
Nonlinear and Neural Network-based Control

of a Small Four-Rotor Aerial Robot

Holger Voos

Abstract— Small four-rotor aerial robots, so called quadrotor
UAVs, have an enormous potential for all kind of near-
area surveillance and exploration in military and commercial
applications. In addition, they offer the possibility to fly either
in- or outdoor. However, stabilizing control and guidance of
these vehicles is a difficult task because of the nonlinear
dynamic behavior. This paper describes the development of
a nonlinear vehicle control system based on a combination of
state-dependent Riccati equations (SDRE) and neural networks.
Some first simulation results underline the performance of this
new control approach for the current realization.

I. INTRODUCTION

Unmanned flying robots or vehicles (UAVs) are gaining

increasing interest because of a wide area of possible applica-

tions. While the UAV market has first been driven by military

applications and large expensive UAVs, recent results in

miniaturization, mechatronics and microelectronics also offer

an enormous potential for small and inexpensive UAVs for

commercial use. These small UAVs would be able to fly

either in- or outdoor, leading to completely new applications.

However, indoor flight comes up with some very challenging

requirements in terms of size, weight and maneuverability of

the vehicle that rule out most of the aircraft types, see [2]

for an excellent overview. One type of aerial vehicle with a

strong potential also for indoor flight is the rotorcraft and

the special class of four-rotor aerial vehciles, also called

quadrotor. This vehicle, shown in Fig. 1, has been chosen

by many researchers as a very promising vehicle, see e.g.

[1], [2], [3] and [4].

The quadrotor is a mechatronic system with four propellers

in a cross configuration. While the front and the rear motor

rotate clockwise, the left and the right motor rotate counter-

clockwise which nearly cancels gyroscopic effects and aero-

dynamic torques in trimmed flight. One additional advantage

of the quadrotor compared to a conventional helicopter is

the simplified rotor mechanics. By varying the speed of the

single motors, the lift force can be changed and vertical

and/or lateral motion can be created. Pitch movement is

generated by a difference between the speed of the front and

the rear motor while roll movement results from differences

between the speed of the left and right rotor, respectively.

Yaw rotation results from the difference in the counter-torque

between each pair (front-rear and left-right) of rotors. The

overall thrust is the sum of the thrusts generated by the four

single rotors. Besides this special mechanical construction,

H. Voos is with Faculty of Electrical Engineering and Computer Science,
University of Applied Sciences Ravensburg-Weingarten, D-88241 Wein-
garten, P.O.-Box 1261, Germany, voos@hs-weingarten.de

Fig. 1. A commercially available quadrotor.

all sensors and information processing units are embedded

in the vehicle for control purposes in order to operate the

UAV autonomously.

However, in spite of the four actuators, the quadrotor is a

dynamically unstable system that has to be stabilized by a

suitable control system. Unfortunately, the dynamic behavior

is nonlinear leading to more complex control algorithms. In

addition to this functional complexity, the algorithms also

have to be implemented in the embedded hardware and have

to fulfil realtime requirements while limited memory and

processing onboard capacity have to be considered. There

are some contributions in the literature that are concerned

with control system design for quadrotor vehicles, see e.g.

[1], [2], [3] and [4] to mention only a few. Many of the

proposed control systems are based on a linearized model

and conventional PID- or state space control while other

approaches apply sliding-mode or H∞ control. In [1], a non-

linear controller based on state-dependent Riccati equations

(SDRE) has been proposed. The basic idea of the SDRE-

approach was developed by [6] and applied to a number of

control problems also in aerospace applications, see e.g. [6],

[9], but not yet to the control of a small quadrotor UAV. The

approach in [1] is further improved here and extended by the

suitable addition of neural networks. First simulation results

are promising for the current realization and implementation

of the algorithms.

II. DYNAMIC MODEL OF THE QUADROTOR

The general dynamic model of a quadrotor has been pre-

sented in a number of papers and will not be discussed here



in all details again. For further considerations of modelling,

we refer to [1], [2] and [4]. We consider an inertial frame

and a body fixed frame whose origin is in the center of mass

of the quadrotor as shown in Fig. 2.

Fig. 2. Configuration, inertial and body fixed frame of the quadrotor.

The orientation of the quadrotor is given by the three Euler

angles, namely yaw angle ψ, pitch angle θ and roll angle φ
that together form the vector ΩΩΩT = (φ, θ, ψ). The position

of the vehicle in the inertial frame is given by the vector

rrrT = (x, y, z). The transformation of vectors from the body

fixed frame to the inertial frame is given by the rotation

matrix RRR where cθ for example denotes cos θ and sθ denotes

sin θ:

RRR =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ



 (1)

Since the thrust force generated by rotor i, i = 1, 2, 3, 4 is

Fi = b · ω2

i where b is the thrust factor and ωi is the speed

of rotor i, we obtain a first set of differential equations that

describe the acceleration of the quadrotor:

r̈rr = −g ·





0
0
1



 +RRR · b/m

4
∑

i=1

ω2

i ·





0
0
1



 (2)

With the inertia matrix III (which is a diagonal matrix with

the inertias Ix, Iy and Iz on the main diagonal), the rotor

inertia JR and the vector τττ that describes the torque applied

to the vehicle’s body we obtain a second set of differential

equations:

IIIΩ̈ΩΩ = −Ω̇ΩΩ × IIIΩ̇ΩΩ −

4
∑

i=1

JR(Ω̇ΩΩ ×





0
0
1



)ωi + τττ (3)

The vector τττ is defined as

τττ =





lb(ω2

4
− ω2

2
)

lb(ω2

3
− ω2

1
)

d(ω2

2
+ ω2

4
− ω2

1
− ω2

3
)



 (4)

with the drag factor d and the length l of the lever. The four

rotational velocities ωi of the rotors are the input variables

of the real vehicle, but with regard to the obtained model a

transformation of the inputs is suitable. Therefore, we obtain

the new artificial input variables as follows:

u1 = b(ω2

1
+ ω2

2
+ ω2

3
+ ω2

4
)

u2 = b(ω2

4
− ω2

2
)

u3 = b(ω2

3
− ω2

1
)

u4 = d(ω2

2
+ ω2

4
− ω2

1
− ω2

3
) (5)

However, in the previous equations we obtain an additional

variable that also depends on the rotational speeds of the

rotors and therefore must be considered as a fifth artificial

input:

u5 = ωd = ω2 + ω4 − ω1 − ω3 (6)

Evaluation of (2) and (3) thus yields the overall dynamic

model in the following form

ẍ = (cosφ sin θ cosψ + sinφ sinψ) · u1/m

ÿ = (cosφ sin θ sinψ − sinφ cosψ) · u1/m

z̈ = −g + (cosφ cos θ) · u1/m

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

) −
JR
Ix
θ̇u5 +

l

Ix
u2

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

) +
JR
Iy
φ̇u5 +

l

Iy
u3

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
l

Iz
u4 (7)

This model can be rewritten in state-space form ẋxx = fff(xxx,uuu)
where uuuT = (u1, u2, u3, u4, u5) is the vector of (artificial)

input variables given in (5) and (6) and xxx ∈ R
12 is the vector

of state variables given as follows:

xxxT = (x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇)T (8)

From (7) and (8) we obtain

ẋxx =









































x2

(cosx7 sinx9 cosx11 + sinx7 sinx11) · u1/m
x4

(cosx7 sinx9 sinx11 − sinx7 cosx11) · u1/m
x6

−g + (cosx7 cosx9) · u1/m
x8

x12x10I1 −
JR

Ix
x10u5 + l

Ix
u2

x10

x12x8I2 + JR

Iy
x8u5 + l

Iy
u3

x12

x10x8I3 + l
Iz
u4









































(9)

with the abbreviations I1 = (Iy− Iz)/Ix, I2 = (Iz − Ix)/Iy
and I3 = (Ix − Iy)/Iz .

It becomes obvious that the state space model can be

decomposed into one subset of differential equations that

describes the dynamics of the attitude (i.e. the angles) and

one subset that describes the translation of the UAV. From



(9) we obtain the first subset of differential equations, called

submodel M1 as





ẋ8

ẋ10

ẋ12



 =







x12x10I1 −
JR

Ix
x10u5 + l

Ix
u2

x12x8I2 + JR

Iy
x8u5 + l

Iy
u3

x10x8I3 + l
Iz
u4






(10)

The artificial input variables of that first submodel are the

variables u2, u3, u4 and u5. From the angular rates as the

output of M1 the angles are obtained by pure integration.

The three angles (or state variables x7, x9 and x11) are the

inputs of the next submodel M2 which is given by




ẋ2

ẋ4

ẋ6



 =





(cosx7 sinx9 cosx11 + sinx7 sinx11)
u1

m

(cosx7 sinx9 sinx11 − sinx7 cosx11)
u1

m

−g + (cosx7 cosx9)
u1

m





(11)

Herein, the controllable artificial input is the variable u1. The

resulting structure of the quadrotor model is shown in Fig.

3.

Fig. 3. Decomposed structure of the quadrotor model.

III. VEHICLE CONTROLLER DESIGN

From a control engineering point of view, a UAV system

contains two main control loops [5]. The first main and

underlying control loop is the vehicle control loop. This con-

trol loop is responsible for the generation and stabilization

of a currently required movement of the UAV. The second

main loop is the mission control loop that comprises the

stabilized vehicle as a platform for mission related sensors

and actuators and the mission control system. The mission

control loop computes the desired flight path, e.g. given by

GPS waypoints, and commands current required movements

to the vehicle control loop. The question remains what kind

of commands will be given to the vehicle control loop. Direct

position control as proposed in many papers (see e.g. [3], [4])

is most often not necessary for vehicle guidance and position

measurement or estimation is most often not accurate enough

for direct feedback control.

For that reason we assume in this approach that the

mission control system commands a desired velocity vector

to the vehicle control system. This required velocity vector

then has to be established and stabilized. In order to obtain

the necessary measurements for this velocity control, the

vehicle control loop must be equipped with a suitable inertial

measurement system (IMU). This IMU delivers the acceler-

ations and angular rates that can be used to further estimate

velocities and Euler angles with the help of a Kalman filter.

The default command from the mission system is the zero

velocity vector, i.e. the quadrotor UAV should hover at the

current position. In this paper the main challenge and focus

is on the vehicle control loop, i.e. the control of a required

velocity vector of the UAV.

The decomposed model structure as shown in Fig. 2

already suggests a nested structure for vehicle control. In

order to achieve and maintain a desired velocity vector,

first the necessary attitude of the UAV has to be stabilized.

Therefore, we propose a decomposition of the control system

in an outer-loop velocity control and an inner-loop attitude

control. In this structure, the inner attitude control loop has to

be much faster than the outer loop and stabilizes the desired

angles that are commanded by the outer loop. This nested

structure is shown in Fig. 4.

Fig. 4. Nested structure of the UAV vehicle control.

First we consider the inner control loop with controller

C1, the attitude control loop, that has to stabilize the

desired roll, pitch and yaw angle, i.e. the desired vector

Ω
T
d = (φd, θd, ψd) = (x7,d, x9,d, x11,d). The corresponding

dynamic model comprises the last six equations of the

state space model (8) which is a series of the nonlinear

submodel M1 and an integrator. Then we derive the outer-

loop controller C2 to stabilize a desired velocity vector.

A. State-dependent Riccati Equation Control

The state-dependent Riccati equation (SDRE) control was

initially derived by Cloutier, see [6] for an overview. The

basic idea was motivated by linear quadratic regulation and

introduces a factorization of a nonlinear system in a way that

it becomes linear at any fixed state

ẋxx = AAA(xxx)xxx+BBB(xxx)uuu (12)

where the matrices AAA and BBB both depends on the current

state variables. The controllability issues of such methods

are discussed in [6]. Control gains at any state xxx can be

calculated using standard linear optimal control theory, i.e.

choosing that control that minimizes the cost function

J = 0.5

∫

∞

t0

xxxTQQQ(xxx)xxx+ uuuTRRR(xxx)uuudt (13)

where QQQ(xxx) penalizes the state and RRR(xxx) penalizes control

effort. By solving the algebraic Riccati equation

AAATPPP +PPPAAA+QQQ−PPPBBBRRR−1BBBTPPP = 000 (14)

we obtain the matrix PPP (xxx) and the control gains become

uuu = −KKK(xxx)xxx = −RRR(xxx)−1BBBT (xxx)PPP (xxx)xxx (15)



In general, this technique requires that the algebraic Riccati

equation must be solved at every state and therefore also the

control gains have to be recalculated at every state. This

seems to be computationally complex, but [9] developed

some real-time methods that can be implemented on an em-

bedded micro-controller. In addition, stability of the SDRE

approach was shown in [7], [8].

B. Attitude Control using SDRE

We apply the SDRE method to the attitude control prob-

lem. The vector of state variables for that problem is given

by xxxTI = (x7, x8, x9, x10, x11, x12) while the vector of

artificial input variables is uuuTI = (u2, u3, u4, u5) and one

possible state-dependent model can be obtained from (9) by

factorization as

ẋxxI =

















0 1 0 0 0 0
0 0 0 x12I1 0 0
0 0 0 1 0 0
0 x12I2 0 0 0 0
0 0 0 0 0 1
0 0 0 x8I3 0 0

















· xxxI

+

















0 0 0 0
l
Ix

0 0 −
JR

Ix
x10

0 0 0 0
0 l

Iy
0 JR

Iy
x8

0 0 0 0
0 0 l

Iz
0

















· uuuI (16)

Please note that this factorization is not unique as also

discussed in [6]. In (16) both matrix AAA(xxxI) and BBB(xxxI) are

state-dependent, i.e. (16) can be written as

ẋxxI = AAA(xxxI)xxxI +BBB(xxxI)uuuI (17)

Using (17), the control gain matrix KKK(xxxI) can be calcu-

lated, while the overall control input uuuI must also take into

account that a desired state xxxI,d given by the outer velocity

control loop must be stabilized. The stabilization of a desired

state which is not zero can be guaranteed by a pre-filter

matrix MMM(xxxI) assuming that the control gain matrix KKK(xxxI)
is already determined:

MMM(xxxI) = pinv
(

(BBB(xxxI)KKK(xxxI) −AAA(xxxI))
−1BBB(xxxI)

)

(18)

where pinv() denotes the pseudo-inverse of a non-quadratic

matrix. The overall attitude control law, i.e. the controller C1

can then be summarized as follows:

uuuI = −KKK(xxxI)xxxI +MMM(xxxI)xxxI,d (19)

C. Velocity Control using a Neural Network

If the inner-loop attitude control is sufficiently fast, we

can assume that a desired value of the roll, pitch and yaw

angle is achieved very fast compared with the outer velocity

control loop. Therefore the closed inner control loop can be

approximately considered as a static block that just transfers

the desired values of roll, pitch and yaw angle to the next

model M2. According to (11), we can describe model M2

by the following set of nonlinear differential equations:

ẋ2 = (cosx7d sinx9d cosx11d + sinx7d sinx11d) · u1/m

ẋ4 = (cosx7d sinx9d sinx11d − sinx7d cosx11d) · u1/m

ẋ6 = cosx7d cosx9d · u1/m− g (20)

where all x7d, x9d, x11d and u1 are input variables. Equation

(20) can be interpreted in a way that all differential equations

have the form

ẋ2 = ũ1 = f1(x7d, x9d, x11d, u1)

ẋ4 = ũ2 = f2(x7d, x9d, x11d, u1)

ẋ6 = ũ3 = f3(x7d, x9d, x11d, u1) (21)

with the new input variables ũ1, ũ2, ũ3 that depend on the

other four input variables in a very complex nonlinear form.

However, concerning the new input variables, the control

task is very simple since it comprises the control of three

independent systems of first order which might be solved by

a pure proportional controller, respectively:

ũ1 = k1 · (x2d − x2)

ũ2 = k2 · (x4d − x4)

ũ3 = k3 · (x6d − x6) (22)

Herein the controller parameters k1, k2 and k3 could be

chosen in a way that the outer loop is sufficiently fast but

not too fast with respect to the inner loop attitude control.

In a next step, these transformed input variables ũ1, ũ2, ũ3

must be used to obtain the real input variables x7d, x9d, x11d

and u1 by evaluating (20).

(21) can be rewritten in the more compact form





ũ1

ũ2

ũ3



 = fff

















x7d

x9d

x11d

u1

















(23)

where fff is a vector function given by (20). In order to obtain

the input variables x7d, x9d, x11d and u1 for any given values

of ũ1, ũ2, ũ3, we have to calculate the inverse of the vector

function fff , i.e.








x7d

x9d

x11d

u1









= fff−1









ũ1

ũ2

ũ3







 (24)

Because of the complexity of the vector function fff it is

not possible to obtain the inverse function as a closed-form

mathematical expression. For that reason, the inverse fff−1
is

realized here with the help of a neural network. An additional

consideration can help to simplify the training of the neural

network: in order to achieve any desired velocity vector, it is

not necessary to apply a yaw rotation and therefore we can

set x11d = ψd = 0.

The neural network is developed with the help of the

Neural Network Toolbox of Matlab. First, a suitable set

of training data must be available. For that reason, first a



certain number of random values of x7d, x9d, u1 is generated

and the corresponding values of the variables ũ1, ũ2, ũ3 are

calculated with the help of (20). Hereby, the range of the

random variables x7d, x9d, u1 must be chosen very carefully

in order to cover the whole range of possible values in

the later implementation. In order to obtain the inverse

function fff−1
, this set of values of the calculated variables

ũ1, ũ2, ũ3 is then taken as input for the neural network and

the corresponding outputs are the variables x7d, x9d, u1.

In the next step, a suitable neural network type, internal

structure and learning algorithm had been chosen. Here, a

multilayer perceptron as a feedforward neural network is

used. A number of 20 neurons in the input layer, 20 neurons

in the hidden layer and 4 neurons in the output layer led to

a satisfactory result. For learning, the Levenberg-Marquardt

back-propagation algorithm has been chosen. Experiments

led to the conclusion that a number of 1000 input and output

data sets was sufficient for the training of the chosen neural

network which was able to realize the required inverse func-

tion fff−1
. The following Fig. 5 gives an example of the first

100 data points of the variable x7d for the respective input

variables and the corresponding values that are calculated by

the neural network.

Fig. 5. Example results of the trained neural network.

D. Calculation of the real input variables using a Neural

Network

The inner attitude controller C1 and the outer velocity

controller C2 together generate the artificial control vector

uuuT = (u1, u2, u3, u4, u5). However, as already mentioned,

these input variables cannot be applied to the real quadrotor

UAV, since the real input variables are the rotational speeds

ωi of the four rotors i = 1, . . . , 4, respectively. Therefore,

these four values must be calculated using (5) and (6). Again,

we have a set of five nonlinear equations that must be solved

to calculate four unknowns, i.e. the values of ωi. Since there

is no closed-form solution, we again apply a neural network

in order to perform this calculation.

As described in the previous section, a set of suitable train-

ing data had been created first using random values of the

rotational speeds ωi and the corresponding calculated values

of uuuT = (u1, u2, u3, u4, u5) using the equations (5) and (6).

For the training, the data set of these calculated values of

uuuT are then taken as input variables while the corresponding

values of ωi, i = 1, . . . , 4 are the output variables that have

to be learned. Again, a multilayer perceptron was chosen

with the Levenberg-Marquardt back-propagation algorithm

of the Matlab Neural Network Toolbox. The neural network

was structured with 20 neurons in the input, 20 neurons

in the hidden and four neurons in the output layer. Here,

a number of 4000 data sets has been used for training in

order to get a sufficiently accurate result of the calculation.

The resulting neural network was then implemented in the

control system to transform the artificial input variables

uuuT = (u1, u2, u3, u4, u5) into the real input variables ωi, i =
1, . . . , 4. That leads to the overall vehicle control structure

shown in Fig. 6.

Fig. 6. Overall vehicle control structure.

IV. SIMULATION RESULTS

The quadrotor model and the derived control algorithms

have been implemented in Matlab/Simulink for a simulation.

For that purpose, the parameters of a real quadrotor had

been identified and inserted in the simulation model. The

quadrotor model was implemented as given in (9). In a first

simulation, we assume an initial velocity ẋ = 0.8m/sec, the

other two velocities are both zero. The desired state which

has to be achieved by the control action is the hovering state

where all angles and all velocities are zero. The simulation

result for the velocities is shown in Fig. 7 as a time plot.

It becomes obvious that after a short transition phase all

velocities are stabilized at the required value of zero. During

that compensation of the initial disturbances of the velocities,

the quadrotor changes the position until a new hovering

position is reached and stabilized.

In a next simulation, we assume that the quadrotor starts

at an initial position x = y = z = 3m in the hovering state

(i.e. all velocities are zero). The task now is to achieve and

stabilize a velocity vector with ẋd = ẏd = żd = 0.5 m/sec
and to generate a linear movement. The time plot of all

angular rates during the control action is presented in Fig.

8 while the position in three dimensions is shown in Fig. 9.

Again, the desired state is achieved after a short transition

phase and the quadrotor is moving with constant velocity.

During that constant flight the angles are also kept constant

and hence the angular rates are all zero after the initial

transition.



Fig. 7. Time plot of the velocities.

Fig. 8. Time plot of angular rates during control.

Fig. 9. Plot of position during control.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a vehicle control system for a small

quadrotor UAV based on a combined control strategy includ-

ing state-dependent Riccati equation (SDRE) control as well

as neural networks. Both an inner-loop attitude controller and

an outer-loop velocity controller have been developed during

the proposed work. The dynamic model of the quadrotor is

derived and implemented in a Matlab/Simulink simulation

model. With the help of that simulation, the nonlinear vehicle

control system is tested and its efficiency demonstrated.

In our ongoing work we are currently implementing the

proposed control system in the real quadrotor UAV.

REFERENCES

[1] H. Voos, “Nonlinear State-Dependent Riccati Equation Control of
a Quadrotor UAV”, in Proc. of the IEEE Conference on Control

Applications, Munich, Germany, 2006.
[2] S. Bouabdallah, P. Murrieri, R. Siegwart, “Design and Control of an

Indoor Micro Quadrotor”, in Proc. of the Int. Conf. on Robotics and

Automation ICRA’2004, New Orleans, USA, 2004.
[3] A. Tayebi, S. McGilvray, Attitude stabilization of a four-rotor aerial

robot, in Proc. of 43rd IEEE Conf. on Decision and Control, Atlantis,
Paradise Island, Bahamas, 2004.

[4] P. Castillo, A. Dzul, R. Lozano, Real-time stabilization and tracking
of a four-rotor mini rotorcraft, IEEE Trans. on Control Systems

Technology, VOL.12, No. 4, July 2004, pp. 510 - 516.
[5] H. Voos, Autonomous Systems Approach to UAVs, in Proc. of the 18th

Bristol International Conference on Unmanned Air Vehicle Systems,
Bristol, UK, 2003.

[6] J.R. Cloutier, “State-Dependent Riccati Equation Techniques: An
Overview”, Proc. of the 1997 American Control Conference, June
1997, Albuquerque, NM.

[7] Y. Zhang, S. Agrawal, P. Hemanshu, M. Piovoso, Optimal Control
using State Dependent Riccati Equation (SDRE) for a Flexible Cable
Transporter System with Arbitrarily Varying Lengths, Proc. of the

2005 IEEE Conference on Control Applications, Toronto, Canada,
August 2005, pp. 1063 - 1068.

[8] C. Willard, B. Randal, “Ensuring Stability of State-dependent Riccati
Equation Controllers Via Satisficing”, Proc. of the 41st IEEE Confer-

ence on Decision and Control, Las Vegas, Nevada USA, Dec. 2002,
pp. 2645-2650.

[9] P.K. Menon, T. Lam, L.S. Crawford, V.H. Cheng, “Real-time Compu-
tational Methods for SDRE Nonlinear Control of Missiles”, Proc. of

the 2002 American Control Conference, May 2002, Anchorage, AK.


