rangé>Z Consequently, multifrequency analyses lumped-parameter models that can account for both the
of respiratory mechanics are usually performed in the nonlinear and multicompartmental behavior of the respi-
frequency domain through the evaluation of the mechani- ratory system.
cal input impedanceZ,) of the respiratory systen;,
is most often determined by the forced oscillation tech- METHODS

Experimental Procedures

Keywords—Input impedance, Resistance, Elastance, Fre-
quency domain, Time domain.

Address correspondence to Dr. Jason H. T. Bates, University of . . o
Vermont, 149 Beaumont Avenue, Burlington, VT 05405-0075. Elec- We studied four normal Balb/c mice weighing 22.4

tronic mail:  jhtbates@zoo.uvm.edu +0.5g (meartSD). Each mouse was anesthetized
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(pentobarbital sodium, 90 mg/kg)ipparalyzed(pancuro-

TABLE 1. List of symbols and abbreviations.

nium bromide, 1 mg/kgip tracheostomized18 gauge
metal cannulg and mechanically ventilated with a tidal
volume of 0.25 mL and a breathing frequency of 200 pz:
breaths/min using a small animal ventilat@texiVent, %
SCIREQ, Montreal, Canagla The flexiVent is a v
computer-controlled piston pump that can function both Pao
as a conventional mechanical ventilator and as a systemZ‘_n
identification device when its piston is made to follow an 5.
appropriate volume displacement wave fotf:2° Posi- f
tive end-expiratory pressul®EEP was set by connect- R
ing the expiratory line of the ventilator to a water col- ©
umn. H

ti

. . . . . /
The animals were ventilated for 6 min periods against

a
three different levels of PEERD, 3, and 6 cmKO) in s
random order. At each level of PEEP, the lungs were first I
inflated twice to a pressure of 25cm® in order to Ry
standardize lung volume history. After an additional R
minute of regular ventilation, four different amplitudes pgep
(0.1, 0.2, 0.3, and 0.4 mLof the same 8 s broadband
volume perturbation were applied sequentially. The dif- ENV
ferent amplitudes were applied in random order with 1.5 AENV
min of regular ventilation between each perturbation. Af- lf;’

time

change of gas volume in flexiVent cylinder
pressure in flexiVent cylinder

volume change at tracheal opening

flow at tracheal opening

pressure at tracheal opening

respiratory input impedance

input impedance of respiratory tissues
pressure across respiratory tissues
frequency

resistance

tissue viscous parameter

tissue elastic parameter

inertance

parameter relating G and H

Heaviside step function

gamma function

linear resistive constant in nonlinear model
nonlinear resistive constant in nonlinear model
nonlinear elastic parameter

positive end-expiratory pressure

positive square root of —1

estimated noise variance

percent change in estimated noise variance
index of nonlinearity

power in output signal at frequencies not present in

ter the three PEEP trials were complete, the procedure "
was repeated at a final PEEP level of 9 catH We Prot
applied the PEEP of 9 cmJ® only at the end of the
experiment to prevent any resulting overinflation damage
to the lung from affecting the measurements at the lower jnieqral of the absolute value of the second derivative of
PEEP levels. . . . ~the signal. Finally, the points in the perturbation signal
Each volume perturbation was applied by interrupting \yere cyclically permuted so that it began with its mini-
mechanical ventilation, allowing the animal to expire for mum value. This ensured that when the signal was ap-
1ls lagalnst. the applled' PEEP, and then oscnlatmg'the plied to an animal’s lungs, the resulting changes in lung
ventilator piston according to the volume perturbation \4jyme would occur above the lung volume defined by
signal. During this procedure, the piston volume dis- (he |evel of PEEP. This volume perturbation signal was

placement ¥.,) and the pressure inside the cylinder gcqied to have peak-to-peak excursions of 0.1, 0.2, 0.3,
(Pey) were filtered at 300 Hz(six-pole Bessel and and 0.4 mL.

sampled at 1024 Hz. The data were then digitally low-
pass filteredsix-pole Bessglat 30 Hz and decimated to
a sampling rate of 128 Hz prior to subsequent analysis.

the input signal
total power in output signal

Data Analysis

Table 1 lists the symbols and abbreviations used in
the following mathematical development. The measured
Ve and Pg, were corrected for gas compressibility

An OVW.type volume perturba‘[ion was generated within the flexiVent cyIinder and for resistive and accel-
along the lines originally developed by Lutchehal® erative losses in the connecting tubing and endotracheal
First, a set of 50,00 8 s signals was generated. Each tube as described previouslyThis yielded the volume
signal had the same spectral content; the frequencies of(V) and the pressureP,y applied directly at the airway
the sinusoidal components spanned the range of 0.5-opening of the animalV was differentiated numerically
10.25 Hz and were mutually prinfewhile the ampli- to yield flow (V) by fitting line segments to each three
tudes decreased hyperbolically with frequency. The consecutive points in the signal and taking the slope of
phases of each component were chosen randomly. Fromthe segment as the derivative of the signal at the central
this initial set of perturbations we selected only those point. These data were fit to four models, as follos:
that crossed the mean value four times, corresponding tothe constant-phase model of the lung in the frequency
two breathing cycles. From this subset of signals, we domain, (ii)) a time-domain approximation to the
chose the smoothest as the perturbation signal to be usedonstant-phase modd(iji) a time-domain nonlinear ex-
in the present study. Smoothness was measured as théension of the constant-phase model containing a flow-

Volume Perturbation
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dependent resistance, afiig) a time-domain nonlinear
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the tracheal cannula first when it was completely closed

extension of the constant-phase model containing aand then again when it was open to the atmosphere.

volume-dependent elastance.
We also estimated the degree of nonlinearity in the
data in terms of the nonlinear inddy used by Zhang

et al,* thus
[ PN|
Pror

where Po7 is the total power in thd>,, and Py, is the
power inP,, at those frequencies not present in the input

V signal.

Kg= (1)

Constant-Phase Model
The constant-phase modeis described by

G—iH

Zin(f )=R+I27Tf|+(2ﬂ_—f)a,

(2

whereR is a Newtonian resistance,is an inertance(

characterizes viscous dissipation of energy in the lung

tissues,H characterizes energy storage in the lung tis-
sues,i is the imaginary unitf is frequency, and

2 H 5
a—;arcta G/ 3

R has been taken previously to be a useful estimate of

overall airway tree resistan¢® although it may contain
a contribution from the chest wall. reflects mainly the
mass of the gas in the central airwdys\Ve have shown
previously’® that | is not discernible in data collected
from mice below 10 Hz, so henceforth we will neglect
the second term in Eq(2). Although this model was
originally proposed specifically to describe the IdAg,

we have also shown that it provides a good description

of the entire respiratory system, including the chest
wall.X0
Z,, was calculated as described previodSI§? The 8

Finally, the corrected transfer function was divided by
i27f to yield Z,.

The constant-phase modgEq. (2)] was fit to Z;,
using the following iterative scheme. First, parameter
was set equal to 1.0, and the remaining parameters ,(

G, andH) were estimated by multiple linear regression.
The values ofG and H were then used in Eq3) to
obtain a new value fow. Using this new value fot, the
parametersR, |, G, and H were then reestimated by
multiple linear regression, allowing a second reestima-
tion of «, and so on. This procedure was repeated
ten times(we found that the parameter values typically
converged to about four significant figures within five
iterations.

Time-Domain Approximation to the Constant-Phase
Model

The component of Eq(2) accounting for the me-
chanical impedance of the tissues is

4

In the time domain this corresponds to an impulse-
response functidd?

zi(t) = At *S(1), (5

where S(t) is the Heaviside step function defined as

S(t)=1, t=0,
(6)
S(t)=0, t<O0.

A andk are constants andis time.G andH are related
to A andk as follows:

s data records were divided into ter&l s blocks that G=AF(a)cos( ﬂ) @
overlapped by 50%. The first block in each record was 2 )

discarded and the auto- and cross-power spectra of the

remaining two blocks were averaged. The cross-power am

spectra were then divided by the autopower spectra to H=AF(a)Sin(7 , (8
yield a transfer function. This transfer function was cor-

rected for the effects of gas compressibility in the ven-

tilator cylinder and the impedance of the channel leading k=1-a, )

to the animal as described previoulyThis correction

was achieved using dynamic calibration signalsRyj, where I'(@) is the gamma function ofe defined as
and V., obtained from the flexiVent prior to connecting [ote e ldt.

the animal by applying the volume perturbation through z;(t) can be rewritteh
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z(t)=Ae "Os(p),

_ 2
LG

zi(h)=A 1

1+[—kIn(t)]+

N [—kIn(t)]"

o (10

zi(t)~{A[1-kIn(t) ]} S(1),

provided the absolute value @&fin(t) is small compared
to unity, where In{) is the natural logarithm of.

In the frequency domain, the pressure across the tis-
sues due to the applied flow is

Pa(f)=V(f)Z4(f), (11)
so in the time domain
Pa(t)=V(t) ®z4(1), (12)

where ® denotes the operation of convolution. Substi-
tuting Eq. (10) into Eq. (12) gives

Pi()=V(t)®{A[1—kIn(t)]S(1)}. (13
But
V() ®[AS()]=AV(1), (14
and
V() ®[AKIn(t)S(t) ]=Ak{V(t) @ [In(t)S(t) ]} s
Therefore,
Pi()=AV()—Ak{V(D®[In()S(1)]}.  (16)

By adding a term inR to Eg. (16) we obtain a time-
domain approximation to the constant-phase model, thus:

P.d ) =RV(t)+AV(t) - AK{V(t)@[In(t)S(1)]}.

In order to use Eq(17), the signals cannot begin at
=0 because In(0)—ce. To avoid this situation, we de-
fined all signals as starting &=0.01 s.

A further consideration regarding the use of Efj7)
is that it is only valid when the magnitude &fn(t) is
small compared to unity, because only then is the ap-
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proximation made in the last line of E¢LO) valid. This
obviously is not true in general becausén(t) tends to
infinity as t tends to infinity and to minus infinity as
tends to zero. Our requirement here is that @€) holds
over the length of our signals, i.e., fromt
=0.01-8.01 s. We tested this by computingt) in Eq.
(10) over this time scale using both the exact expression
[first line of Eq.(10)] and its first-order series approxi-
mation|last line of Eq.(10)], with a representative value
for k of 0.1. We found the two estimates agreed over the
8 s period to within an average of 1.2%, with a standard
deviation of 0.9%. Thus, we conclude that the truncated
series approximation far;(t) is sufficiently accurate for
our purposes.

Time-Domain Nonlinear Extensions of the Constant-
Phase Model

We extended Eq(17) in two ways by the addition of
ad hocnonlinear terms. The first extension was to add a
flow-dependent resistance, thus

P.dt)=RV(t) +RV|V|+AV(t)

—AK{V()@[In(t)S(t)]}, (18)
where |V| denotes the absolute value ®f and is re-
quired in the above equation because the resistive pres-
sure drop in the lungs reverses sign with a reversal of the
direction of V.

The second extension of the model was to add a
volume-dependent elastance term as follows:

P.dt)=RV(t)+EVA(t) +AV(t)

—AKV(H)®[In(t)S(t) ]} (19
Both nonlinear model$Egs. (18) and (19)] were fit to
the data using multiple linear regression. The convolu-
tion in the final term of each equation was calculated
using the Euler integration.

Model Comparison

We compared the performances of the time-domain
approximation of the constant-phase modEh. (17)]
and the original frequency-domain formulatifig. (2)]
in terms of the percentage differences between the pa-
rametersR, G, andH estimated by the two models.

The estimated noise varian€ENV) was used as an
index of the goodness of fit of the model, where

1 < R
ENV= —n_mi; (Pi—P))?, (20)
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FIGURE 1. Nonlinear index k, [Eq. (1)].

where P; is the measured pressurB; is the pressure
predicted by the modeh is the sample size, angh is

the number of free model parameters. The lower the
value of ENV, the better the model fits the data. When
two different models are fit to the same set of data, the
model of higher order invariably produces a lower value
of ENV. In order to decide if the reduction in ENV is
statistically significant, we calculated the percent im-
provement in ENV, thus

(21)

AENV— 100 2= ENV
a ENV, ’

MORIYA, MORAES and BATES

where ENV is the larger of the two values of ENV.
Provided the noise in the data is normally distributed, the
ratio of ENV; to ENV, follows anF distribution whose
number of degrees of freedom is determinedrbynd

the number of parameters in the two models. Using the
appropriateF distribution, we determined that KENV

is greater than about 30%, then it is less than 5% likely
that ENV, and EN\, are estimates of the same popula-
tion variance. Thus, whedhENV>30% we concluded
that model 2 gave a significantly better fit to the data
than did model 1. Otherwise, model 2 was taken as no
better than model 1. We must note, however, that the
above reasoning is only valid if the residuals between
data and model fit are normally distributed. In our case
they clearly were not, so we must take the 30% level
guoted above as a nominal discriminatory level. From a
practical point of view, then, we are interested in values
of AENV that are either considerably greater than or less
than 30%.

RESULTS

Figure 1 shows the nonlinear indé&y [Eq. (1)] for all
the tidal volumes and PEEP levels studigégd.does not
depend in any significant wa§ANOVA, Tukey poshoc
comparison on tidal volume or PEEP.

Table 2 gives the parameter values of the constant-
phase mode[Eg. (2)] obtained by fitting the model to
Zin(f) in the frequency domain. The percentage differ-
ences between the paramet®;sG, andH estimated by
the constant-phase modétq. (2)] and the time-domain
approximation of this mod€lEq. (17)] were calculated
for every combination of tidal volume and PEEP level.

TABLE 2. Values of R, G, and H (mean=standard deviation ) for the constant-phase model
[Ea. )]

R (cmH,0smL™ 1)

Tidal volume PEEP 0 PEEP 3 PEEP 6 PEEP 9
0.1 mL 0.296+0.116 0.388+0.066 0.349+0.053 0.464+0.038
0.2 mL 0.383+0.113 0.377£0.132 0.429+0.098 0.606+0.052
0.3 mL 0.498+0.248 0.415+0.128 0.509+0.144 0.6760.080
0.4 mL 0.535+0.250 0.499+0.181 0.705+0.135 0.603+0.119

G (cmH,0 s mL~ ()
0.1 mL 5.174+1.211 3.711+0.678 3.326+0.199 4.807+0.111
0.2 mL 4.331+0.878 3.030+0.678 2.731+0.370 4.324+0.361
0.3 mL 3.630*+0.632 2.689+0.669 2.022+0.489 3.883+:0.228
0.4 mL 3.433+0.844 2.391+0.601 1.019+0.590 6.027+0.959
H (cmH,0 s mL~ (")
0.1 mL 32.136+9.088 22.678+6.882 20.293+2.406 45.737+4.858
0.2 mL 26.043+4.947 21.735+6.312 23.208+1.979 64.085+7.783
0.3 mL 24.673+3.999 21.548+6.419 31.956+6.787 77.762+9.179

0.4 mL

25.012+8.181

25.144+9.541

47.461+7.825

78.864x7.107
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FIGURE 2. Percentage difference between the parameters
estimated by the constant-phase model in the frequency do-
main and the approximation of the constant-phase model in
the time domain. Amplitude (mL)

FIGURE 3. Improvement in fit (AENV) with the addition of a
The results are shown in Fig. 2. At a tidal volume of 0.4 nonlinear elastance term to the time-domain approximation
T . " of the constant-phase model. The horizontal dashed line
mL and a PEEP of 9cm4#© we suddenly obtained @  shows the nominal level above which a value of  AENV indi-
dramatic change in the differences in the tissue param-cates that the nonlinear term produced a significant im-
etersG andH. We suspect this may reflect the onset of Provement in the goodness of fit of the model.

overinflation injury, and so we do not consider the data
collected under these conditions from now on. For the gjgnificance level. Only the data from the lowest PEEP

remainder of the data, the percentage differencés go level at the highest two tidal volumes approached the
from 0.73% at an amplitude of 0.3 mL and PEEP of 3005 |evel. In contrast, the addition of a nonlinear
9cmH,0, to 6.56% at 0.1 mL and 6 cmpB®. The per-  glastance term caused many of the data sets to exceed

centage differences i@ go from 5.13% at 0.2 mL and  he 309 AENV level substantiallyFig. 3B)].
3cmH,0, to 45.81% at 0.1 mL and PEEP of 0 crp®i

The lowest percentage difference Rt is 14.25% at DISCUSSION

0cmH,0 and 0.1 mL, while the highest percentage dif-

ference is 64.43% at 9 cmy® and 0.1 mL. The use of the constant-phase model to interpret mea-
Figure 3 shows how the addition of a nonlinear resis- surements of Z;,, has gained a wide following

tance tern{Eq. (18)] and a nonlinear elastance teffq. recently®1%1224However, its use in this regard is predi-

(19)] to the time-domain constant-phase mojded. (17)] cated on the assumption of linear dynamic behavior from

improves the goodness of fIRENV is shown for each  the respiratory systei?:?®> When the imposed oscilla-

tidal volume and PEEP level investigated. With the non- tions are small, this may be a reasonable assumption.
linear resistance termFig. 3(A)] most cases yielded a However, nonlinear behavior of respiratory mechanics
value of AENV that was far below the nominal 30% can become apparent even at normal tidal volumes, es-
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pecially when PEEP is elevatéd®?1?%*Thus, to be = domain model whose utility and interpretation are well
comfortable with the assumption of small-amplitude lin- established®!?2* Also, by expressing the models in
ear behavior, one is compelled to use oscillation ampli- terms of a truncated exponential expansi&y. (10)],
tudes that are considerably smaller than norkfal This we were able to cast them in a form that can be fit to
constraint cannot, of course, be applied to the OVW, data using multiple linear regressifiqgs.(17), (18), and
which by definition attempts to deliver a normél; . (19)]. This poses a relatively low computational burden.
Lutchenet al'® employ a cunning technique for dealing Finally, even though the data analyzed in the present
with nonlinearities when using the OVW by having the study were collected under steady-state conditions, Egs.
OVW contain only components satisfying the no-sum— (17), (18), and (19) can be fit using recursive least
no-difference criteriofl and then calculatin@;, only at squares! This would allow them to be applied to

those frequencies present in the inputvave form. This ~ Nonstationary data in order to track changing parameter
means that any harmonics Py,, produced by passing Vvalues.

v through a nonlinear system, are discarded. The prob- The first step in this_proces; was rec.asting. the linear
lem with this approach is that if the nonlinearities are con_stant—phase model in the time domain. This was not
strong, then a significant amount of information about §tra|ghtforward b ecause the pqnstant-phase model has an
the system is not being used in its assessment. impulse response that IS infinite .a# O.' Therefore, we
The parameters of the constant-phase mgal (2)] resorted to a time-domain apprOX|m_at|on _to the cpnstant-
vary with PEEP and tidal volume€Table 2 in character- phase model thz_it employs_convolunon with th_e first two
- o . . terms of the series expansion for a power series, and we
istic ways. For example{ is minimal at_an |ntermed|qte started the impulse response &£0.01s in order to
\F/)eEsEiZalte;\:jeLSc,i C6mclrznozlﬂ)ataihtrhe: rzl:ntZi?q i::gatli d";“\’/gﬁ;? avoid singularities. We then had to address the issue of

) ) . how equivalent the two model formulations are. The
This has bgen _desgrlbed befﬁl@nd IS thoqght to be frequency- and time-domain versions of the constant-
due to strain stiffening of the tissues at higher PEEPs

. phase model weight the data differently when estimating
and to some degree of airspace closure at PEEB 0.

h hat simil doubt for th the model parameters. That is, minimizing the squared
shows a somewhat similar pattern, no doubt for the same agiq 15 petween a predicted and calculaZggdis not

reasonsR shows a more curious pattern of increasing o jivalent to minimizing the residuals between measured
with both PEEP and tidal volume. R really is a mea-  gnq estimatedp,,. Consequently, any errors in either the
sure of airway resistance, one might expect the opposite 4ata or the models would be expected to affect the pa-
to occur as the airways increase in caliber with increas- gmeters differently in the two domains. We thus might
ing lung volume. However, it is possible that o& also expect that differences in the model parameter ob-
values include some contribution from the chest wall t5ined in the two domains should increase with the de-
(this might be more apparent in mice than other species, gree of nonlinearity in the data. At the very highest level
as mice have relatively large aiways for their lung of PEEP and tidal volume the parameter differences are
size;” which could make the effect of their tissues Bn opposite in sign to most of the other cases. We suspect
relatively more important than in other spegies this may have been due to a change in the state of the
Our goal was to develop a method for encapsulating jung induced by overdistension; it was our impression
the mechanical behavior of the respiratory system in a that the mice did not do well being ventilated under
way that retains at least some of the nonlinear informa- these conditions, which is why we always applied the
tion present in the measured pressure—flow relationships.highest PEEP and tidal volume after the other data had
We could have attempted this in the frequency domain in peen collected. For the remaining data in Fig. 2, there is
terms of a Volterra serie€:****However, this series can  a suggestion that the parameter differences increase with
rapidly become intractable, and interpreting its various PEEP, however, the effect is not marked so we cannot
terms physiologically is generally not possible. Suki draw any firm conclusions.
et al?® investigated an alternative approach in which  The parameteH, which characterizes energy storage
they fit block-structured nonlinear models in the time in the tissues, had the lowest percentage differences be-
domain to data from dogs. Maksym and Bafespplied tween the frequency- and time-domain modésy. 2).
a similar approach to data from rat lungs. Again, how- This can be explained by the fact that most of the
ever, it is not obvious how to interpret the elements of signal produced by the perturbations reflected stored
these models in physiologic terms. Also, the fitting pro- elastic energy, because most of the powewNiwas at
cess is somewhat computationally expensive, requiring low frequencies. Consequently, is most strongly deter-
iteration between the time and frequency domains. mined by the data and so has the greatest signal-to-noise
Therefore, we decided to develop nonlinear frequency- ratio. In contrast, the highest percentage differences oc-
dependent lumped-parameter models in the time domain.curred inR, which is the asymptotic value of the real
These models are derived from a linear frequency- part of the impedance as frequency goes to infirkys
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thus the parameter least strongly determined by the data,
and so it tends to have the lowest signal-to-noise ratio.
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