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Abstract. In this paper, the nonlinear non-Gaussian filters and smoothers which
are much less computational than the existing ones are proposed, where the sam-
pling techniques such as rejection sampling (RS), importance resampling (IR) and the
Metropolis-Hastings independence sampling (MH) are utilized. The existing density-
based nonlinear and non-Gaussian filters and smoothers utilize the marginal densities,
i.e., p(αt|Yt) for filtering and p(αt|YT ) for smoothing, but the algorithms proposed
in this paper are based on the joint densities, i.e., p(αt, αt−1|Yt) for filtering and
p(αt+1, αt|YT ) or p(αt+1, αt, αt−1|YT ) for smoothing. That is, in this paper, the ran-
dom draws of αt are generated from p(αt, αt−1|Yt) for filtering and p(αt+1, αt|YT ) or
p(αt+1, αt, αt−1|YT ) for smoothing. By generating the random draws from the joint
densities, much less computer-intensive algorithms on filtering and smoothing can
be obtained. Furthermore, taking into account possibility of structural changes and
outliers during the estimation period, the appropriately chosen sampling density is
possibly introduced into the suggested nonlinear non-Gaussian filtering and smooth-
ing procedures. Finally, through Monte Carlo simulation studies, the suggested filters
and smoothers are examined.

Key words and phrases: State Space Modeling, Filtering, Smoothing, Marginal
Density, Joint Density, Rejection Sampling, Importance Resampling, Metropolis-
Hastings Independence Sampling.

1. Introduction

Various nonlinear non-Gaussian filters and smoothers have been proposed for the
last decade in order to improve precision of the state estimates and reduce a computa-
tional burden. The state mean and variance are evaluated by generating random draws
directly from the filtering density or the smoothing density. Clearly, precision of the
state estimates is improved as number of random draws increases. Thus, the recent fil-
ters and smoothers have been developed by applying some sampling techniques such as
Gibbs sampling, rejection sampling (RS), importance resampling (IR), the Metropolis-
Hastings independence sampling (MH) and etc.

Carlin et al. (1992) and Carter and Kohn (1994, 1996) applied the Gibbs sampler
to some specific state space models, which are extended to more general state space
models by Geweke and Tanizaki (1999). The Gibbs sampler sometimes gives us the
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imprecise estimates of the state variables, depending on the underlying state space model
(see Carter and Kohn (1994, 1996)). Especially when the random variables are highly
correlated with each other, it is well known that convergence of the Gibbs sampler is
unacceptably slow. In the case of state space models, the transition equation represents
the relationship between the state variable αt and the lagged one αt−1. Accordingly, it
is clear that the state variable at present time has high correlation with that at past
time. As for the state space models, therefore, the Gibbs sampler is one of the sources
of imprecise state estimates. In this paper, unlike Carlin et al. (1992) and Carter and
Kohn (1994, 1996), the density-based recursive algorithms on filtering and smoothing
are discussed, where they are compared with respect to the three sampling methods, i.e.,
RS, IR and MH, although any sampling technique can be applied.

Gordon et al. (1993), Kitagawa (1996, 1998) and Kitagawa and Gersch (1996) pro-
posed the nonlinear non-Gaussian state space modeling by IR, which can be applied to
almost all the state space models. Both filtering and smoothing random draws are based
on the one-step ahead prediction random draws. In the case where the past information
is too different from the present sample, however, the obtained filtering and smoothing
random draws become unrealistic. To avoid this situation, in this paper we take an ap-
propriately chosen density as the sampling density for random number generation. Note
that Kong et al. (1994), Liu and Chen (1995, 1998) and Doucet et al. (2000) also utilized
the density other than the state estimation. In addition, the fixed-interval smoother pro-
posed by Kitagawa (1996) and Kitagawa and Gersch (1996) does not give us the exact
solution of the state estimate even when the number of random draws is large enough,
because the fixed-interval smoother suggested by Kitagawa (1996) is approximated by
the fixed-lag smoother. To improve these disadvantages, in this paper we propose the
fixed-interval smoother which yields the exact solution of the state estimate. As an
alternative smoother, furthermore, Kitagawa (1996) introduces the fixed-lag smoother
based on the two-filter formula, where forward and backward filtering are performed and
combined to obtain the smoothing density. The smoother based on the two-filter formula
is discussed in Appendix A.

Moreover, the RS filter and smoother have been developed by Tanizaki (1996, 1999),
Hürzeler and Künsch (1998) and Tanizaki and Mariano (1998). To implement RS for
random number generation, we need to compute the supremum in the acceptance prob-
ability, which depends on the underlying functional form of the measurement and tran-
sition equations. RS cannot be applied in the case where the acceptance probability is
equal to zero, i.e., when the supremum is infinity. Even if the supremum is finite, it
takes a lot of computational time when the acceptance probability is close to zero. To
improve the problems in rejection sampling, Liu, Chen and Wong (1998) suggested the
rejection controlled sequential importance sampling algorithm, where rejection sampling
and importance sampling are combined.

As computer progresses day by day, the computer-intensive nonlinear non-Gaussian
estimators have been developed. However, it is clear that less computational estimators
are preferred. To reduce the computational disadvantages for filtering and smoothing, we
consider generating random draws from the joint densities (i.e., p(αt, αt−1|Yt) for filtering
and p(αt+1, αt|YT ) or p(αt+1, αt, αt−1|YT ) for smoothing, where the notations are defined
in Section 2.1), not from the marginal densities (i.e., p(αt|Yt) for filtering and p(αt|YT )
for smoothing). A lot of filters have been proposed based on the marginal density and
accordingly the existing filters are computationally too intensive. Kong et al. (1994)
and Liu and Chen (1995) also suggested drawing from the joint density of the state
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variable and the auxiliary variable. However, use of the auxiliary variable yields a very
computer-intensive filtering algorithm. Therefore, for filtering, we consider drawing from
the joint density of the state variables, i.e., (αt, αt−1), given Yt. Furthermore, in a lot of
literature on the IR and RS procedures, smoothing is not investigated because smoothing
is much more computer-intensive than filtering. Dealing with the joint densities of the
state variables yields less computational procedures and therefore we can obtain not only
filtering but also smoothing in the IR and RS procedures. In this paper, thus, we propose
much less computational nonlinear non-Gaussian filters and smoothers using the joint
densities of the state variables, where RS, IR or MH may be utilized for random number
generation.

2. Preliminaries

2.1 State Space Model

Kitagawa (1987), Harvey (1989), Kitagawa and Gersch (1996) and Tanizaki (1996,
2000) discuss the nonlinear non-Gaussian state space models, which are described by the
following two equations:

(Measurement equation) yt = ht(αt, εt),(2.1)

(Transition equation) αt = ft(αt−1, ηt),(2.2)

where yt represents the observed data at time t while αt denotes the state vector at time
t which is unobservable. εt and ηt are mutually independently distributed. ht(·, ·) and
ft(·, ·) are assumed to be known. αt|s ≡ E(αt|Ys) is called prediction if t > s, filtering
if t = s and smoothing if t < s, where Ys denotes the information set up to time s,
i.e., Ys = {y1, y2, · · · , ys}. Moreover, there are three kinds of smoothing estimators, i.e.,
the fixed-point smoothing αL|t, the fixed-lag smoothing αt|t+L and the fixed-interval
smoothing αt|T for fixed L and fixed T . In this paper, we focus on the filter and the
fixed-interval smoother, i.e., αt|s for s = t, T .

Define py(yt|αt) and pα(αt|αt−1) by the density functions derived from the mea-
surement equation (2.1) and the transition equation (2.2). The density-based filtering
algorithm is given by:

(Prediction equation) p(αt|Yt−1) =

∫
pα(αt|αt−1)p(αt−1|Yt−1)dαt−1,(2.3)

(Update equation) p(αt|Yt) =
py(yt|αt)p(αt|Yt−1)∫

py(yt|αt)p(αt|Yt−1)dαt
,(2.4)

for t = 1, 2, · · · , T . The initial condition is given by: p(α1|Y0) =
∫

pα(α1|α0)pα(α0)dα0 if
α0 is stochastic and p(α1|Y0) = pα(α1|α0) otherwise. pα(α0) denotes the unconditional
density of α0. The filtering algorithm takes the following two steps: (i) from equation
(2.3), p(αt|Yt−1) is obtained given p(αt−1|Yt−1), and (ii) from equation (2.4), p(αt|Yt) is
derived given p(αt|Yt−1). Thus, p(αt|Yt) is recursively obtained for t = 1, 2, · · · , T .

The density-based smoothing algorithm utilizes both the one-step ahead prediction
density p(αt+1|Yt) and the filtering density p(αt|Yt), which is represented by:

p(αt|YT ) = p(αt|Yt)

∫
p(αt+1|YT )pα(αt+1|αt)

p(αt+1|Yt)
dαt+1,(2.5)
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for t = T − 1, T − 2, · · · , 1. Given p(αt|Yt) and p(αt+1|Yt), the smoothing algorithm
represented by equation (2.5) is a backward recursion from p(αt+1|YT ) to p(αt|YT ).

For the fixed-interval smoother, Kitagawa (1996) developed an alternative smooth-
ing algorithm, which is based on the two-filter formula. This alternative algorithm is
discussed in Appendix A.

Let g(·) be a function, e.g., g(αt) = αt for mean or g(αt) = (αt − αt|s)(αt − αt|s)
′

for variance. Given p(αt|Ys), the conditional expectation of g(αt) given Ys is represented
by:

E
(
g(αt)|Ys

)
=

∫
g(αt)p(αt|Ys)dαt.(2.6)

When we have the unknown parameters in equations (2.1) and (2.2), the following
likelihood function is maximized with respect to the parameters:

p(YT ) =
T∏

t=1

p(yt|Yt−1) =
T∏

t=1

(∫
p(yt|αt)p(αt|Yt−1)dαt

)
.(2.7)

Since p(yt|Yt−1) in (2.7) corresponds to the denominator in equation (2.4), we do not
need extra computation for evaluation of the likelihood function. Thus, the unknown
parameter is obtained by maximum likelihood estimation (MLE). As for an alternative
approach to estimate the unknown parameter, Kitagawa (1998) suggested taking the
unknown parameter as the state variable, which is called the self-organizing filter.

Our goal is to obtain the expectation in (2.6), which is evaluated generating random
draws of αt. Therefore, in the next section, we overview some sampling techniques.

2.2 Sampling Techniques

We want to generate random draws from p(x), called the target density, but we
consider the case where it is hard to sample from p(x). Suppose that it is easy to
generate a random draw from another density p∗(x), called the sampling density. In
this case, random draws of x from the target density p(x) are generated by utilizing
the random draws sampled from the sampling density p∗(x). Let xi be the i-th random
draw of x generated from the target density p(x). We consider generating x1, x2, · · ·, xN

from the target density p(x). Suppose that q(x) is proportional to the ratio of the target
density and the sampling density, i.e., q(x) ∝ p(x)/p∗(x). Then, the target density is
rewritten as: p(x) ∝ q(x)p∗(x).

Based on q(x), the acceptance probability is computed. The random draw is gener-
ated from the sampling density p∗(x). Using the acceptance probability based on q(x),
we can obtain the random draw from the target density p(x). Depending on the struc-
ture of the acceptance probability, we have three kinds of sampling techniques, i.e., RS,
IR and MH. Thus, to generate random draws of x from the target density p(x), the
functional form of q(x) should be known and random draws have to be easily generated
from the sampling density p∗(x).

Now we discuss the three sampling techniques, which are the random number gen-
eration methods in the case where it is not easy to generate random draws directly from
the target density. See Liu (1996) for a comparison of the three sampling methods.
For all the three sampling techniques, the sampling density p∗(x) is utilized, i.e., xi is
generated through the sampling density p∗(x).
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2.2.1 Rejection Sampling (RS)

Let x∗ be a random draw of x generated from the sampling density p∗(x). Define
the acceptance probability as: ω(x) = q(x)/ sup

z
q(z), where the supremum is assumed

to be finite. N random draws of x from the target density p(x) are obtained as follows:
(i) generate x∗ from the sampling density p∗(x) and compute ω(x∗), (ii) set xi = x∗

with probability ω(x∗) and go back to (i) otherwise, and (iii) repeat (i) and (ii) for
i = 1, 2, · · · , N .

RS is the most efficient sampling method in the sense of precision of the random
draws, because using RS we can generate mutually independently distributed random
draws. However, in order to apply RS, we need to obtain the supremum of q(x). If
the supremum is infinite, the acceptance probability ω(x) is zero and accordingly the
candidate x∗ is never accepted in Steps (i) and (ii). Let NR be the average number of
the rejected random numbers. We need 1 + NR random draws in average to generate
one random number from the target density p(x). In other words, the rejection rate is
given by 1/(1 + NR) in average. Therefore, to obtain N random draws from the target
density p(x), we have to generate N(1 + NR) random draws from the sampling density
p∗(x). See, for example, Boswell, Gore, Patil and Taillie (1993), O’Hagan (1994) and
Geweke (1996) for rejection sampling.

To examine the condition that ω(x) is greater than zero, consider the case where p(x)
and p∗(x) are distributed as N(µ, σ2) and N(µ∗, σ

2
∗), respectively. Then, σ2

∗ > σ2 can
be derived for existence of the supremum, which implies that the sampling density p∗(x)
should be more broadly distributed than the target density p(x). Thus, it is known that
RS has the disadvantages: we need to compute the supremum in ω(x), which sometimes
does not exist, and it takes a long time in the case where ω(·) is close to zero even if the
supremum exists.

2.2.2 Importance Resampling (IR)

Let x∗
i be the i-th random draw of x generated from the sampling density p∗(x). The

acceptance probability is defined as: ω(x∗
i ) = q(x∗

i )/
∑N

j=1 q(x∗
j ). To obtain N random

draws from the target density p(x), we perform the following procedure: (i) generate
x∗

j from the sampling density p∗(x) and compute ω(x∗
j ) for all j = 1, 2, · · · , N , (ii) take

xi = x∗
j with probability ω(x∗

j ), and (iii) repeat (ii) for i = 1, 2, · · · , N .

In Step (ii), practically we need to generate a uniform random draw between zero
and one, denoted by u, and set xi = x∗

j when Ωj−1 ≤ u < Ωj , where Ωj ≡ Ωj−1 + ω(x∗
j )

and Ω0 ≡ 0. For example, see Smith and Gelfand (1992) for the resampling procedure.

For precision of the random draws, IR is inferior to RS under the assumption for
RS that the supremum in the acceptance probability exists. According to IR, when we
have N different random draws from the sampling density, we pick up one of them with
the corresponding probability weight. Therefore, some of the random draws have the
exactly same values for IR, while all the random draws take the different values for RS.
In other words, to obtain N random draws from the target density p(x), IR requires just
N random draws from the sampling density p∗(x), but RS needs more than N random
draws from the sampling density p∗(x). Remember that in order for RS to generate one
random draw from the target density p(x) we need one accepted random draw and some
rejected random draws from the sampling density p∗(x).

2.2.3 Metropolis-Hastings Independence Sampling (MH)

Let us define the acceptance probability by: ω(xi−1, x
∗) = min

(
q(x∗)/q(xi−1), 1

)
. N

random draws of x from the target density p(x) are generated as: (i) take the initial value
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of x as x−M , (ii) generate x∗ from the sampling density p∗(x) and compute ω(xi−1, x
∗),

(iii) set xi = x∗ with probability ω(xi−1, x
∗) and xi = xi−1 otherwise, and (iv) repeat

(ii) and (iii) for i = −M + 1,−M + 2, · · · , N .
For choice of the sampling density p∗(x), the sampling density should not have too

large variance and too small variance, compared with the target density. The sampling
density p∗(x) should be chosen so that the chain travels over the support of the target
density p(x). It is also possible to take p∗(x

∗) = p∗(x
∗|xi−1). See, for example, Chib

and Greenberg (1995) and Geweke (1996) for MH.
Note as follows. For MH, x1 is taken as a random draw of x from the target density

p(x) for sufficiently large M . To obtain N random draws, thus we need to generate
M + N random draws. Moreover, clearly we have Cov(xi−1, xi) > 0, because xi is
generated based on xi−1. Therefore, for precision of the random draws, MH gives us the
worst random number of the three sampling methods.

As an alternative random number generation method to avoid the positive correla-
tion, we can perform the case of N = 1 in the above procedures (i) – (iv) N times in
parallel, taking different initial values for x−M . In this case, we need to generate M + 1
random numbers to obtain one random draw from the target density p(x). That is, N
random draws from the target density p(x) are based on N(1 + M) random draws from
the sampling density p∗(x). Thus, we can obtain mutually independently distributed
random draws. For precision of the random draws, the alternative MH is similar to RS.
However, this alternative method is too computer-intensive, compared with the above
procedures (i) – (iv), which takes more time RS in the case of M > NR. In simulation
studies of Section 4., we do not utilize this alternative MH.

3. Use of the Sampling Techniques

As discussed in Section 2.2, in order to apply the sampling techniques, the filtering
density and the smoothing density have to be written as the form p(x) ∝ q(x)p∗(x),
where q(x) is the known function and p∗(x) denotes the sampling density.

Let αi,t|s be the i-th random draw of αt from p(αt|Ys). Using the sampling tech-
niques such as RS, IR and MH, in this section we consider generating αi,t|s. If the
random draws (α1,t|s, α2,t|s, · · ·, αN,t|s) for s = t, T and t = 1, 2, · · · , T are available,

equation (2.6) is evaluated by E
(
g(αt)|Ys

)
≈ (1/N)

∑N
i=1 g(αi,t|s). Similarly, equation

(2.7) is given by:

p(YT ) ≈
T∏

t=1

(
1

N

N∑

i=1

p(yt|αi,t|t−1)

)
,(3.8)

where αi,t|t−1 = ft(αi,t−1|t−1, ηi,t) and ηi,t denotes the i-th random draw of ηt. Utilizing
equation (3.8), MLE is performed for estimation of the unknown parameter.

3.1 Filtering
Based on (α1,t−1|t−1, α2,t−1|t−1, · · ·, αN,t−1|t−1), an attempt is made to generate

(α1,t|t, α2,t|t, · · ·, αN,t|t). Depending on whether the initial value α0 is stochastic or not,
αi,0|0 for i = 1, 2, · · · , N are assumed to be generated from pα(α0) or to be fixed for all
i.

We have two representations on the filtering density (2.4). First, as shown from
equation (2.4), p(αt|Yt) is immediately rewritten as follows:

p(αt|Yt) ∝ q1(αt)p(αt|Yt−1),(3.9)
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where q1(αt) is given by:
q1(αt) ∝ py(yt|αt).

In this case, p∗(x) and q(x) in Section 2.2 correspond to p(αt|Yt−1) and q1(αt), respec-
tively. q1(αt) is known because py(yt|αt) is obtained from the measurement equation
(2.1), and given αi,t−1|t−1 for i = 1, 2, · · · , N a random draw of αt from p(αt|Yt−1) is
easily generated through the transition equation (2.2). Accordingly, using the sampling
techniques shown in Section 2.2, αi,t|t can be generated based on αi,t|t−1. Note that
Gordon et al. (1993), Kitagawa (1996, 1998) and Kitagawa and Gersch (1996) proposed
the IR filter based on (3.9).

When we have a structural change or an outlier at time t, the present sample p(yt|αt)
is far from the one-step ahead prediction density p(αt|Yt−1). In this case, for IR and MH
the random draws of αt from p(αt|Yt) become unrealistic because the reasonable random
draws of αt cannot be obtained from the sampling density p(αt|Yt−1), and for RS it takes
a lot of time computationally because the acceptance probability becomes very small.
In addition, when a random draw of ηt is not easily obtained, it might be difficult to
generate a random draw of αt from p(αt|Yt−1). As for the second representation of the
filtering density, therefore, we explicitly introduce the importance sampling density of
αt, i.e., p∗(αt|αt−1), to obtain more plausible random draws. Furthermore, to reduce
computational disadvantages, we consider generating random draws of αt from the joint
density p(αt, αt−1|Yt). Substituting equation (2.3) into equation (2.4) and eliminating
the integration with respect to αt−1, the joint density of αt and αt−1 given Yt, i.e.,
p(αt, αt−1|Yt), is written as:

p(αt, αt−1|Yt) ∝ q2(αt, αt−1)p∗(αt|αt−1)p(αt−1|Yt−1),(3.10)

where q2(αt, αt−1) is represented by:

q2(αt, αt−1) ∝
py(yt|αt)pα(αt|αt−1)

p∗(αt|αt−1)
.

In equation (3.10), p∗(αt|αt−1)p(αt−1|Yt−1) is taken as the sampling density. When
N random draws of αt−1 given Yt−1, i.e., αi,t−1|t−1 for i = 1, 2, · · · , N , are available,
generating a random draw of αt−1 from p(αt−1|Yt−1) is equivalent to choosing one
out of the N random draws (α1,t−1|t−1, α2,t−1|t−1, · · ·, αN,t−1|t−1) with equal prob-
ability weight. Given αi,t−1|t−1, a random draw of αt (i.e., α∗

i,t) is generated from
p∗(αt|αi,t−1|t−1). Thus, since the functional form of q2(αt, αt−1) is known and the ran-
dom draw of (αt, αt−1) is generated from the sampling density p∗(αt|αt−1)p(αt−1|Yt−1),
the random draws of (αt, αt−1) from the target density p(αt, αt−1|Yt) can be obtained
through RS, IR or MH. The i-th random draw of (αt, αt−1) from p(αt, αt−1|Yt) is de-
noted by (αi,t|t, αi,t−1|t). The random draw which we want at this stage is αi,t|t, not
αi,t−1|t. Note that a random draw of αt from p(αt, αt−1|Yt) is equivalent to that of
αt from p(αt|Yt). Furthermore, we point out that the appropriately chosen sampling
density might be taken as p∗(αt|αt−1) = p∗(αt), which does not depend on αt−1.

To obtain the marginal density p(αt|Yt) based on (3.10), we have to integrate (3.10)
with respect to αt−1. The marginal density p(αt|Yt) based on (3.10) reduces to p(αt|Yt) ∝

(1/N)
∑N

j=1 q2(αt, αj,t−1|t−1)p∗(αt|αj,t−1|t−1). Therefore, random number generation
from the marginal density p(αt| Yt) based on (3.10) is N times as computer-intensive
as that from the joint density p(αt, αt−1|Yt). This approach is adopted in numerous
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literature, e.g., Hürzeler and Künsch (1998), Liu and Chen (1998), Tanizaki (1996, 1999,
2000) and Tanizaki and Mariano (1998). Clearly, use of p(αt, αt−1|Yt) leads to much
reduction in computational burden, rather than evaluation of

∫
p(αt, αt−1|Yt)dαt−1. For

RS, we need to compute the supremum of q2 with respect to αt and αt−1. Therefore,
sometimes, RS is not feasible if (3.10) is utilized. For (3.10), IR or MH is recommended,
rather than RS.

3.2 Smoothing
Given (α1,t+1|T , α2,t+1|T , · · ·, αN,t+1|T ), we consider generating (α1,t|T , α2,t|T , · · ·,

αN,t|T ). Note that the smoothing random draws at time T are equivalent to the filtering
random draws at time T , where both are represented by αi,T |T .

Based on equation (2.5), we have three representations on the smoothing density.
By eliminating the integration with respect to αt+1 from equation (2.5), the first and
second representations of p(αt+1, αt|YT ) are as follows:

p(αt+1, αt|YT ) ∝ q3(αt+1, αt)p(αt|Yt)p(αt+1|YT )(3.11)

∝ q4(αt+1, αt)p(αt|Yt−1)p(αt+1|YT ),(3.12)

where q3 and q4 are represented by:

q3(αt+1, αt) ∝
pα(αt+1|αt)

p(αt+1|Yt)
,

q4(αt+1, αt) ∝ q1(αt)q3(αt+1, αt) ∝
py(yt|αt)pα(αt+1|αt)

p(αt+1|Yt)
.

In equation (3.12), p(αt|Yt) in equation (3.11) is replaced by equation (3.9). For evalu-
ation of p(αt+1|Yt) in q3(αt+1, αt) and q4(αt+1, αt) of equations (3.11) and (3.12), from
equation (2.3) we can use the following Monte Carlo integration:

p(αt+1|Yt) =

∫
pα(αt+1|αt)p(αt|Yt)dαt(3.13)

≈
1

N ′

N ′∑

j=1

pα(αt+1|αj,t|t),

where N ′ is not necessarily equal to N . To reduce the computational disadvantage, it
might be appropriate for N ′ to take the number which is less than N . Because α1,t|t,
α2,t|t, · · ·, αN,t|t are in random order, the first N ′ random draws may be chosen for
evaluation of the integration in equation (3.13). In any case, smoothing is N ′ times as
computer-intensive as filtering, because of evaluation of p(αt+1|Yt). Thus, at each time
period t, the order of computation is given by N × N ′ for smoothing (remember that
the order of computation is N for filtering).

In equation (3.11), the sampling density is given by p(αt+1|YT )p(αt|Yt). That is,
the random draw of αt is sampled from p(αt|Yt), while that of αt+1 is from p(αt+1|YT ).
Similarly, in equation (3.12), the sampling density becomes p(αt+1|YT )p(αt|Yt−1). Thus,
(3.11) is different from (3.12) with respect to the sampling density of αt, i.e., the former
is based on p(αt|Yt) while the latter is p(αt|Yt−1). From equation (3.11) or (3.12), we
can generate the random draw of (αt+1, αt) from p(αt+1, αt|YT ), which is denoted by
(αi,t+1|T , αi,t|T ). The random draw which we need at this stage is αi,t|T because we
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already have αi,t+1|T . Thus, given (α1,t+1|T , α2,t+1|T , · · ·, αN,t+1|T ), αi,t|T is generated.
Repeating the procedure for i = 1, 2, · · · , N , we can obtain (α1,t|T , α2,t|T , · · ·, αN,t|T ) by
the backward recursion.

Again, we compare the marginal density p(αt|YT ) and the joint density p(αt+1, αt|
YT ) from computational point of view. Random number generation from p(αt|YT ) yields
N times more computational burden than that from p(αt+1, αt|YT ) shown in equa-

tion (3.11) or (3.12), because we have to compute p(αt|YT ) ∝ (1/N)
∑N

j=1 q3(αj,t+1|T ,

αt)p(αt|Yt) from equation (3.11) and p(αt|YT ) ∝ (1/N)
∑N

j=1 q4(αj,t+1|T , αt)p(αt|Yt−1)
from equation (3.12). Therefore, use of p(αt+1, αt|YT ) is much less computer-intensive
than that of p(αt|YT ).

In general, filtering is approximately close to smoothing when t approaches T (i.e.,
the end point), because Yt approaches YT as t goes to T . Therefore, in order to obtain the
smoothing random draws around the end point, it might be plausible to take p(αt|Yt) for
(3.11) and p(αt|Yt−1) for (3.12) as the sampling density of αt. However, when t goes to
the starting point, possibly p(αt|Yt) or p(αt|Yt−1) is quite different from p(αt|YT ). In the
third representation, therefore, another sampling density p∗(αt|αt−1, αt+1) is introduced
to improve the smoothing random draws especially around the starting point. Substitut-
ing equation (2.3) into equation (2.5) and eliminating the two integrations with respect to
αt+1 and αt−1, the joint density of αt+1, αt and αt−1 given YT , i.e., p(αt+1, αt, αt−1|YT ),
is obtained as:

p(αt+1, αt, αt−1|YT )(3.14)

∝ q5(αt+1, αt, αt−1)p(αt−1|Yt−1)p∗(αt|αt−1, αt+1)p(αt+1|YT ),

where q5 is given by:

q5(αt+1, αt, αt−1) ∝
py(yt|αt)pα(αt|αt−1)pα(αt+1|αt)

p∗(αt|αt−1, αt+1)p(αt+1|Yt)
.

In equation (3.14), the sampling density is taken as p(αt+1|YT )p∗(αt|αt−1, αt+1)p(αt−1|
Yt−1). After random draws of αt+1 and αt−1 are mutually independently generated
from p(αt+1|YT ) and p(αt−1|Yt−1), respectively, we may generate a random draw of αt

from another sampling density p∗(αt|αt−1, αt+1). That is, first, αi,t+1|T and αi,t−1|t−1

are generated from p(αt+1|YT ) and p(αt−1|Yt−1), and second, α∗
i is generated from

p(αt|αi,t−1|t−1, αi,t+1|T ). Note that a random draw of αt from p(αt|YT ) is equivalent
to that of αt from p(αt+1, αt, αt−1|YT ). That is, (αi,t+1|T , αi,t|T , αi,t−1|T ) is generated
from equation (3.14), but the random draw which we want is αi,t|T because αi,t+1|T

is already available and αi,t−1|T can be obtained at the next stage. Moreover, note
that p∗(αt|αt−1, αt+1) = p∗(αt) is also a possible candidate of the appropriately chosen
sampling density, where the sampling density is not a function of αt+1 and αt−1.

3.3 Discussion
Both (3.9) and (3.10) are related to filtering while (3.11), (3.12) and (3.14) corre-

spond to smoothing. Using the sampling techniques such as RS, IR and MH, the random
draws of αt are generated from (3.9) – (3.12) and (3.14). The correspondence between
Sections 2.2 and 3. is summarized in Table 1, where x denotes the random variable,
p(x) is the target density and q(x) represents the ratio of the kernel and the sampling
density (see Section 2.2). Our purpose is to generate random draws of αt from each
target density.
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Table 1. Correspondence between Section 2.2 and Densities (3.9) – (3.12) and (3.14)

x p(x) q(x)

(3.9) αt p(αt|Yt) py(yt|αt)

(3.10) (αt, αt−1) p(αt, αt−1|Yt)
py(yt|αt)pα(αt|αt−1)

p∗(αt|αt−1)

(3.11) (αt+1, αt) p(αt+1, αt|YT )
pα(αt+1|αt)

p(αt+1|Yt)

(3.12) (αt+1, αt) p(αt+1, αt|YT )
py(yt|αt)pα(αt+1|αt)

p(αt+1|Yt)

(3.14) (αt+1, αt, αt−1) p(αt+1, αt, αt−1|YT )
py(yt|αt)pα(αt|αt−1)pα(αt+1|αt)

p∗(αt|αt−1, αt+1)p(αt+1|Yt)

The IR filter which uses (3.9) has been already proposed by Gordon et al. (1993),
Kitagawa (1996, 1998) and Kitagawa and Gersch (1996) and accordingly it is not the
new proposal in this paper. However, for comparison with the other estimators, we have
discussed the IR filter based on (3.9) in Section 3.. The IR filter based on (3.10) and
the IR smoothers with (3.11), (3.12) and (3.14) are proposed in this paper to improve
the existing procedures from computational point of view. In this paper, the filtering
and smoothing procedures with much less computational burden than the existing ones
are derived by utilizing the joint density. The RS filters and smoothers proposed by
Tanizaki (1996, 1999), Tanizaki and Mariano (1998) are substantially extended to much
less computational estimators. Moreover, in this paper the Markov chain Monte Carlo
smoothers discussed in Geweke and Tanizaki (1999) are developed without using the
Gibbs sampler which is source of imprecise estimators. In addition, filtering is not
discussed in Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999), but the
MH filters are also discussed in this paper

The advantages of RS are that (i) we can generate random numbers from any density
function when the supremum in the acceptance probability exists and (ii) precision of
the random draws does not depend on choice of the sampling density (computational
time depends on choice of the sampling density). For RS, however, the supremum has
to be computed. We sometimes have the case where the supremum is not finite or the
case where it is not easy to compute the supremum. Practically, it is difficult to obtain
the supremums of q2, q3, q4 and q5 except for special cases. We cannot implement RS
in this case. However, we can expect that there exist the supremums based on (3.9) in
almost all cases. Therefore, applying RS to (3.9) might be recommended, rather than
(3.10) – (3.12) and (3.14).

For all the three sampling techniques, the state estimate goes to the true value as
N increases. However, under the same number of random draws, it is easily expected
that RS gives us the best estimates of the three sampling techniques while MH yields the
worst estimates. Using RS we can generate mutually independently distributed random
draws, but the feature of MH is that a random draw is correlated with the next random
draw (or the last random draw). See Section 2.2 for the three sampling techniques.

A rough measure of computing time is shown in Table 2, which represents the
number of actually generated random draws for each time period t. In RS, NR denotes
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Table 2. Order of Computing Time

Sampling F(8) and F(9) S(10) – S(12)

Method

RS N(1 + NR) N(1 + NR) × N ′

IR N N × N ′

MH N + M (N + M) × N ′

MH∗ N(1 + M) N(1 + M) × N ′

the average number of the rejected random draws, which implies that in average we need
NR rejected random numbers to generate one random draw from the target density. NR

depends on the functional form of both target and sampling densities. If the supremum
of q(x) in Section 2.2 is large, the computing time increases because the acceptance rate
ω(x) is small and NR becomes large. MH∗ denotes the alternative MH in which the
generated random draws are mutually uncorrelated, as discussed in Section 2.2,

Furthermore, it might be possible to use different sampling techniques for filtering
and smoothing. In other words, possibly we may obtain the RS filter based on (3.9)
and the IR smoother based on (3.11), where computational burden can be reduced by
using IR (3.11) for smoothing. Moreover, for different time period, we may combine
(3.9) and (3.10) for filtering and (3.11), (3.12) and (3.14) for smoothing. To show an
example, suppose that we have a structural change or an outlier at time period t′, which
implies that p(αt′ |Yt′−1) is far from p(αt′ |Yt′). In this case, if p(αt′ |Yt′−1) in equation
(3.9) is taken as the sampling density, for IR and MH we cannot obtain the plausible
random draws of αt′ given Yt′ and for RS we extremely take a lot of computational time
to have the random draws of αt′ given Yt′ . Therefore, as shown in equation (3.10), we
can introduce another sampling density p∗(αt′ |αt′−1) at time t′ to avoid this problem.
Depending on the situation which we have, we can switch the sampling density at time
t′ from p(αt′ |Yt′−1) in (3.9) to p∗(αt′ |αt′−1)p(αt′−1|Yt′−1) in (3.10). By combining differ-
ent sampling techniques between filtering and smoothing or utilizing different sampling
densities at different time periods, it might be expected that the obtained filtering and
smoothing solutions give us more precise and less computational state estimates.

In addition, it is also useful for filtering to take another sampling density p∗(αt|αt−1)
when it is not easy to generate a random draw of αt from p(αt|Yt−1). That is, even though
the density function of ηt is known, we have the case where it is difficult to obtain random
draws of ηt. In this case, we can easily deal with this problem by utilizing p∗(αt|αt−1).

Thus, the filtering and smoothing procedures suggested in this paper is very flexible
and easy to use in practice.

4. Monte Carlo Studies

4.1 Simulation Procedure

In this section, we examine the filters and smoothers suggested in this paper. T =
100 and N = 200, 500, 1000 are taken. See Appendix B for a discussion on the number of
random draws, i.e., N . The simulation procedure is: (i) generating random numbers of
εt and ηt for t = 1, 2, · · · , T , compute a set of data (yt, αt) from equations (2.1) and (2.2),
(ii) given the data set, obtain the filtering and smoothing estimates, and (iii) repeat (i)
and (ii) G times and compare the root mean square error (RMSE), defined as: RMSE =
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(1/T )
∑T

t=1 MSE
1/2
t|s for s = t, T , where MSEt|s = (1/G)

∑G
g=1 (α

(g)
t|s− α

(g)
t )2 and αt|s

takes the state estimate while αt denotes the artificially simulated state value in (i). The
superscript (g) denotes the g-th simulation run and G = 1000 is taken. Simulations I – V
are univariate cases while Simulation VI is a multivariate case. In Simulations I – III and
V, εt, ηt and α0 are assumed to be mutually independently distributed as: εt ∼ N(0, 1),
ηt ∼ N(0, 1) and α0 ∼ N(0, 1). The true parameter value is set to be δ = 0.5, 0.9, 1.0 in
Simulation I and δ = 0.5, 0.9 in Simulations II and III.

Simulation I (Linear and Normal Model): Consider the univariate system: yt =
αt +εt and αt = δαt−1 +ηt.

Simulation II (ARCH Model): The model is given by: yt = αt +εt and αt = (δ0

+δα2
t−1)

1/2ηt for δ0 > 0 and 0 ≤ δ < 1. We take δ0 = 1− δ, which implies that the
unconditional variance of αt is normalized to be one. (2.1) consists of the ARCH(1)
process αt and the error term εt. See Engle (1982) and Bollerslev et al. (1994) for
the ARCH model.

Simulation III (Stochastic Volatility Model): Take the state space model: yt =
exp(0.5αt)εt and αt = δαt−1 +ηt for 0 ≤ δ < 1. See Ghysels et al. (1996) for the
stochastic volatility model.

Simulation IV (Nonstationary Growth Model): The system is: yt = α2
t /20 +εt

and αt = αt−1/2 +25αt−1 /(1 + α2
t−1) +8 cos(1.2(t − 1)) +ηt, where εt, ηt and

α0 are mutually independently distributed as: εt ∼ N(0, 1), ηt ∼ N(0, 10) and
α0 ∼ N(0, 10). This model is examined in Kitagawa (1987, 1996, 1998) and Carlin
et al. (1992), where the Gibbs sampler suggested by Carlin et al. (1992) does not
work at all (see, for example, Tanizaki (2000)).

Simulation V (Structural Change): The data generating process is given by: yt

= dt + αt +εt and αt = αt−1 +ηt, but the estimated system is: yt = αt +εt and
αt = αt−1 +ηt, where dt = 1 for t = 21, 22, · · · , 40, dt = −1 for t = 61, 62, · · · , 80
and dt = 0 otherwise. This model corresponds to the case where the sudden shifts
occur at time periods 21, 41, 61 and 81.

Simulation VI (Bivariate Non-Gaussian Model): We consider the following bi-
variate state space model: yt = α1txt +α2t +εt and αt = αt−1 +ηt, where αt =
(α1t, α2t)

′ and ηt = (η1t, η2t)
′. Each density is assumed to be: εt ∼ Logistic (i.e.,

the logistic cumulative distribution function is given by: F (x) = (exp(−x)+1)−1),
η1t ∼ N(0, 1), η2t ∼ t(3), and xt ∼ U(0, 1). For the initial value α0 = (α10, α20)

′,
we take the assumptions that α10 ∼ N(0, 1) and α20 ∼ t(3). Moreover, εt, η1t, η2t,
xt, α10 and α20 are assumed to be mutually independent.

4.2 Results and Discussion

The results are in Tables 3 – 7, where δ in Simulations I – III is assumed to be
known. The values in each table represent the RMSEs defined above. The small RMSE
indicates a good estimator, because RMSE represents a measure of precision of the state
estimates. It might be expected that under the same number of random draws RS shows
the best performance and MH indicates the worst estimator. RMSE decreases as the
number of random draws (i.e., N) increases, because the simulation errors disappear as N
goes to infinity. For all the tables, F and S denote filtering and smoothing, respectively.

In Table 3, F(3.9) shows the RMSE obtained from the filtering estimates based on
(3.9), while S(3.11)+F(3.9) represents the RMSE from the smoothing estimates based
on (3.11) with filtering density (3.9). As shown in Table 3, the filtering estimates are
more volatile than the smoothing estimates, because smoothing uses more information
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Table 3. F(3.9) and S(3.11)+F(3.9)

Simu- F(3.9) S(3.11)+F(3.9)

lation δ N RS IR MH RS IR MH

200 0.7305 0.7328 0.7368 0.7088 0.7101 0.7170

0.5 500 0.7293 0.7301 0.7316 0.7065 0.7069 0.7096

1000 0.7289 0.7293 0.7301 0.7058 0.7060 0.7077

200 0.7747 0.7782 0.7840 0.6880 0.6915 0.7017

I 0.9 500 0.7733 0.7743 0.7768 0.6851 0.6867 0.6912

1000 0.7729 0.7735 0.7747 0.6844 0.6851 0.6874

200 0.7881 0.7910 0.7972 0.6769 0.6806 0.6911

1.0 500 0.7865 0.7875 0.7908 0.6738 0.6751 0.6809

1000 0.7861 0.7867 0.7876 0.6730 0.6743 0.6764

200 0.6894 0.6944 0.6999 0.6815 0.6861 0.6941

0.5 500 0.6882 0.6907 0.6930 0.6794 0.6815 0.6852

II 1000 0.6877 0.6889 0.6901 0.6783 0.6795 0.6811

200 0.5346 0.5475 0.5505 0.5168 0.5338 0.5382

0.9 500 0.5325 0.5389 0.5399 0.5140 0.5223 0.5239

1000 0.5322 0.5347 0.5376 0.5135 0.5170 0.5202

200 0.9348 0.9360 0.9396 0.9063 0.9084 0.9149

0.5 500 0.9332 0.9339 0.9347 0.9031 0.9036 0.9068

III 1000 0.9327 0.9329 0.9338 0.9022 0.9024 0.9035

200 1.1087 1.1105 1.1188 0.9295 0.9419 0.9547

0.9 500 1.1064 1.1067 1.1110 0.9249 0.9319 0.9370

1000 1.1054 1.1054 1.1076 0.9233 0.9277 0.9299

200 4.6446 4.8462 5.0560 4.2119 4.3384 4.4870

IV 500 4.6388 4.7316 4.8166 4.2101 4.3040 4.2727

1000 4.6377 4.6787 4.7358 4.2101 4.3179 4.2453
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Table 3. F(3.9) and S(3.11)+F(3.9) — Continued

Simu- F(3.9) S(3.11)+F(3.9)

lation δ N RS IR MH RS IR MH

200 0.8683 0.8841 0.8922 0.6998 0.7214 0.7366

V 0.9 500 0.8667 0.8735 0.8775 0.6961 0.7047 0.7140

1000 0.8662 0.8699 0.8719 0.6951 0.7000 0.7051

200 0.8763 0.8961 0.9069 0.6868 0.7121 0.7286

1.0 500 0.8745 0.8827 0.8876 0.6833 0.6936 0.7027

1000 0.8739 0.8789 0.8820 0.6815 0.6881 0.6932

200 2.8347 2.9340 3.1353 2.2318 2.5645 2.6803

α1t 500 2.7993 2.8585 2.9570 2.1540 2.4692 2.3945

VI 1000 2.7880 2.8303 2.8888 2.1083 2.4009 2.2837

200 1.9553 2.1047 2.2035 1.5639 1.8401 1.9011

α2t 500 1.9290 2.0229 2.0812 1.5209 1.7340 1.7167

1000 1.9220 1.9893 2.0227 1.5004 1.6869 1.6333

Table 4. Number of Rejections (NR) in RS: N = 1000

Simu- F(3.9) S(3.11)

lation δ

0.5 3.97 2.69

I 0.9 4.25 3.15

1.0 4.36 3.31

II 0.5 4.64 0.71

0.9 4.98 1.14

III 0.5 5.76 2.82

0.9 6.07 3.76

IV 12.87 95.47

V 0.9 13.11 16.01

1.0 13.55 18.99

• Note that S(3.11) is based on F(3.9).
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Table 5. F(3.10) and S(3.11)+F(3.10)

Simu- F(3.10) S(3.11)

lation δ N IR MH IR MH

200 0.7770 0.7829 0.6898 0.7023

0.9 500 0.7743 0.7766 0.6867 0.6910

I 1000 0.7731 0.7747 0.6848 0.6873

200 0.7907 0.7977 0.6795 0.6932

1.0 500 0.7879 0.7904 0.6756 0.6809

1000 0.7866 0.7880 0.6738 0.6766

200 0.5476 0.5521 0.5323 0.5387

II 0.9 500 0.5431 0.5457 0.5259 0.5298

1000 0.5407 0.5414 0.5226 0.5234

200 1.1246 1.1587 0.9576 1.0013

III 0.9 500 1.1123 1.1280 0.9384 0.9599

1000 1.1086 1.1165 0.9320 0.9411

200 0.8258 0.8314 0.7549 0.7650

0.5 500 0.8238 0.8260 0.7518 0.7563

1000 0.8233 0.8245 0.7512 0.7537

200 0.8706 0.8790 0.7039 0.7186

V 0.9 500 0.8675 0.8709 0.6977 0.7044

1000 0.8665 0.8684 0.6956 0.7000

200 0.8798 0.8900 0.6930 0.7087

1.0 500 0.8760 0.8804 0.6864 0.6938

1000 0.8745 0.8765 0.6834 0.6874

• Note that S(3.11) is based on F(3.10).

• For F(3.10), we take p∗(αt|αt−1) = N(α∗
t|t, 9Σ∗

t|t) in Simulations I –

III and p∗(αt|αt−1) = N(dt + δαt−1, 1) in Simulation V.

Table 6. IR S(3.11) Based on RS F(3.9): N = 1000

Simu- S(3.11)

lation δ IR

0.5 0.7054

I 0.9 0.6843

1.0 0.6732

Simu- S(3.11)

lation δ IR

II 0.5 0.6780

0.9 0.5134

III 0.5 0.9020

0.9 0.9247
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Table 7. IR S(3.11) Based on IR F(3.9): N = 1000

Simu- δ \ N ′ 1000 250 100 50 10

lation

0.5 0.7060 0.7059 0.7059 0.7059 0.7060

I 0.9 0.6851 0.6851 0.6853 0.6854 0.6869

1.0 0.6743 0.6744 0.6745 0.6748 0.6764

II 0.5 0.6795 0.6795 0.6796 0.6798 0.6813

0.9 0.5170 0.5173 0.5177 0.5198 0.5517

III 0.5 0.9024 0.9025 0.9027 0.9028 0.9045

0.9 0.9277 0.9305 0.9326 0.9393 0.9846

IV 4.3179 4.3392 4.4116 4.5086 4.9619

Table 8. Estimation of δ Using IR F(3.9): N = 1000

Simu- δ AVE SER 10% 25% 50% 75% 90%

Lation

0.5 0.481 0.129 0.30 0.41 0.50 0.57 0.63

I 0.9 0.881 0.059 0.80 0.85 0.89 0.92 0.94

1.0 0.983 0.033 0.94 0.97 0.99 1.00 1.01

II 0.5 0.313 0.202 0.00 0.16 0.32 0.45 0.58

0.9 0.670 0.201 0.44 0.54 0.67 0.81 0.98

III 0.5 0.503 0.022 0.49 0.50 0.50 0.51 0.52

0.9 0.902 0.019 0.88 0.89 0.90 0.91 0.92
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than filtering. Moreover, as it is expected, RS shows the smallest RMSE in almost all
the cases. Taking an example of δ = 0.9 in Simulation I, N = 200 of RS is equal to
N = 1000 of MH, which implies that MH needs 5 times more random draws than RS
to keep the same precision, or equivalently the acceptance rate in RS is about 20% on
average (note that this is a rough interpretation because RSME is not a linear function
of N). For δ = 0.9 of Simulation I, N = 500 of RS is almost equal to N = 1000 of IR,
which implies that IR needs twice as many random draws as RS. Taking Simulation IV,
N = 200 of RS is better than N = 1000 of IR. IR needs more than 5 times as many
random draws as RS. Simulation VI represents a multivariate non-Gaussian case, where
RS in S(3.11)+F(3.9) represents IR S(3.11) based on RS F(3.9). Thus, in Simulation
VI, we utilize IR for smoothing because it is not easy to compute the supremum of
q3(αt+1, αt). The RMSEs are shown for both α1t and α2t in Simulation VI of Table 3.
For both filtering and smoothing, RMSEs of RS are the smallest.

In Table 5, p∗(αt|αt−1) is introduced for filtering, but not for smoothing, where
p∗(αt|αt−1)p(αt−1|Yt−1) is used for the sampling density in Table 5 while p(αt|Yt−1) is
used for sampling density in Table 3. For F(3.10) in Simulations I – III, p∗(αt|αt−1) =
N(α∗

t|t, cΣ
∗
t|t) and c = 9 are taken. (α∗

t|t, Σ∗
t|t) denotes the mean and variance estimated

by the extended Kalman filter, which is obtained by applying the linearized nonlinear
measurement and transition equations directly to the standard Kalman filter formula
(see, for example, Tanizaki (1996) and Tanizaki and Mariano (1996)). For F(3.10) in
Simulation V, p∗(αt|αt−1) = N(dt + δαt−1, 1) is taken. Since it is difficult to compute
the supremum of q2, RS is not shown in Table 5. We can compare F(3.9) in Table 3 with
F(3.10) in Table 5 for filtering, and S(3.11)+F(3.9) in Table 3 with S(3.11)+F(3.10) in
Table 5 for smoothing. For Simulation I, the RMSEs in Table 5 are very close to those in
Table 3. For Simulations II and III, however, the RMSEs in Table 3 are slightly smaller
than those in Table 5 in almost all the cases. For Simulation V, Tables 3 and 5 are
compared. We consider the case where the data generating process is different from the
estimated state space model. We often have this case in practice, because nobody knows
the ture model. For F(3.10) of Simulation V in Table 5, p∗(αt|αt−1) = N(dt + δαt−1, 1)
is taken. In other words, in Table 5 the sampling density is appropriately specified
taking into account the sudden shifts. It is expected for Simulation V that RS in Table
3 should be close to IR and MH in Table 5, rather than those in Table 3. As a result, it
is shown that for IR and MH we obtain a small RMSE if the plausible sampling density
p∗(αt|αt−1) is chosen, because the RMSEs of IR and MH in Table 3 are larger than those
in Table 5. Thus, two types of the sampling density p∗(αt|αt−1) are shown in Table 5,
although we can consider the other kinds of the sampling density.

In Table 6, S(3.11)+F(3.9) is investigated, where we utilize RS for filtering and IR
for smoothing. Therefore, Table 6 should be compared with RS or IR in S(3.11)+F(3.9)
of Table 3. Theoretically, the RMSEs in Table 6 should be between RS and IR in
S(3.11)+F(3.9) of Table 3, since the most precise sampling method is used for filtering
but the second best one is utilized for smoothing. As a result, the RMSEs in Table 6
are very close to those of RS in Table 3. It is sometimes difficult for the RS smoothers
to compute the supremums based on (3.11), (3.12) and (3.14). In addition, RS takes
a lot of time computationally although it is a very efficient random number generation
method. The IR smoothers can be applied to almost all the nonlinear non-Gaussian
state space models, which give us much less computational burden than RS. Therefore,
a combination of the RS filter based on (3.9) and the IR smoother might be a useful
tool, judging from computation and efficiency.



18

In Table 7, we investigate how sensitive the approximation of p(αt+1|Yt) in equation
(3.13) is, where N ′ = 10, 50, 100, 250, 1000 and N = 1000 are taken. IR is used for the
sampling method. N ′ = 1000 in Table 7 is equivalent to N = 1000 of IR in Table 3. We
have the result that N ′ = 1000 is very close to N ′ = 100, 250 in the RMSE criterion.
Since for smoothing the order of computation is N×N ′, we can reduce the computational
burden by taking N ′ less than N , where we may take N ′ = 0.1N – 0.25N from Table 7.

In Table 8, we show an example to estimate the unknown parameter maximizing
the likelihood function (3.8), where IR is used for the sampling method. The likelihood
function is maximized by a simple grid search. AVE, SER, 10%, 25%, 50%, 75% and
90% denote the arithmetic average, the standard error, 10th, 25th, 50th, 75th and 90th
percentiles from 1000 estimates of δ. For Simulations I and III, MLE shows a good
performance because AVE and 50% are close to δ. However, for Simulation II, δ is
underestimated and SER is large.

Thus, in this section, we have shown some examples of RS, IR and MH for filtering
and smoothing.

5. Summary

In this paper, we have shown the nonlinear non-Gaussian filtering and smothering
procedures in general formulation, where RS, IR and MH are applied to generate random
draws of αt given Ys. The existing simulation-based procedures are very computer-
intensive, because conventionally they are based on the marginal density, i.e., p(αt|Yt)
for filtering and p(αt|YT ) for smoothing. However, our proposal is based on the joint
density, i.e., p(αt, αt−1|Yt) for filtering and p(αt+1, αt|YT ) or p(αt+1, αt, αt−1|YT ) for
smoothing. To reduce computational disadvantages, in this paper we have suggested
sampling from the joint densities.

It might be expected that RS gives us the most precise state estimates and that MH
yields the worst of the three sampling techniques, which results are consistent with the
simulation results from the Monte Carlo studies. For RS, however, we need to compute
the supremum in the acceptance probability. Especially, as for (3.10) – (3.12) and (3.14),
we often have the case where the supremum does not exist or the case where it is difficult
to compute the supremum. Therefore, for (3.10) – (3.12) and (3.14), it is better to utilize
IR, rather than RS and MH. Moreover, even though the supremum exists, computational
time of RS depends on the acceptance probability. When the acceptance probability is
close to zero, it takes a lot of time computationally to obtain the random draws of
the state variable αt. Both MH and IR can be applied to almost all the nonlinear non-
Gaussian cases, which is one of the advantages over RS, although MH and IR are inferior
to RS in the sense of precision of the state estimates. Moreover, computational burden
of IR and MH does not depend on the acceptance probability. Accordingly, in the case
of IR and MH, (3.9) is computationally equivalent to (3.10) for filtering and similarly
(3.11), (3.12) and (3.14) give us the same computational burden for smoothing.

It is possible to take different sampling methods between filtering and smoothing,
i.e., for example, RS may be taken for filtering while IR is used for smoothing (see
RS in S(3.11) of Simulation VI of Table 3 and Table 6). Or at different time periods
we can adopt different sampling densities. That is, taking an example of filtering, the
sampling density is taken as p∗(αt|αt−1)p(αt−1|Yt−1) if t = t′ and p(αt|Yt−1) otherwise.
It might be useful to introduce p∗(αt|αt−1) when p(αt|Yt) is far from from p(αt|Yt−1).
See Simulation V in Table 5 for this exercise. Thus, the proposed filters and smoothers
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are very flexible. Taking the advantages of each sampling method, we can obtain the
less computational and precise state estimates for both filtering and smoothing.

Moreover, we need to point out as follows. Smoothing is much more computer-
intensive than filtering. That is, at each time period, the order of computation is N for
filtering and N ×N ′ for smoothing. Accordingly, smoothing is N ′ times more computer-
intensive than filtering. In equation (3.13), we do not necessarily choose N ′ = N . To
reduce the computational disadvantage for smoothing, from the Monte Carlo studies
(i.e., Table 7) we have obtained the result that we may take N ′ = 0.1N – 0.25N .

Finally, note as follows. For comparison with the procedure suggested in this paper,
the smoother based on the two-filter formula, which is developed by Kitagawa (1996), is
discussed in Appendix A. We have shown that using the sampling density the smoother
is also rewritten in the same fashion. For Simulations I – III, the simulations studies are
examined. As a result, it is shown that the smoother based on the two-filter formula
shows a good performance.

Appendix A: Fixed-Interval Smoother based on the Two-Filter Formula

Kitagawa (1996) discusses the Monte Carlo smoother based on the two-filter for-
mula, where the same approach shown in this paper can be applied. Define Y +

t ≡
{yt, yt+1, · · · , yT }, where we have YT = Yt−1 ∪Y +

t . The fixed-interval smoothing density
p(αt|YT ) is represented as:

p(αt|YT ) ∝ p(Y +
t |αt)p(αt|Yt−1),(A.1)

where p(Y +
t |αt) is recursively obtained as follows:

p(Y +
t |αt) = py(yt|αt)

∫
p(Y +

t+1|αt+1)pα(αt+1|αt)dαt+1,(A.2)

for t = T − 1, T − 2, · · · , 1. The initial condition is given by: p(Y +
T |αT ) = py(yT |αT ).

First, we consider evaluating p(Y +
t |αt) in the backward recursion. Let p∗(αt) be

the importance sampling density and α∗
i,t be the i-th random draw of αt generated from

p∗(αt). From equation (A.2), the density p(Y +
t |αt) evaluated at αt = α∗

i,t is rewritten
as:

p(Y +
t |α∗

i,t) = py(yt|α
∗
i,t)

∫
p(Y +

t+1|αt+1)pα(αt+1|α
∗
i,t)

p∗(αt+1)
p∗(αt+1)dαt+1

≈ py(yt|α
∗
i,t)

1

N ′′

N ′′∑

j=1

p(Y +
t+1|α

∗
j,t+1)pα(α∗

j,t+1|α
∗
i,t)

p∗(α∗
j,t+1)

,(A.3)

for t = T − 1, T − 2, · · · , 1. In the second line of the above equation, the integration is
evaluated by α∗

j,t+1, j = 1, 2, · · · , N ′′, where N ′′ is not necessarily equal to N . Thus,

p(Y +
t |α∗

i,t) is recursively obtained for t = T − 1, T − 2, · · · , 1. Note that the importance
sampling density p∗(αt) may depend on the state variable at time t − 1, where the
sampling density is given by p∗(αt|αt−1)

Next, given p(Y +
t |α∗

i,t), we generate random draws of αt from p(αt|YT ). We can
rewrite equation (A.1) as follows:

p(αt|YT ) ∝ q6(αt)p(αt|Yt−1),(A.4)
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where q6(αt) ∝ p(Y +
t |αt). In this case, we have to take the importance sampling density

as p∗(αt) = p(αt|Yt−1), i.e., α∗
i,t = αi,t|t−1, where we need to evaluate p(αj,t+1|t|Yt) in

the denominator of equation (A.3). As shown in equation (3.13), however, evaluation of
p(αj,t+1|t|Yt) becomes N ′ times more computer-intensive. Therefore, it is not realistic
to take the sampling density as p∗(αt) = p(αt|Yt−1).

Alternatively, as discussed in Section 3., we can consider generating random draws
from the joint density of αt and αt−1 given YT , which is represented by:

p(αt, αt−1|YT ) ∝ q7(αt, αt−1)p∗(αt)p(αt−1|Yt−1),(A.5)

where q7(αt, αt−1) ∝
p(Y +

t |αt)pα(αt|αt−1)

p∗(αt)
.

As shown above, we can evaluate p(Y +
t |αt) at αt = α∗

i,t. However, an explicit func-

tional form of p(Y +
t |αt) is not obtained and it is not possible to compute the supremum

of q6(αt) and q7(αt, αt−1). Therefore, RS cannot be applied to this smoother. Thus, we
may apply IR and MH to the Monte Carlo smoother based on the two-filter formula.

Taking an example of the IR smoother based on (A.5), a random number of αt

from p(αt|YT ) is generated as follows. Define the probability weight ω(α∗
i,t, αi,t−1|t−1)

which satisfies ω(α∗
i,t, αi,t−1|t−1) ∝ q7(α

∗
i,t, αi,t−1|t−1) and

∑N
i=1 ω(α∗

i,t, αi,t−1|t−1) =
1. Thus, from equation (A.1), the j-th smoothing random draw αj,t|T is resampled
from α∗

1,t, α∗
2,t, · · ·, α∗

N,t with the corresponding probability weights ω(α∗
1,t, α1,t−1|t−1),

ω(α∗
2,t, α2,t−1|t−1), · · ·, ω(α∗

N,t, αN,t−1|t−1). Computing time of the IR smoother based
on (A.5) is the order of N × N ′′, which is equal to IR in Table 2, while that of the IR
smoother with (A.4) is N ×N ′ ×N ′′. Thus, for reduction of computational burden, use
of (A.5) is superior to that of (A.4).

One of the computational techniques is shown as follows. The dimension of Y +
t

increases as t is small. That is, p(Y +
t |α∗

i,t) for all i decreases as t goes to the initial time
period. Therefore, practically we have some computational difficulties such as underflow
errors. To avoid the computational difficulties, we can modify equation (A.3) as follows:

st(α
∗
i,t) ∝ py(yt|α

∗
i,t)

N ′′∑

j=1

st+1(α
∗
j,t+1)pα(α∗

j,t+1|α
∗
i,t)

p∗(α∗
j,t+1)

,

where st(α
∗
i,t) ∝ p(Y +

t |α∗
i,t). For instance, st(αt) may be restricted to

∑N
i=1 st(α

∗
i,t) =

1. We need to compute st(α
∗
i,t) whenever we update from t + 1 to t. Note that the

proportional relation q7(α
∗
i,t, αi,t−1|t−1) ∝

st(α
∗
i,t)pα(α∗

i,t|αi,t−1|t−1)

p∗(α∗
i,t)

still holds.

Thus, the fixed-interval smoother based on the two-filter formula, proposed by Kita-
gawa (1996), can be also discussed in the same context. In Table 9, the smoother based
on the two-filter formula is examined for Simulations I – III. We take p∗(αt) = N(αt|t, 1),
where αt|t represents the filtering estimate obtained from IR F(3.9). After implementing
IR F(3.9), we perform IR S(A.5). Each value in Table 9 is compared with that in IR
S(3.11) of Table 3. As a result, IR S(A.5) performs much better than IR S(3.11) in
almost all the cases.
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Table 9. IR S(A.5) Based on IR F(3.9)

Simu- S(A.5)

lation δ N IR

200 0.7073

0.5 500 0.7059

1000 0.7055

200 0.6876

I 0.9 500 0.6852

1000 0.6843

200 0.6765

1.0 500 0.6740

1000 0.6734

Simu- S(A.5)

lation δ N IR

200 0.6805

0.5 500 0.6787

II 1000 0.6781

200 0.5190

0.9 500 0.5160

1000 0.5137

200 0.9061

0.5 500 0.9033

III 1000 0.9020

200 0.9420

0.9 500 0.9331

1000 0.9284

• p∗(αt) = N(αt|t, 1) is taken, where αt|t is obtained from IR F(3.9).

Appendix B: A Comment on the Number of Random Draws

In Section 4., N = 200, 500, 1000 is examined. N = 200, 500 is taken for comparison
with N = 1000. Some people think that N = 1000 is too small. In the past research,
Carlin et al. (1992) takes N = 2500 in Example 3.1 and N = 500 in Example 3.2.
Gordon et al. (1993) uses N = 500 in Section 4.1 and N = 4000 in Section 4.2. Carter
and Kohn (1994) is N = 2000, 20000, while Carter and Kohn (1996) is N = 10000.
Kitagawa (1996) examines N = 100, 200, · · · , 51200 and concludes that N = 1000 is
recommended for a point estimation. Even in the case of the Gibbs sampling and IR,
N = 500 is sometimes taken (see Carlin et al. (1992) and Gordon et al. (1993)). In this
paper, N = 1000 is taken and the three sampling methods RS, MH and IR are compared
with respect to the RMSE. For Simulation I to check whether N = 1000 is too small or
not, the cases of N = 2000 are examined in Table 10, which should be compared with
the cases of N = 200, 500, 1000 in Table 3. For RS and IR, the RMSEs of N = 1000
are quite close to those of N = 2000, which implies that N = 1000 is enough large for
a point estimate. Since RMSE is the point estimate which shows a measure of precision
of the state estimates, we can conclude that N = 1000 is not too small. However, we
should keep in mind that N = 1000 might be too small in the case where we want to
obtain a functional form of p(αt|Yt) or p(αt|YT ) by the random numbers.
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