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Abstract

In this thesis the dynamics and performance of optoelectronic devices based on
semiconductor quantum-dots are investigated.

In the first part, the dynamics of quantum-dot lasers under external pertur-
bations is discussed. Using a microscopically based balance equation model that
incorporates detailed charge-carrier scattering dynamics and the possibility to de-
scribe nonequilibrium between intra-band electronic states, the relaxation oscilla-
tions of the quantum-dot laser are investigated. Three qualitatively different dy-
namic regimes are identified in dependence of the scattering rates – the “constant-
reservoir” regime for slow scattering, the “overdamped” regime, and the “synchro-
nized” regime for high scattering – characterized by a varying degree of nonequi-
librium between the quantum-dot and reservoir states.

Important differences to conventional lasers are found in the modulation response
and the dynamics in optical injection and feedback setups. Common theoretical
models and approaches used to describe these applications are shown to yield in-
accurate predictions, especially in the “constant-reservoir” and “overdamped” dy-
namic regimes. An important consequence is that the amplitude-phase coupling in
quantum-dot lasers, commonly described by the α-factor, differs from conventional
descriptions due to the desynchronization of gain and refractive index. While the
α-factor describes bifurcations of fixed points accurately, it fails in describing dy-
namic solutions and overestimates the extent of complex dynamics. The observed
low sensitivity to optical perturbations in quantum-dot lasers can therefore be
attributed partly to the charge-carrier nonequilibrium. Three quantum-dot laser
models on different levels of sophistication are presented that can accurately de-
scribe the quantum-dot nonequilibrium dynamics.

In the second part of the thesis, the performance of quantum-dot semicon-
ductor optical amplifiers is investigated, and two types of applications unique to
quantum-dots as active medium are discussed. The ground and excited states of
the quantum-dots allow an ultra-broad-band amplification of optical data streams.
Amplified signals on the ground-state frequencies are shown to generally exhibit
higher quality than on the excited state, due to a lower sensitivity of the ground-
state to carrier-density variations. Nevertheless the quantum-dot amplifier is found
to allow effective amplification on both frequency ranges. Furthermore, a parame-
ter range is identified that allows for a simultaneous amplification of data signals
on the ground and excited state in a counter-propagating setup.

The long microscopically polarization dephasing times in quantum-dots are found
to enable quantum-coherent interactions on a macroscopic scale at room-temperature.
By comparison with experiments, the occurrence of Rabi-oscillations by amplifi-
cation of ultra-short pulses is demonstrated. Quantum-dot based devices could
therefore be used for future applications based on quantum-coherent effects.
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Zusammenfassung

In dieser Dissertation werden die Dynamik und die Eigenschaften von optoelektro-
nischen Bauteilen auf Basis von Halbleiter-Quantenpunkten untersucht.

Im ersten Teil wird die Dynamik von Quantenpunktlasern unter dem Einfluss
externer Störungen diskutiert. Mithilfe eines mikroskopisch basierten Bilanzglei-
chungsmodells, das die detaillierten Ladungsträger-Streuprozesse und Nichtgleich-
gewichtszustände beschreiben kann, werden die Relaxationsoszillationen von Quan-
tenpunktlasern untersucht. In Abhängigkeit von den Streuraten werden drei quali-
tativ unterschiedliche dynamische Bereiche identifiziert – der “constant-reservoir”,
der “overdamped”, sowie der “synchronized” Bereich – die durch einen unterschied-
lichen Grad des Nichtgleichgewichts zwischen Quantenpunkt- und Reservoirzustän-
den charakterisiert sind.

Im Vergleich zu konventionellen Lasern treten wichtige Unterschiede bezüglich
des Verhaltens unter Pumpstrommodulation und unter optischer Injektion oder
Rückkopplung auf. Theoretische Modelle, die typischerweise zur Beschreibung die-
ser Anwendungen verwendet werden, liefern nur ungenaue Ergebnisse. Eine wich-
tige Konsequenz ist, dass die Amplituden-Phasen-Kopplung in Quantenpunktla-
sern, die häufig durch den α-Faktor beschrieben wird, von diesem aufgrund der
Desynchronisation von optischem Gewinn und Brechungsindexänderung abweicht.
Dadurch werden dynamische Lösungen, insbesondere unter optischer Störung des
Lasers, von etablierten Modellen nur ungenau beschrieben, und deren Ausdeh-
nung überschätzt. Die geringe Empfindlichkeit von Quantenpunktlasern gegnüber
optischen Störungen lässt sich daher teilweise mit dem Ladungsträgernichtgleich-
gewicht erklären. Drei Quantenpunktlasermodelle unterschiedlicher Komplexität
werden vorgestellt, die die Nichtgleichgewichtsdynamik korrekt darstellen.

Im zweiten Teil der Dissertation wird die Leistungsfähgkeit von Halbleiter-Quan-
tenpunkt-basierten optischen Verstärkern in zwei unterschiedlichen Anwendungen
untersucht. Die Grund- und angeregten Zustände der Quantenpunkte ermöglichen
eine optische Verstärkung von optischen Datenströmen mit ultra-hoher optischer
Bandbreite. Aufgrund der geringen Empfindlichkeit des Grundzustands bezüglich
Änderungen der Ladungsträgerdichte können Signale auf den Grundzustandsfre-
quenzen generell mit höherer Signalqualität verstärkt werden können als auf dem
angereten Zustand. Dennoch können Quantenpunktverstärker Signale in beiden
Wellenlängenbereichen effektiv verstärken. Außerdem wird ein Parameterbereich
identifiziert, der eine gleichzeitige Verstärkung von zwei Signalen im Frequenzbe-
reich der beiden Quantenpunktzustände ermöglicht.

Die lange Lebensdauer der mikroskopischen Polarisation in Quantenpunkten er-
möglicht quantenkohärente Wechselwirkungen auf einer makroskopischen Skala bei
Zimmertemperatur. Anhand eines Vergleichs mit experimentellen Ergebnissen wird
das Auftreten von Rabioszillationen bei der Verstärkung von ultrakurzen optischen
Pulsen gezeigt. Quantenpunktbauteile könnten daher in Zukunft Anwendungen er-
möglichen, die auf quantenkohärenten Effekten beruhen.
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1 Introduction

Since their invention in 1960 [MAI60] lasers have been the topic of great physical in-
terest and have been contributing to almost any technological field. Especially the
importance of semiconductor lasers is undoubted, as they are the building blocks
of many digital systems, telecommunication networks, and a variety of consumer-
grade products [BIM12, COL12]. Their small footprint and ease of integration, due to
the possibility of electrical pumping, makes semiconductors the first choice for im-
plementation of optoelectronic devices. Apart from lasers, semiconductor optoelec-
tronic devices include optical amplifiers [ADA85a, OMA88, SCH88j, OLS89], electro-optic
and electro-absorption modulators [KAM66, ISL87, ZUC88], and light-emitting diodes.

Semiconductor quantum-dots (QDs) are the final step in miniaturization of the
semiconductor optically active material. Starting from three-dimensional bulk
semiconductors, a reduction of the semiconductor material in one spatial dimen-
sion below the the de-Broglie wavelength of electrons (a few nm) forms quantum-
wells (QWs) [DIN74]. These are quasi-two-dimensional semiconductor structures, in
which the electron motion is confined in one dimension, leading to localized energy
states. This localization leads to a strong increase in efficiency and a reduction of
the threshold current in lasers, such that modern LEDs and semiconductor lasers
almost always consist of quantum-well structures [COL12]. A confinement of elec-
tronic states in an additional dimension leads to quasi-one-dimensional quantum
wires or dashes [LEL07]. When all three dimensions are small enough that elec-
trons are confined, the localization leads to the formation of quasi-zero-dimensional,
atom-like states, with sharply defined energies. These structures are semiconduc-

Figure 1.1.: Sketch of the density of states depending on the dimensionality.
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1 Introduction

tor quantum-dots [ARA82, BIM08a, CHO13a]. The dimensionality of the semiconductor
structures determines their electronic density of states, as sketched in 1.1, which
in turn determines their dynamical properties and device performance.

In the following, we will give a short introduction to semiconductor lasers and
their dynamics, as well as a short overview on semiconductor quantum-dots.

1.1 Semiconductor Lasers

Semiconductor lasers in their simplest form consist of a single pn-junction within a
laser cavity, formed by two mirrors. Due to the refractive-index difference between
common semiconductor materials and air, nowadays the cleaved semiconductor
facets provide high enough reflectivity to enable lasing (e.g. R = 0.31 for the
GaAs-air interface at λ = 1.3µm). A prerequisite for the occurrence of stimulated
emission of light is the inversion of the semiconductor medium, usually by electrical
or optical pumping. In thermodynamic equilibrium the electron distribution of the
semiconductor material would be described by a common Fermi-energy EF , and
the occupation probability by a Fermi-function:

ρ(ε) = F (ε, EF , T ) :=

[
1 + exp

(
ε − EF

kBT

)]−1

, (1.1)

with the energy of the electronic state ε, the equilibrium temperature T and Boltz-
mann’s constant kB. An inversion of the electron distribution, i.e., a higher oc-
cupation of the energetically higher conduction band than in the valence band,
is therefore inherently impossible under equilibrium conditions. The pump source
thus drives the system towards nonequilibrium, injecting electrons into the conduc-
tion band and removing them from the valence band. This enables the stimulated
emission of photons under recombination of a conduction-band electron with a
vacant valence-band state (or “hole”).

A recurring problem after the first demonstration of lasing in semiconductors
was the confinement of charge-carriers. In order to restrict the injected electrons
and holes to a well-defined region, a variety of modifications to the semiconductor
structure has been made. The first, and most important, step was the proposal of
using a heterostructure by Kroemer [KRO63]. The use of a semiconductor material
(GaAs) in between a different material with higher band-gap (AlGaAs), sketched
in Fig. 1.2 a, has then been successfully applied to provide room-temperature op-
eration of semiconductor lasers in 1968 by Alferov [ALF68].

A further improvement was then achieved by development of the separate-confine-
ment-heterostructure (SCH). Here, additional semiconductor layers with higher
refractive index than the outer cladding layers were added on either side of the

2



1.2 Semiconductor Lasers as Dynamical Systems
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Figure 1.2.: Sketch of the progression of approaches to charge-carrier confinement in
semiconductor heterostructures. (a) Double heterostructure, (b) separate confinement
heterostructure (SCH), (c) quantum-well heterostructure, (d) dot-in-a-well (DWELL)
heterostructure. The optical transitions are denoted by �ω. After [COL12].

optically active region, effectively improving the waveguide properties by confining
the light. The resulting five-layer structure is depicted in Fig. 1.2 b. Reducing
the active-layer width to a few nm then leads to the formation of a quantum well
(Fig. 1.2 c). The addition of quantum-dots within the quantum well forms a dot-in-
a-well (DWELL) structure, with localized quantum-dot states providing the optical
transitions, shown in Fig. 1.2 d.

All these steps have subsequently improved the design of semiconductor lasers,
leading to the technology that is available today, with highly efficient semiconductor
lasers that can be continuously operated at room-temperature and above.

1.2 Semiconductor Lasers as Dynamical Systems

Apart from providing a reliable source of constant, coherent, monochromatic light,
semiconductor lasers can exhibit a vast variety of different dynamics [LAR10, ERN10b,

LUE11b, SOR13]. The simplest model of a semiconductor laser consists of only two
equations:

d

dt
N(t) = J − 2g(N(t) − N0)S(t) − 1

T1
N(t) (1.2a)

d

dt
S(t) = 2g(N(t) − N0)S(t) − 2κS(t) . (1.2b)

The charge-carrier number N describes the number of electrons and holes in the
active laser medium, S the number of photons. The pump process is described by
a generalized pump rate J , while charge-carrier losses are taken into account by a
combined lifetime T1. The optical losses are given by the photon loss rate 2κ.

The term 2g(N − N0)S accounts for the stimulated emission of photons. The
inversion is given by N − N0, with N0 being the number of charge carriers needed

3



1 Introduction

to achieve transparency of the medium. The coefficient g describes the linear gain.
As soon as the gain 2g(N − N0) compensates the losses 2κ, the time-derivative of
the photon number becomes positive and the laser light is amplified.

The stimulated emission adds a nonlinearity to the system, which can lead to
complex solutions. Semiconductor lasers are known to exhibit a variety of different
dynamics. This becomes apparent especially under external perturbations, e.g.,
of the pump current or by an external light field [TAR95a, WIE05], as well as under
optical feedback [HEI01a, SOR13, OTT14]. Here, lasers can exhibit periodic oscillations,
multi-stability [GAV97], and deterministic chaos [TAR98a, OHT99].

Solitary semiconductor lasers, due to the two-dimensional phase-space spanned
by the inversion and photon number, can at most exhibit oscillations. These
damped relaxation oscillations (ROs) can be directly observed and already give
an indication about the laser dynamics, as they characterize the laser response to
a perturbation. Upon displacement out of its stable lasing state, the laser will
perform relaxation oscillations back towards its steady state. The investigation of
the relaxation oscillations will therefore be a focus of this thesis.

Due to the prerequisite of charge-carrier inversion in order to obtain optical
gain, semiconductor lasers are always operated far from equilibrium. Nevertheless,
the charge-carrier distribution in each of the electronic bands will quickly relax
towards a quasi-Fermi distribution, with quasi-Fermi energies that differ between
conduction and valence bands. While the overall charge-carrier distribution can
still be in nonequilibrium, the carriers within the bands can thus be described
to be in quasi-equilibrium [SCH87]. The quasi-equilibrium assumptions allow for
the description of the charge-carriers with just a single variable N(t), since the
charge-carrier distribution can be uniquely calculated from the total charge-carrier
number. A description of each k-state in the electronic bands is therefore not
required.

In this work, we will investigate the cases where the quasi-equilibrium assumption
fails. Specifically, we will consider a nonequilibrium between localized quantum-
dot states and the surrounding continuum states within the same electronic band.
It will be shown that this can lead to important differences in the laser dynamics
and performance as compared to what would be expected from a quasi-equilibrium
description of the quantum-dot laser.

1.3 Semiconductor Quantum-Dots

Semiconductor quantum dots can be fabricated in different ways [BIM08a]. The first
investigations of nano-scale lattice-matched heterostructures yielded poor results
[HIR94a, BIM08], and could not fulfill the predicted performance [ARA82]. The tran-

4



1.3 Semiconductor Quantum-Dots

GaAs

InGaAs
InAs

Figure 1.3.: Sketch of the epitaxial Stranski-Krastanov growth of a dot-in-a-well
(DWELL) structure. Growth of InAs (blue) on a GaAs layer (light gray) leads to a
formation of a wetting layer of only few atomic layers thickness (left). Further growth
leads to formation of pyramidal InAs islands (middle). Overgrowth of these islands with
InGaAs (red) of few nm height flattens the InAs quantum-dots and embeds them in an
InGaAs quantum-well, forming the DWELL structure.

sition to the epitaxial growth of non-lattice-matched semiconductor material on
a substrate using molecular beam epitaxy (MBE) or metal-organic chemical va-
por deposition (MOCVD) [STR89] lead to a self-organized formation of nano-scale
semiconductor islands on top of the substrate layer [PRI95].

The so-called Stranski-Krastanov growth of quantum-dots [STR38, WAL01] is sketched
in Fig. 1.3, for InAs quantum dots grown on a GaAs substrate. While at first a very
thin InAs layer (wetting layer) is formed on top of the substrate, the strain induced
by the mismatch of the lattice constants of the two materials leads to the formation
of pyramidal structures. An overgrowth with InGaAs leads to a flattening of the
pyramid tops, and additionally creates an InGaAs quantum-well in which the InAs
quantum dots are embedded. The resulting dot-in-a-well (DWELL) structure will
be considered in all following investigations in this work. A sketch of the energy
structure of the electronic states in the DWELL structure is given in Fig. 1.4.

The coupling of the quantum dots to the quantum-well states crucially influences
the dynamic properties of quantum-dot optoelectronic devices, as we will show
in this thesis. The two-dimensional quantum-well states act as a charge-carrier
reservoir for the quantum-dot transitions by means of charge-carrier scattering.

GaAs electron bulk states

InGaAs QW

electron 2D states

GS

ES

GS
ES

InGaAs QW

hole 2D states

QD electron

states

QD hole

states

GaAs hole bulk states

Figure 1.4: Sketch of the energy structure of
a dot-in-a-well (DWELL) structure. The lo-
calized InAs quantum-dot states (blue), a
twofold spin-degenerate ground-state (GS)
and a four-fold degenerate excited-state
(ES), lie within the band-gap of the InGaAs
quantum-well (QW) states (red). The whole
structure is embedded within the states of
the surrounding GaAs substrate (light gray).
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1 Introduction

The finite scattering time of this process can lead to a nonequilibrium between
the quantum-dot and surrounding states, which, as we will show, gives rise to
unique behavior of quantum-dot devices compared to conventional semiconductor
structures.

6



1.4 Outline of the Thesis

1.4 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we will derive a microscopically
based balance-equation model for the description of quantum-dot laser devices.
At first, we will describe the theoretical framework used to calculate the complex
charge-carrier scattering processes in quantum-dot devices. Then, the light-matter
interaction will be derived from a Maxwell-Bloch approach, which will be com-
bined with the charge-carrier dynamic equations to formulate a quantum-dot laser
rate-equation model. A description of the charge-carrier heating in terms of energy
balance equations will be subsequently given, which allows for a dynamic calcula-
tion of the quasi-equilibrium temperature in quantum-dot laser devices.

Chapter 3 will investigate the dynamics of quantum-dot lasers with focus on the
differences to conventional semiconductor lasers. The laser relaxation oscillations
are analyzed in dependence of the charge-carrier scattering rates in Section 3.2.
A minimal model for the description of relaxation oscillations will be presented in
Section 3.3 and will be subsequently used in an asymptotic analysis. The scattering-
rate dependence of the quantum-dot laser modulation response will be given in
Section 3.4.

In Section 3.5 we will describe the amplitude-phase coupling in quantum-dot
lasers and highlight the differences to the commonly used α-factor approach. The
applicability of the α-factor will also be investigated in Section 3.6, where we discuss
the quantum-dot laser dynamics under optical injection. A simplified quantum-dot
laser model with optical injection will be presented and implemented for numerical
path continuation of bifurcations in Section 3.7. The dynamics of the quantum-dot
laser under time-delayed optical feedback will be shown in Section 3.8.

The laser response to generalized external perturbations is the topic of Sec-
tion 3.9, where we will discuss the frequency-response of the quantum-dot laser
to different types of modulation. A summary of the chapter will be given in Sec-
tion 3.10.

In Chapter 4 we will investigate the dynamics and performance of quantum-
dot semiconductor optical amplifiers. An adequate model for the description of
the amplifier will be presented in Section 4.2. The amplifier performance under
large-signal amplification conditions on ground or excited-state wavelengths will be
characterized in Section 4.3. Subsequently, the possibility of dual-state operation of
the quantum-dot amplifier will be illuminated in Section 4.4. We will then discuss
the occurrence of quantum-coherent effects on a macroscopic scale in quantum-
dot based amplifiers in Section 4.5, before we give a conclusion of the chapter in
Section 4.6.

7



1 Introduction

A summary of the results of this thesis and an overview about possible further
research will be given in Chapter 5.

8



2 Theory of Quantum-Dot Optical Devices

2.1 Introduction

Modern semiconductor optical devices can consist of a complex arrangement of
several different semiconductor crystal layers. By further processing, the semicon-
ductor structure is then shaped into the desired device geometry. Additional steps,
such as planarization and contacting, are then required to yield the final usable
device. Naturally, a complete microscopic description of the resulting object in all
its degrees of freedom is not tractable. Therefore, a restriction to only few degrees
of freedom is required, while still maintaining all necessary aspects determining the
system behavior.

In the theoretical description of quantum-dot semiconductor optical devices, this
means a restriction to the active region, i.e., the parts where the light-matter in-
teraction occurs, and the immediate surrounding matter. Since the optical interac-
tions between the electric field and charge carriers (electrons and holes) are being
considered, dynamic equations for these quantities must be derived.

There exist theoretical models for quantum-dot lasers on varying levels of so-
phistication. Microscopic models that take into account the exact band structure
and many-body interactions [CHO03, ROD05a, FEL06a, GIE07] can describe the complex
energy structure of quantum dots very realistically, but these approaches are too
complicated to be applied in dynamic problems. On the other hand, simple rate-
equation models exist [NAD09, ASR10, ERN10a] that can be easily implemented and
require little computation power, and often allow for analytical treatment. These
models, however, are prone to oversimplification, possibly neglecting important as-
pects that would lead to different results. In between these two types of approaches
there exist multi-rate equation models [TON06, LUE09, GIO12, WAN14b], that take into
account the delicate energy structure of quantum-dot active media. These mod-
els offer a balance between complexity and practicability. In this spirit, we will
develop a quantum-dot laser model that takes into account the most important
effects needed to realistically describe the laser behavior, while still being simple
enough for thorough dynamic studies.
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2 Theory of Quantum-Dot Optical Devices

This chapter presents the derivation of the microscopically based balance equa-
tion model that we will use to model the quantum-dot laser and amplifier devices
later on in this work. The charge carrier exchange between the quantum-dots and
the surrounding material, forming the carrier reservoir, will be described in terms of
microscopically based Boltzmann scattering rates, based on carrier-carrier Auger-
scattering. The light-matter interaction within the active region will be formulated
using a Maxwell-Bloch approach, which we will use to describe the individual con-
tributions of the relevant optical transitions to the optical gain and carrier-induced
refractive-index change. Finally, a self-consistent charge-carrier heating model will
be presented, in order to dynamically describe the charge-carrier quasi-equilibrium
temperature within the quantum-dot device.

10



2.2 Charge-Carrier Scattering in Quantum-Dot Structures

2.2 Charge-Carrier Scattering in Quantum-Dot Structures

In electrically operated semiconductor structures, electrons and holes are injected
into the medium at the respective contacts. The charge carriers then reach the
active region by transport processes due to the applied voltage [SCH87]. In order to
reach the energetically lower states, the charge carriers must lose some of their en-
ergy. This transfer of energy is realized by means of scattering processes. Here, two
different types of charge-carrier scattering can be distinguished: scattering involv-
ing only charge carriers and scattering of charge carriers with the environment,
most importantly lattice phonons. The scattering mechanisms are illustrated in
Fig. 2.1.

Independent of the underlying scattering mechanism, any system will be driven
towards an equilibrium state over time. Considering that the fundamental oper-
ating principle of lasers – stimulated emission of photons – relies on the inversion
of the charge carrier distribution, there always exists a strong nonequilibrium be-
tween valence and conduction band electrons. Nevertheless, assuming that the
intra-band scattering processes happen on a timescale faster than the inter-band
carrier recombination, it is possible to reach a quasi-equilibrium of the electron
distributions in each of the bands. As electrons are fermions, this distribution can
then be expressed as a quasi-Fermi distribution:

ρeq(ε) =

[
1 + exp

(
ε − Eeq

F

kBT eq

)]−1

, (2.1)

with the energy of the corresponding state ε, Boltzmann’s constant kB, the quasi-
equilibrium temperature T eq, and the quasi-Fermi level Eeq

F relative to the corre-

Figure 2.1.: Scattering mechanisms in semiconductor structures. (a) Auger-scattering:
an electron scatters into a free energetically lower state under transfer of the energy
difference ∆E to another electron. (b) Carrier-phonon scattering: an electron emits a
phonon with energy ∆E and scatters into a free state ∆E below its initial state. The
reverse process is possible under absorption of a phonon.

11



2 Theory of Quantum-Dot Optical Devices

(a) (b) (c)

Figure 2.2.: Illustration of carrier heating by Auger-scattering. (a) An initial nonequi-
librium electron distribution (red) is created from quasi-equilibrium (light blue dashed).
(b) It is then driven towards quasi-equilibrium by Auger-scattering processes. (c) The
filling of vacant states at low energy is accompanied by a filling of higher energy states,
broadening the resulting quasi-Fermi distribution (blue).

sponding band edge. As the charge carriers are only in quasi-equilibrium, Eeq
F can

differ between conduction and valence band.

The most important scattering mechanism for carrier-carrier scattering is the
Coulomb interaction between the charged particles. Since in each scattering event
the total energy must be conserved, the scattering of one carrier to a lower state
must be accompanied by the scattering of the scattering partner to a higher
energy with equal energy difference. This type of process is known as Auger-
scattering [SCH87, USK97a]. Since the total energy of the charge carriers is con-
served, Auger-scattering will lead to a change of charge-carrier temperature. A
filling of vacant states that lie below the average energy of the electron gas is
accompanied by a promotion of other electrons to higher states, such that the
total energy is conserved. This effectively broadens the electron distribution,
which is equivalent to an increase in temperature and known as Auger-heating
[SCH87a, QUA91, QUA93a, BOR97a, FEH02, ACH06a], illustrated in Fig. 2.2.

Apart from the direct interaction between charge carriers, scattering with phonons
in the semiconductor lattice is also possible. Here, the charge carriers either ab-
sorb or emit energy by interacting with the semiconductor lattice. Contrary to
the Auger-scattering mechanism, the scattering with phonons does not conserve
the total charge-carrier energy. Thus, a cooling of the charge-carrier distribution
towards the lattice temperature is possible.

The theoretical description of the charge-carrier scattering processes can be done
on different levels of sophistication. The simplest approach would be a phenomeno-
logical description of the scattering by introducing a (constant) scattering time con-
stant at which the charge-carrier population is driven towards a target distribution.
On the other end of the spectrum, a microscopic quantum-kinetic description of

12



2.2 Charge-Carrier Scattering in Quantum-Dot Structures

the many-body system allows a realistic modeling of the scattering dynamics. The
drawback of such an approach is of course the enormous computational effort in
keeping track of such a high-dimensional system.

Here, an intermediate approach will be pursued, such that the numerical handling
of the scattering remains manageable, while the underlying physical processes are
still accurately taken into account.

2.2.1 Coulomb-Scattering of Charge Carriers

The starting point for calculating the carrier-carrier scattering is the system Hamil-
tonian in second quantization [MAH90],

Hsys = Hkin + HC =
∑

a
s

εaa†
asaas +

1

2

∑

abcd
ss′

Vabcd a†
asa†

bs′acs′ads , (2.2)

where ax, a†
x are the electron annihilation and creation operators in the state x with

the energy εx, respectively. The Hamiltonian consists of the kinetic contribution
Hkin, and the Coulomb-interaction Hamiltonian HC. In the sums a, b, c, d denote
all possible electron states, with s, s′ denoting their spins. The Coulomb interaction
matrix element is given by

Vabcd =

∫∫
dr dr′ φ∗

a(r)φ∗
b(r′)

e0
2

4πε0εbg|r − r′|φc(r
′)φd(r) , (2.3)

with the single-particle wave-functions φx(r). The vacuum and background per-
mittivity are given by ε0 and εbg, respectively, and −e0 is the electron charge.

The goal now is to describe the change of the electron probability distribution by
Coulomb scattering events. To this end, the change of the occupation probability
ρνσ ≡ 〈a†

νσaνσ〉 in a specific state ν with spin σ will be derived. By applying Heisen-
berg’s equation of motion and the commutator relations for fermionic operators,
one arrives at:

∂

∂t
ρνσ =

i

�

〈[
Hsys, a†

νσaνσ

]〉
= − i

�

∑

bcd
s′

〈Vνbcda†
νσa†

bs′acs′adσ〉 − H.c.

=
2

�

∑

bcd
s′

Im 〈Vνbcda†
νσa†

bs′acs′adσ〉 . (2.4)

The expectation value of the two-operator expectation value ρνσ now couples to
a sum of four-operator expectation values. A factorization of these four-operator
terms into products of two-operator expectation values leads to the Hartree-Fock
approximation of the many-body Coulomb interaction. Within this approxima-
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2 Theory of Quantum-Dot Optical Devices

tion, first-order renormalization effects, including band-gap renormalization and
Coulomb enhancement can be described [HAU89, CHO05]. A description of charge-
carrier scattering, however, requires the evaluation of higher-order correlations.

The time derivative of the involved four-operator expectation values is again
given by Heisenberg’s equation of motion:

∂

∂t
〈a†

νσa†
bs′acs′adσ〉 =

i

�

〈[
Hsys, a†

νσa†
bs′acs′adσ

]〉

=
i

�
(εν +εb−εc−εd) 〈a†

νσa†
bs′acs′adσ〉 +

i

�

〈[
HC, a†

νσa†
bs′acs′adσ

]〉
.

(2.5)

The evaluation of the commutator in the above equation leads to six-operator
expectation values, and their time evolution would couple to eight-operator ex-
pectation values and so on. Without further approximations, it is therefore not
possible to reach a closed set of equations. Thus, in order to get to a closed
form, some approximations must be introduced [MAH90]. First, Eq. (2.5) will be
solved adiabatically, by assuming a fast evolution to a steady-state, such that
∂
∂t 〈a†

νσa†
bs′acs′adσ〉 = 0. This is the Markov approximation, i.e., the explicit time

evolution of 〈a†
νσa†

bs′acs′adσ〉 is suppressed and its value is solely determined by the
current system state. Thus

〈a†
νσa†

bs′acs′adσ〉 = −

〈[
HC, a†

νσa†
bs′acs′adσ

]〉

(εν +εb−εc−εd) + i�γ
, (2.6)

where an additional phenomenological decay constant γ has been introduced. Ap-
plying the limit γ → 0 restores the right hand side of Eq. (2.5). This limit is
evaluated by applying the Dirac identity

lim
γ→0+

1

x + iγ
=

1

x
− iπδ(x) . (2.7)

The evaluation of the commutator in Eq. (2.6) contains six-operator expectation
values. Instead of deriving equations of motion for these six-operator expressions,
they will be factorized into products of two-operator expectation values, neglecting
higher order correlations. This means that only terms up to second order in the
Coulomb potential will be taken into account. The resulting expectation value can
be evaluated to yield
〈[

HC, a†
νσa†

bs′acs′adσ

]〉
=

[
V ∗

νbcd − V ∗
νbdcδσ,s′

] [
(1 − ρνσ)(1 − ρbs′)ρcs′ρdσ

− ρνσρbs′(1 − ρcs′)(1 − ρdσ)
]
. (2.8)
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Inserting this relation into Eq. (2.6), applying Eq. (2.7) and inserting the resulting
expression into Eq. (2.4) then gives the following equation:

∂

∂t
ρνσ

∣∣
sc

=
2π

�

∑

bcd
s′

Re [Wνbcd (W ∗
νbcd − W ∗

νbdc)] δ(εν + εb − εc − εd)

× [
(1 − ρνσ)(1 − ρbs′)ρcs′ρdσ − ρνσρbs′(1 − ρcs′)(1 − ρdσ)

]
,

(2.9)

which describes the Coulomb scattering in the second-order Born-Markov approx-
imation [HAU96, NIE04, MAL06, MAJ10]. In the above equation the bare Coulomb po-
tential was replaced with the screened potential W , defined via

W (|r − r′|) = V (|r − r′|)e−κ|r−r′| . (2.10)

Here, κ is the screening wavenumber [HAU84, MAH90], describing the screening of
the Coulomb interaction potential by a surrounding charge-carrier plasma, which
can be calculated in a self-consistent way [HAU84, HAU89]. The screening becomes
very important at elevated charge-carrier densities where the unscreened Coulomb
potential would greatly overestimate the interaction between the charge carriers.

The summation terms in Eq. (2.9) describe the simultaneous scattering of d ↔ ν

and c ↔ b. The delta-function ensures energy conservation, such that the total en-
ergy of the final states equals that of the initial states. The first term in the second
line describes the probability to find particles in the corresponding initial states
(c, d) and vacant spaces in the final states (ν, b), and the second term describes the
corresponding inverse process, leading to a decrease of ρν .

Equation (2.9) can be written in form of a Boltzmann equation,

∂

∂t
ρ(t)

∣∣∣
sc

= Sin[1 − ρ(t)] − Soutρ(t) (2.11)

combining the summation terms into an in-scattering rate Sin and a corresponding
out-scattering rate Sout which, however, depend on the charge-carrier occupation
of all other states.

Scattering Channels in Coupled Quantum-Dot - Quantum-Well Systems

Equation (2.9) gives the general expression for calculating the Coulomb scattering
rates. The sums include all possible states, provided they fulfill the energy conserv-
ing δ-function. The given quantum-dot-quantum-well system, however, allows the
distinction between qualitatively different scattering processes in order to break up
the sums in Eq. (2.9) into different parts which can be handled more easily.
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Figure 2.3.: Possible scattering channels in quantum-dot-quantum-well systems. (a) Di-
rect capture into the quantum dot (QD) ground state, (b) Intra-dot relaxation from
excited state (ES) to ground-state (GS). The considered electron scattering process is
shown by the black arrow, with the blue arrows denoting the possible simultaneous
scattering of the Auger-electron to a vacant state: (i) quantum-well (QW) intra-band
electron transition, (ii) electron escape from ES to quantum well. The corresponding
mixed processes are shown in (iii) and (iv), where the Auger-electron is in the valence
band, (v) showing a capture of a valence electron to the GS. For all processes shown,
the corresponding reverse scattering is also possible. Not shown is the direct capture
into the quantum-dot excited state, analogous to (a).

Throughout this work, quantum-dots embedded in a quantum-well (dot-in-a-
well, DWELL structure) are considered, with two localized quantum-dot states in
both the conduction and valence band. Therefore, two general charge-carrier scat-
tering processes can be distinguished: Capture of a quantum-well electron into a
confined quantum-dot state, and intra-dot electron relaxation, with their respective
inverse processes. This is illustrated in Fig. 2.3 a and b, respectively. The accom-
panying Auger-process can involve either quantum-well states only, or transitions
between quantum-well and other quantum-dot states. Note that depending on the
energy difference, not all these scattering channels are possible. For example, in
the depicted case of the intra-dot relaxation in Fig. 2.3 b, the Auger-transition in
the valence band from the quantum well to the ground state is not possible, as it
would violate energy conservation. The possible scattering processes contributing
to the total scattering rate thus strongly depend on the exact energy scheme of
the quantum-dot-quantum-well system. Note that throughout this work impact
ionization and Auger-assisted recombination, i.e. the direct scattering between
conduction and valence bands, is not considered.
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2.2 Charge-Carrier Scattering in Quantum-Dot Structures

Following the above discussion, the scattering dynamics of the quantum-dot
states are rewritten as

∂ρc,GS

∂t

∣∣
sc

= Scap,in
c,GS ({ρQW})(1 − ρc,GS) − Scap,out

c,GS ({ρQW})ρc,GS

+ Srel,in
c,GS ({ρQW})ρc,ES(1 − ρc,GS) − Srel,out

c,GS ({ρQW})(1 − ρc,ES)ρc,GS ,

(2.12a)

∂ρc,ES

∂t

∣∣
sc

= Scap,in
c,ES ({ρQW})(1 − ρc,ES) − Scap,out

c,ES ({ρQW})ρc,ES

+ Srel,in
c,ES ({ρQW})ρc,GS(1 − ρc,ES) − Srel,out

c,ES ({ρQW})(1 − ρc,GS)ρc,ES .

(2.12b)

Here, ρc denote the electron occupation probabilities of the conduction band states.
For valence band states, analogous equations can be written down (subscript v).
The scattering rates Scap,in denote the direct capture of quantum-well electrons
into the quantum-dot states, Srel,in the intra-dot relaxation between the quantum-
dot states, with Sout being the scattering rate of the respective reverse processes.
We can identify the relaxation processes of the excited state with the GS terms,

Srel,in
c,ES ({ρQW}) = −1

2
Srel,out

c,GS ({ρQW}) , (2.13a)

Srel,out
c,ES ({ρQW}) = −1

2
Srel,in

c,GS ({ρQW}) , (2.13b)

with a factor 1
2 compared to the ground-state contribution, due to its two-fold

degeneracy. All scattering rates in above equations depend on the whole quantum-
well distribution in both bands, denoted by {ρQW}.

2.2.2 Electron-Hole Picture

It is customary in semiconductor physics to describe the charge carriers in the
electron-hole picture, where, starting from a completely filled valence band, an
unoccupied state is described as a positively charged hole. The charge-carrier
occupations in the conduction and valence bands can then be given in terms of
electron and hole populations:

ρe ≡ ρc (2.14a)

ρh ≡ 1 − ρv . (2.14b)

This description leads to a reversed energy axis for holes, leading to a positive
effective hole mass. The expressions for the scattering rates is formally identical to
the electron picture. The sums in Eq. (2.9), however, now run over both electron
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and hole states. Using b ∈ {e, h} to distinguish electron and hole states, the
scattering dynamics can be written as:

∂ρb,GS

∂t

∣∣
sc

= Scap,in
b,GS ({ρQW})[1 − ρb,GS] − Scap,out

b,GS ({ρQW})ρb,GS

+ Srel,in
b ({ρQW})ρb,ES[1 − ρb,GS] − Srel,out

b ({ρQW})[1 − ρb,ES]ρb,GS

(2.15a)

∂ρb,ES

∂t

∣∣
sc

= Scap,in
b,ES ({ρQW})[1 − ρb,ES] − Scap,out

b,ES ({ρQW})ρb,ES

− 1

2

[
Srel,in

b ({ρQW})ρb,ES[1 − ρb,GS] − Srel,out
b ({ρQW})[1 − ρb,ES]ρb,GS

]
.

(2.15b)

One thing to note is that the capture of valence band electrons into the localized
quantum-dot states now corresponds to the escape of holes from the quantum-dots,
thus reversing the interpretation of in and out-scattering processes in the valence
band. The formal structure of the above equation is nevertheless conserved.

2.2.3 Detailed Balance

The derived scattering expressions so far only describe the dynamics of quantum-
dot states and their interaction with the quantum-well charge carriers. The dy-
namics of quantum-well carriers can in principle be expressed by Eq. (2.9) as well.
However, this would require resolving all quantum-well states and tracking their
population distribution in time, which greatly increases the dimensionality of the
system state. This problem can be resolved by assuming a specific distribution of
the carrier population within the quantum-well.

The intra-band scattering between quantum-well states is typically in the order
of ≈ 100 fs [BIN92a, TRA92, CAM96, KAN96b, BAN98]. As long as this scattering is faster
than the charge-carrier exchange between the quantum well and quantum-dots, the
quantum well can be assumed to be in quasi-equilibrium with good accuracy:

ρb,QW(ε2D
b,k) ≈ f(ε2D

b,k, Eeq
F,b, T eq) ≡

[
1 + exp

(
ε2D

b,k − Eeq
F,b

kBT eq

)]−1

, (2.16)

with the corresponding single-particle energies ε2D
b,k and the quasi-Fermi level Eeq

F,b.
From this quasi-Fermi distribution the 2D-charge-carrier density wb in the QWs
can be calculated, by taking the density of states in the quantum well as

Db(E) = DbΘ(E − EQW
b,0 ) =

m∗
b

π�2
Θ(E − EQW

b,0 ) , (2.17)
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under the assumption that the quantum-well sub-band spacing is large enough
that only the lowest sub-band needs to be taken into account. The energy EQW

b,0 is
the corresponding quantum-well band edge and Θ is the Heaviside function. The
quantum-well charge-carrier density can then be written as

wb =
2

Aact

∑

k2D

[
1 + exp

(
ε2D

b,k − Eeq
F,b

kBT eq

)]−1

=

∞∫

−∞

dε2D
b,k Db(ε

2D
b,k)

[
1 + exp

(
ε2D

b,k − Eeq
F,b

kBT eq

)]−1

= DbkBT eq log

⎡
⎣1 + exp

⎛
⎝Eeq

F,b − EQW
b,0

kBT eq

⎞
⎠
⎤
⎦ , (2.18)

where the sum over all quantum-well k-states was expressed as the integral over
the charge-carrier energy. Aact is the active region in-plane area, with the factor 2

accounting for spin degeneracy. By inverting the above expression, the quasi-Fermi
level Eeq

F,b can be expressed in terms of the charge-carrier density in the quantum
well,

Eeq
F,b = EQW

b,0 + kBT eq log

[
exp

(
wb

DbkBT eq

)
− 1

]
. (2.19)

Thus, the quantum-well charge-carrier population can be expressed as a function
of the carrier density and the quasi-equilibrium temperature:

ρb,QW(ε2D
b,k) ≡ ρb,QW(ε2D

b,k, wb, T eq) =

[
1 + exp

(
ε2D

b,k − Eeq
F,b(wb, T eq)

kBT eq

)]−1

. (2.20)

By entering this relation into the expressions for the scattering rates Eq. (2.9), also
the individual scattering rates can be expressed as functions of only the 2D charge-
carrier densities wb and their quasi-equilibrium temperature T eq, eliminating the
need to keep track of the microscopic carrier population distributions.

Furthermore, it is now possible to relate the in and out-scattering rates of a given
scattering process to each other [SCH87, LUE09]. The out-scattering contribution in
Eq. (2.9) is equivalent to the in-scattering contribution under the replacement
ρ → 1 − ρ, which for the quantum well in quasi-equilibrium can be expressed as

1 − ρQW(ε2D
b,k) = ρQW(ε2D

b,k) exp

(
ε2D

b,k − Eeq
F,b(wb, T eq)

kBT eq

)
. (2.21)
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For the quantum-dot scattering processes the out-scattering rates can thus be writ-
ten as [LUE11a]:

Scap,out
b,m (we, wh, T eq) = Scap,in

b,m (we, wh, T eq) exp

⎛
⎝εQD

b,m − Eeq
F,b

kBT eq

⎞
⎠ (2.22a)

Srel,out
b (we, wh, T eq) = Srel,in

b (we, wh, T eq) exp

⎛
⎝εQD

b,GS − εQD
b,ES

kBT eq

⎞
⎠ , (2.22b)

where εQD
b,m denotes the energy of the localized quantum-dot state, with m ∈

{GS, ES} distinguishing between ground and excited state. The out-scattering
of charge-carriers thus becomes more probable at elevated charge-carrier temper-
atures [URA02, ROS09a]. Note that in the derivation of above expressions, only a
quasi-equilibrium within the quantum well must be assumed without making as-
sumptions about the quantum-dot occupations. Equation (2.22) is therefore valid
also in nonequilibrium situations between quantum dot and quantum well.

2.2.4 Carrier-Phonon Scattering

Apart from the direct interaction of the charge carriers moving along the semicon-
ductor lattice, an interaction with the lattice itself is possible. This interaction
occurs by the excitation of phonons, the quanta of lattice atom oscillations. In
polar semiconductors, such as GaAs, this displacement of the ionic lattice atoms
leads to the build-up of a polarization field. Charge carriers can thus couple to
phonons in a polar semiconductor via the Coulomb interaction.

Two different important types of phonons must be distinguished: longitudinal
optical (LO) phonons and longitudinal acoustic (LA) phonons. The difference
between the two varieties lies in their dispersion relation ω(k). LO phonons have a
constant energy around the Γ-point (wave vector k = 0) and are thus dispersionless
(for small k), while LA phonons show a nearly linear dispersion relation:

ωLO(k) ≈ const. ωLA(k) ≈ vs|k| , (2.23)

where vs is the speed of sound. The different dispersion relations critically influ-
ence the scattering dynamics of charge carriers with these types of phonons. Since
both energy and momentum must be conserved in scattering events, LA phonons
only allow for an efficient scattering under the condition that both the energy and
momentum difference between the initial and final states of a given scattering event
match that of the phonon. This greatly limits the number of possible scattering
partners. The scattering with LO phonons, on the other hand, is nearly inde-
pendent of the momenta of a given initial and final state, as long as their energy
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difference matches the LO phonon energy �ωLO. While the scattering to transversal
optical (TO) phonons is in principle also possible, the transversal oscillation results
in a much smaller total electric field strength and thus to only little interaction with
electrons [MAH90].

The quantum-mechanical description of the carrier-phonon interaction is com-
monly expressed by the Fröhlich electron-phonon coupling Hamiltonian [MAH90]:

Hcp =
∑

abq
s

�gab
q a†

aab

(
bq + b†

−q

)
. (2.24)

This Hamiltonian describes the transition between electronic states b → a under
either the emission of a LO phonon with wave vector q or the absorption of one
with wave vector −q. The coupling matrix element for these transitions is given
by

gab
q = 〈a | eiqr | b〉 gq (2.25)

gq =

[
ωLOW 3D

q

2�

(
1

εbg
∞

− 1

εbg
0

)] 1
2

. (2.26)

Here, εbg
0 and εbg

∞ describe the static and high-frequency background permittivity of
the medium, respectively. W 3D

q is the Fourier-transform of the statically screened
three-dimensional Coulomb interaction potential,

W 3D
q =

e0
2

V ε0εbg(q2 + κ2)
, (2.27)

with the normalization volume V , and the screening wavenumber κ.

Following a similar approach as for the carrier-carrier scattering, we can derive
an expression for the charge-carrier scattering by carrier-phonon scattering [CHO99,

NIE04]:

∂

∂t
ρνσ

∣∣∣
cp

= 2π
∑

aq

∣∣∣gaν
q

∣∣∣
2 {

δν,a+LO

[
(1 − ρνσ)ρaσnph,q − ρνσ(1 − ρaσ)(nph,q + 1)

]

δν,a−LO

[
(1 − ρνσ)ρaσ(nph,q + 1) − ρνσ(1 − ρaσ)nph,q

]}
,

(2.28)

where δν,a±LO ≡ δ
(
εν − (εa ± �ωLO)

)
describe the possible situations where the

state ν lies �ωLO above (+) or below (-) the state a. The terms proportional to
the phonon number nph,q account for the processes where a phonon is absorbed,
while those including (nph,q + 1) account for stimulated and spontaneous emission
of a phonon.
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Phonon scattering plays an important role for intra-band relaxation processes in
bulk and quantum-well structures [ASA89] as well as charge-carrier capture processes
into quantum wells from the surrounding bulk semiconductor. The continuous den-
sity of states of charge carriers in these systems allow for an efficient scattering with
phonons due to many possible transitions matching the LO phonon energy. A cool-
ing of the carrier distribution through emission of phonons is therefore possible and
occurs typically on timescales ≈5–10 ps in InGaAs quantum-wells [WEN06, VAL13].

For scattering processes involving quantum-dot states, on the other hand, the
δ-function in Eq. (2.28) greatly limits the scattering efficiency. As the quantum-
dot levels are at a discrete distance from the quantum-well band edges, they can
couple only to a single charge-carrier energy level within the quantum well by LO
phonon scattering. In the case that the quantum-dot localization energy exceeds
the LO phonon energy, scattering between the quantum dot and quantum well by
phonons becomes possible only by multi-phonon processes, which have a much lower
probability to occur, especially at low temperatures [INO92, FEL01]. For intra-dot
carrier relaxation processes, effective scattering by LO phonons becomes possible
only when the quantum-dot level spacing is an integer multiple of the LO phonon
energy, which should apply only for a vanishingly small number of QDs in a given
semiconductor structure.

However, it has been shown that the Markov approximation, leading to the emer-
gence of the energy conserving δ-function in the scattering rates, can underestimate
its actual value [SEE05, SEE09, STE12]. This is due to a broadening of the transition
probabilities in energy space by non-Markovian dynamics, which makes scattering
possible also for energy differences not matching the LO phonon energy exactly. In
[STE13, SCH13k] it is shown that the interplay between Coulomb and carrier-phonon
interaction can lead to an enhancement of scattering rates, with the total rate
being higher than the sum of the individual processes. This effect becomes es-
pecially prevalent for intra-dot relaxation processes, leading to efficient scattering
only weakly dependent on the spacing of quantum-dot energy levels. The charge-
carrier capture into QDs, on the other hand, was shown to be well described by
carrier-carrier scattering for large enough carrier densities, as they are commonly
encountered in quantum-dot electro-optical structures.

In the remainder of this work, we therefore neglect the contribution of the carrier-
phonon interaction on the quantum-dot scattering dynamics, in order to maintain
computational efficiency. The Coulomb carrier-carrier scattering will be taken into
account as the dominant scattering process, which describes the charge-carrier
dynamics sufficiently accurately while still allowing for a dynamical analysis of the
device behavior.
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2.3 Light-Matter Interaction

So far we have derived equations describing the charge-carrier dynamics in the
quantum-dot optical structure due to scattering events. In this section, the inter-
action of the semiconductor medium with light will be derived. The description
of light can be done within a semi-classical framework, where the light field itself
is described by Maxwell’s equations using classical fields. This treatment is often
sufficient to describe all important effects governing the behavior of macroscopic
semiconductor devices [HAK83a, CHO99].

A fully quantum-mechanical description of the light and its interaction with the
semiconductor medium can, however, lead to deviations from the semi-classical
treatment under certain conditions. This becomes especially evident in the case
when only a few quantum-dots or photons are involved in the lasing process [RIT10,

GIE11]. Then, the non-classical light output from quantum-dots can be used, e.g.,
for creation of entangled photons [BEN00a] or single-photon emission [UNR12, CAL13].
When discussing optical feedback of few-photon quantum-dot lasers, non-classical
effects were also found to arise, characterized by a “bunching” of photons [ALB11,

SCH13g], that is unaccounted for in semi-classical models. In this work, we will limit
ourselves to macroscopic scales, and thus classical light states. A semi-classical
description of the light-matter interaction is thus sufficient.

2.3.1 Electric Field Dynamics

The starting point for the classical description of the electric field dynamics are
Maxwell’s equations for the dielectric displacement field D, the magnetic field B,
the electric field E, and the magnetizing field H:

∇ · D(r, t) = ρ(r, t) (2.29a)

∇ · B(r, t) = 0 (2.29b)

∇ × E(r, t) = − ∂

∂t
B(r, t) (2.29c)

∇ × H(r, t) = j +
∂

∂t
D(r, t) , (2.29d)

with the free charge-carrier density ρ, the free current density j and the electric
displacement and magnetizing field given by

D(r, t) = ε0E(r, t) + P(r, t) , (2.30)

H(r, t) = 1
μ0

(
B(r, t) − M(r, t)

)
, (2.31)
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respectively. P and M are the medium polarization and magnetization, respec-
tively. Assuming vanishing free carrier density and current, as well as a non-
magnetizable medium, Maxwell’s equations can be combined to yield the wave
equation for the electric field

ε0μ0
∂2

∂t2
E(r, t) − ∆E(r, t) = −μ0

∂2

∂t2
P(r, t) , (2.32)

with the Laplace operator ∆. Applying the slowly varying wave approximation,
one reaches the time derivation of the slowly varying electric field envelope

∂

∂t
E(r, t) =

iω

2ε0εbg
P (r, t) . (2.33)

where E, P are defined via

E(r, t) =
1

2

(
E(r, t)ei(k · r−ωt) + c.c.

)
ê (2.34)

P(r, t) =
1

2

(
P (r, t)ei(k · r−ωt) + c.c.

)
ê + ε0χbgE(r, t) , (2.35)

with a carrier frequency ω, and a unit vector ê giving the electric field polariza-
tion. The real background susceptibility χbg accounts for the linear response of the
background medium polarization to the incident electric field and yields the back-
ground susceptibility εbg ≡ (1 + χbg), leading to the background refractive index
nbg =

√
εbg. The remaining contribution from P (r, t) contains the response of the

active medium, which in general cannot be assumed to be linear in E, and can also
have an imaginary part, leading to absorption or amplification of the electric field.
The fields are expanded in terms of plane waves with the wave vector k, where
|k| =

ωnbg

c0
. The slowly varying envelope functions E, P are in general complex and

thus include both the spatial amplitude as well as the phase profile of the fields.

It is often customary to separate the spatial dependence of the electric field from
its time dependence,

E(r, t) = E(t)uE(r) , (2.36)

thus assuming a time-independent electric field profile in space. In a cavity, u(r)

describes the main cavity mode profile. Equation (2.36) then corresponds to the
single-mode approximation. In general optical cavities allow for a higher number
of possible modes, especially in Fabry-Perot type cavities. When a description of
multi-mode dynamics is required, Eq. (2.36) can be extended to a linear superpo-
sition of the different cavity modes [LEN14]. The assumption of a single mode is
nevertheless justified in Fabry-Perot microcavity devices, where the mode spacing
between longitudinal modes is very large, as well as in distributed feedback (DFB)
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2.3 Light-Matter Interaction

Figure 2.4.: Illustration of the geometric confinement factor. The optical mode profile
uE(r) (red) often extends beyond the active medium (light blue). The confinement
factor describes the overlap of the mode with the active medium distribution uP (r)

(blue).

devices, where optical modes other than the fundamental cavity mode are sup-
pressed [KOG72, MIN97b, GIO11]. In the remainder of this work we therefore assume a
single-mode electric field profile.

The expansion of the electric field in terms of a single mode simplifies the descrip-
tion of the electric field dynamics by eliminating its spatial dependence. The pola-
rization field in the active medium can be expanded in a similar way as Eq. (2.36),

P (r, t) = P (t)uP (r)uE(r) , (2.37)

under the assumption that the polarization amplitude is in first order proportional
to the electric field amplitude and thus to the electric field mode profile. The
spatial polarization profile uP (r) ∈ R is defined by the active medium geometry.
In general, the spatial extension of electric and polarization field are different, with
the electric field often spanning over a larger volume.

Multiplying Eq. (2.33) with E∗(z, t), adding its complex conjugate and integrat-
ing over r yields

∫
d3r E∗(z, t)

∂

∂t
E(z, t) + c.c.

=
∂

∂t
|E(t)|2

∫
d3r |uE(r)|2

=
ω

2ε0εbg
[iE∗(t)P (t) + c.c.]

∫
d3r |uE(r)|2uP (r) , (2.38)

which we write as

∂

∂t
|E(t)|2 = Γ

ω

2ε0εbg
[iE∗(t)P (t) + c.c.] , (2.39)
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where we have defined the geometric confinement factor [HUA96]

Γ =

∫
d3r |uE(r)|2uP (r)∫

d3r |uE(r)|2 . (2.40)

This definition allows one to move the complete spatial dependence of Eq. (2.33)
into a single variable Γ. The geometric confinement factor can be understood as
the overlap of the active medium with the optical mode, as illustrated in Fig. 2.4.
The thus simplified electric field dynamics can be written as

∂

∂t
E(t) =

iωΓ

2ε0εbg
P (t) . (2.41)

Note that Eq. (2.41) does not satisfy Eq. (2.33) at every point in space, but instead
only fulfills its space-integrated form. Therefore, only the dynamic evolution of the
space-integrated mode amplitude can be described. Changes in the spatial mode
profile could in principle occur due to changes of the optical properties of the active
medium during operation, e.g., by gain or index guiding effects [SAL92, DRU01], which
could be implemented as a variation of Γ with the operational parameters.

Optical Losses

The electric field inside the optical cavity is subject to losses. Internal optical losses
lead to a decay with rate αint, which includes effects such as absorption of photons
by free carriers in the surrounding semiconductor material and waveguide losses
through the sidewalls. As there exist no perfect mirrors, only a part of the electric
field can be reflected back into the cavity, while the rest is transmitted through the
cavity mirrors. After each cavity round-trip the electric field is therefore reduced
by a factor r1r2, with r1, r2 denoting the mirror reflectivities at either end of the
cavity. Integrating over one cavity round-trip time τcav = nbgℓ/c0, with the cavity
length ℓ, yields for the polarization-free cavity

E(t + τcav) = E(t)r1r2 exp(−αintτcav) . (2.42)

Assuming that τcav is small compared to all other processes determining the electric
field dynamics, the above equation can be transformed to a quasi-continuous change
in time:

∂

∂t
E(t)

∣∣∣
losses

= −αintE(t) − 1

τcav
log(r1r2)E(t) ≡ −κE(t) , (2.43)
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where the losses have been combined to a total loss rate κ. Inserting these addi-
tional losses into Eq. (2.41), we arrive at the dynamic equation governing the time
evolution of the electric field inside the cavity:

∂

∂t
E(t) =

iωΓ

2ε0εbg
P (t) − κE(t) . (2.44)

2.3.2 Maxwell-Bloch Equations

So far we have described only the dynamics of the electric field in the cavity, but
still missing is the interaction with the active medium. As derived in the previous
section, the electric field is driven by the active medium polarization. We will
therefore derive expressions for the dynamics of the polarization within the active
region in second quantization.

The interaction of the semiconductor matter with the incident light field is de-
scribed by the dipole interaction Hamiltonian in the electron-hole picture [SCU97],
consisting of the kinetic and carrier-field interaction Hamiltonian:

H = Hkin + Hc–f

=
∑

c
s

εca
†
c,sac,s +

∑

v
s

εvd†
v,sdv,s +

∑

cv
s

(
�Ωcva†

c,sd†
v,s + H.c.

)
, (2.45)

where a, d denote electron and hole annihilator operators, with the summation
indices c and v running over all electron and hole states, respectively, with s their
spin, and εc, εv their single-particle energy. The interaction matrix element is
defined as

�Ωcv ≡ 〈c | −e0E(r, t) · r | v〉 = −e0

∫
d3r φ∗

c(r) E(r, t) · r φv(r) . (2.46)

Assuming that the lateral dimensions of the wave functions of the interacting states
are small compared to the electric field wavelength, the electric field can be split
off from the matrix element [SCU97], and we can write the carrier-field interaction
Hamiltonian in dipole approximation:

H =
∑

c
s

εca
†
c,sac,s +

∑

v
s

εvd†
v,sdv,s +

∑

cv
s

(
μcva†

c,sd†
v,s + H.c.

)
E(rcv, t) , (2.47)

with E = E ê. The electric field is taken at the coordinate rcv, assumed to be
the center of mass of the states c, v. The dipole interaction transition moment is
defined as

μcv ≡ 〈c | −e0r · ê | v〉 . (2.48)
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We use Eq. (2.47) to calculate the dynamics of the occupation probabilities
ρe,c,s ≡ 〈a†

c,sac,s〉, ρh,v,s ≡ 〈d†
c,sdc,s〉, and the inter-band microscopic polarization

p̃cv,s ≡ 〈dh,v,sae,c,s〉, by applying Heisenberg’s equation of motion. The resulting
equations of motion are given by

∂

∂t
p̃cv,s(t)

∣∣∣
c–f

= − iωcvp̃cv,s(t) − i
μcvE(rcv, t)

�
(ρe,c,s(t) + ρh,v,s(t) − 1) , (2.49a)

∂

∂t
ρe,c,s(t)

∣∣∣
c–f

=
1

�

∑

v

2Im
(
p̃∗

cv,s(t)μcvE(rcv, t)
)

, (2.49b)

∂

∂t
ρh,v,s(t)

∣∣∣
c–f

=
1

�

∑

c

2Im
(
p̃∗

cv,s(t)μcvE(rcv, t)
)

, (2.49c)

where the inter-band transition frequency is defined by ωcv ≡ 1
�
(εc − εv). In-

serting the definition of the real electric field E = 1
2

(
E(r, t)ei(k · r−ωt) + c.c.

)
into

Eq. (2.49), fast oscillating terms ∝ exp(±iωt) with the carrier frequency ω enter
the equations. Let us assume ω ≈ ωcv, i.e., the active medium is excited with light
close to the inter-band transition energy. We then move into a co-rotating frame
by defining

p̃cv,s(t) ≡ pcv,s(t)ei(krcv−ωt)uE(rcv) , (2.50)

leading to

∂

∂t
pcv,s(t)

∣∣∣
c–f

= − i(ωcv − ω)pcv,s(t) − i
μcv

2�

(
E(t) + E∗(t)e−2i(krcv−ωt+φ(rcv))

)
×

× (ρe,c,s(t) + ρh,v,s(t) − 1) , (2.51)

with φ(r) ≡ arg(uE(r)). As ω for infra-red frequencies is in the order of ≈ fs−1,
which is much faster than the active medium dynamics, the fast oscillating term
∝ E∗(t)e2iωt can be assumed to average out and is consequently left out. This
approximation is the rotating wave approximation, i.e., pcv,s is assumed to couple
only to frequencies close to the inter-band frequency. Furthermore, we assume
that only direct inter-band transitions contribute considerably to the light-matter
interaction, i.e., any given state c couples only to one specific state v and vice
versa. In the quantum-well this corresponds to taking into account only optical
transitions without momentum transfer, thus only pkk remain. In the quantum-
dots, only transitions pGS , pES between the electron and hole ground states or
excited states, respectively, are kept. The spin index s is from here on suppressed
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for notational simplicity. Thus, for the slowly varying transition amplitudes p we
reach the following coupled equations:

∂

∂t
pcv(t)

∣∣∣
c–f

= − i(ωcv − ω)pcv(t) − i
μcvE(t)

2�
(ρe,c(t) + ρh,v(t) − 1) , (2.52a)

∂

∂t
ρe,c(t)

∣∣∣
c–f

=
1

�
Im

(
p∗

cv(t)μcvE(t)|uE(rcv)|2
)

, (2.52b)

∂

∂t
ρh,v(t)

∣∣∣
c–f

=
1

�
Im

(
p∗

cv(t)μcvE(t)|uE(rcv)|2
)

. (2.52c)

So far, the effects of many-body interactions on the light-matter dynamics has
not been taken into account. Similar to the derivations in Section 2.2, by including
the carrier-carrier and carrier-phonon interaction Hamiltonians for calculating the
time-derivatives, these many-body effects can be taken into account. Two types of
modifications to the free-carrier results obtained so far can be classified: First-order
effects, i.e., terms linear in the interaction matrix elements, lead to changes in the
transition energies and the microscopic polarization amplitudes, known as band-
gap renormalization and Coulomb enhancement [HAU89, CHO99, SCH01d, CHO05, LIN10].
Second-order effects lead to scattering between charge carriers, as derived earlier for
the occupation probabilities. These scattering events not only redistribute charge
carriers, but also lead to a decoherence of the involved states and thus to a decay of
the microscopic polarization, known as dephasing [BOR01a, SCH04e, NIL05, LOR06a, VU06,

KOP11]. In the following, these many-body processes are not explicitly taken into
account, but instead modeled by a single decay time constant, T2, characterizing
the lifetime of the microscopic polarization. We thus arrive at

∂

∂t
pcv(t)

∣∣∣
c–f

= −
[
i(ωcv − ω) +

1

T2

]
pcv(t)

− i
μcvE(t)

2�
(ρe,c(t) + ρh,v(t) − 1) . (2.53)

Assuming now that the electric field amplitude changes only little over the active
region volume, we can set |uE(r)| to be constant. By scaling of E(t) and pcv(t)

such that |uE(r)| = 1 within the active region, E(t) describes the actual electric
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field amplitude in the active region, and the Bloch equations can be simplified to
a space-independent form:

∂

∂t
pcv(t)

∣∣∣
c–f

= −
[
i(ωcv − ω) +

1

T2

]
pcv(t)

− i
μcvE(t)

2�
(ρe,c(t) + ρh,v(t) − 1) , (2.54a)

∂

∂t
ρe,c(t)

∣∣∣
c–f

=Im (p∗
cv(t)μcvE(t)) , (2.54b)

∂

∂t
ρh,v(t)

∣∣∣
c–f

=Im (p∗
cv(t)μcvE(t)) . (2.54c)

Defining the macroscopic polarization amplitude as the dipole density,

P (t) =
2

Vact

∑

c
s

μ∗
cvpcv(t) , (2.55)

where Vact ≡ ∫
d3r uP (r) is the active region volume, we are able to write the

electric field dynamics as

∂

∂t
E(t) =

iωΓ

2ε0εbg

2

Vact

∑

c
s

μ∗
cvpcv(t) − κE(t) . (2.56)

This equation together with Eqs. (2.54) then form the Maxwell-Bloch equations,
determining the light-matter interaction in the semiconductor device.
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2.4 Quantum-Dot Laser Rate Equations

2.4.1 Maxwell-Bloch Laser Rate Equations

We now apply the previously derived dynamic equations to the considered quan-
tum-dot optoelectronic laser devices. In order to accurately describe its dynamics,
the behavior of the optically interacting quantum-dots as well as the charge car-
riers in the surrounding quantum-well structure must be taken into account. The
InAs/InGaAs quantum-dots considered here are supposed to contain two local-
ized electron and hole levels, the energetically lowest one denoted as the ground
state, the higher one as excited state. Simpler models treating the quantum-dot
confinement potential as a harmonic oscillator potential lead to a two-fold degen-
erate excited state due to the rotational symmetry with respect to the growth axis
[NIE04]. More realistic models, however, lift this degeneracy [SCH07f]. Nevertheless,
the difference in the localization energy between the two first excited states is in
the order a few meV, and is thus neglected in the following. Additional to the
electronic degeneracy due to the geometric shape of the QDs, all states are as-
sumed to be twofold spin-degenerate. The energy band structure of the considered
quantum-dot structure is schematically depicted in Fig. 2.5.

As seen in Sect. 2.2.1, the carrier scattering into the quantum-dot states strongly
depends on the occupation of the surrounding carrier reservoir states. Thus, in
order to dynamically account for the scattering processes, the charge-carrier dy-
namics in the reservoir must be taken into account. Following the argumentation of
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Figure 2.5.: Energy scheme of the considered dot-in-a-well (DWELL) structure. The
quantum-dot ground states lie ∆Eb below the quantum-well band edge, with an energy
spacing of ∆b between ground and frist excited state. Scap

b and Srel
b denote direct capture

and relaxation scattering processes, respectively.
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rapid equilibration of the charge carriers within the reservoir states, only the total
charge-carrier densities we, wh per unit area in the reservoir must be considered,
as the carrier distribution can be calculated from the corresponding quasi-Fermi
function.

In the following, let b ∈ {e, h} denote electrons and holes, and m ∈ {GS, ES}
quantum-dot ground and excited state, respectively, with νm their degree of degen-
eracy, excluding spin. The dynamic equation of the reservoir carrier density can
then in general be written as:

d

dt
wb =

J

e0
− rw

loss − 1

Aact

∑

m,i

2νm

[
Sin,cap

b,m,i ρb,m,i − Sout,cap
b,m,i (1 − ρb,m,i)

]
− ∂wb

∂t

∣∣∣
stim

,

(2.57)

where J is the electrical pump current density per unit area, e0 is the electron
charge, rw

loss is a general loss term, and Aact is the area of the active region. The
sum runs over all confined quantum-dot states in the mth quantum-dot excited
state, denoted by the index i, with the factor 2 accounting for spin degeneracy.
The stimulated recombination contribution is given by

∂wb

∂t

∣∣∣
stim

=
2

Aact

∑

k2D

Im
(
p2D

k

∗
(t)μ2D

k E(t)
)

, (2.58)

with the microscopic polarization and dipole moment of the corresponding k-state
p2D

k and μ2D
k , respectively. Under the assumption that the reservoir charge carriers

are in quasi-equilibrium, the dynamic equation for the reservoir polarization can
be written as

d

dt
p2D

k (t) = −
[
i(ω2D

k − ω) +
1

T2

]
p2D

k (t)

− i
μ2D

k E(t)

2�

(
f(ε2D

e,k, Eeq
F,e, T eq) + f(ε2D

h,k, Eeq
F,h, T eq) − 1

)
, (2.59)

with the transition frequency ω2D
k . The losses are modeled as

rw
loss = − BSwewh (2.60)

with a bimolecular recombination rate BS [SCH87], accounting for recombination
processes of an electron and a hole within the charge-carrier reservoir. The bi-
molecular recombination of charge carriers in the reservoir is assumed to be the
dominant process at the charge-carrier densities encountered in laser devices. In
order to model the full carrier-density dependent losses, one would need to take
linear losses, e.g., Shockley-Read-Hall recombination via trap states [SHO52], as well
as Auger-assisted recombination processes [BEA59] into account.
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f
j j j

Figure 2.6.: Illustration of the quantum-dot subgroups to model inhomogeneous broad-
ening. The QDs are distributed into jmax subgroups, assumed to follow a Gaussian
distribution around the mean transition energy 〈�ωj

m〉. The probability mass function
f(j) gives the probability for a quantum dot to be found in the jth subgroup.

The sum over all quantum-dot states i in Eq. (2.57) is equivalent to the sum over
all quantum-dots within the active region, which would require keeping track of each
individual quantum dot as a dynamic variable. As the number of quantum-dots
can easily exceed several million within a typical quantum-dot device, Eq. (2.57)
must be reformulated.

Individual quantum-dots within the active layer can differ in shape, size, and
material composition. The most apparent effect of these inhomogeneities between
different quantum-dots is the broadening of the absorption and emission spectra
of quantum-dot optical devices. This inhomogeneous broadening is due to the de-
pendence on the transition energy on the aforementioned quantum-dot parameters.
While a single quantum dot exhibits sharp transition energies, the quantum-dot
ensemble has a continuous spectrum, which can be accurately modeled by a Gaus-
sian distribution function of the quantum-dot energies around a mean value, with
a full-width-at-half-maximum (FWHM) of typically some 10 meV [NAM99].

We now characterize each quantum dot by its transition energy, distributing the
quantum-dot ensemble into different subgroups, labeled by the index j, with their
respective mean transition energy ωj

m. We introduce the probability mass function
f(j) denoting the ratio of QDs within the jth subgroup in relation to the total
quantum-dot number, as illustrated in Fig. 2.6. Following a Gaussian distribution,
f(j) is then given by

f(j) =
1

N exp

⎡
⎣−4 log 2

(
�ωj

m − 〈�ωj
m〉

∆Einh

)2
⎤
⎦ . (2.61)
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with the normalization constant N chosen such that
∑

j f(j)
!

= 1. For a continuous
distribution, one could analytically calculate a closed form for the normalization
constant. Due to the discreteness of the subgroups in the simulations, however,
N must be calculated numerically. The inhomogeneous broadening of the optical
spectra is given by the sum of the single-particle state broadenings,

∆Einh = ∆εe + ∆εh , (2.62)

where ∆εb is the corresponding electron and hole state broadening. Only the total
broadening ∆Einh is experimentally readily accessible, e.g., by measurements of
the quantum-dot luminescence spectra [LEI08]. For the individual state broadening
we assume widths proportional to the localization energy of the given state:

∆εb =∆Einh
∆Eb

∆Ee + ∆Eh
. (2.63)

Under the assumption that each quantum dot is fully characterized by its tran-
sition energy, i.e., the dynamics of QDs within the same subgroup is identical, the
quantum-dot ensemble can be described by a set of dynamic equations for all sub-
groups. This assumption is in general only approximately fulfilled, as the energy
of the confined quantum-dot states depends on a variety of parameters, such that
QDs with equal transition energy do not necessarily have to be identical, and their
dynamics could thus differ. By averaging the quantum-dot parameters over the
whole ensemble the resulting error should nevertheless be small.

For each quantum-dot subgroup a set of optical Bloch equations can be formu-
lated:

d

dt
pj

m(t) = −
[
i(ωj

m − ω) +
1

T2

]
pj

m(t) − i
μmE(t)

2�

(
ρj

e,m(t) + ρj
h,m(t) − 1

)
,

(2.64a)

d

dt
ρj

b,m(t) =
1

�
Im

(
pj

m
∗
(t)μmE(t)

)
− Wmρj

e,m(t)ρj
h,m(t) +

∂

∂t
ρj

b,m(t)
∣∣∣
sc

. (2.64b)

The dynamic variables pj
m(t), ρj

m,b(t) then describe the inter-band polarization
and occupation probabilities of electron and holes in the mth quantum-dot state
of the jth subgroup, respectively. In addition to the Bloch equations derived in
Eqs. (2.54), an additional term accounting for the spontaneous recombination of
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quantum-dot charge carriers has been introduced, with the recombination rate Wm.
The charge-carrier scattering contribution was derived in Eqs. (2.15):

∂

∂t
ρj

b,GS(t)
∣∣
sc

= Sj,cap
b,GS (t) + Sj,rel

b (t) , (2.65a)

∂

∂t
ρj

b,ES(t)
∣∣
sc

= Sj,cap
b,ES (t) − 1

2
Sj,rel

b (t) , (2.65b)

with the individual contributions

Sj,cap
b,m (t) =Scap,in

b,m (we, wh, T eq)[1 − ρj
b,m(t)]

− Scap,out
b,m (we, wh, T eq)ρj

b,m(t) , (2.66a)

Sj,rel
b (t) =Srel,in

b (we, wh, T eq)[1 − ρj
b,GS(t)]ρj

b,ES(t)

− Srel,out
b (we, wh, T eq)ρj

b,GS(t)[1 − ρj
b,ES(t)] . (2.66b)

Here, Scap,in
b,m and Srel,in

b describe the quantum-dot in-scattering rates by direct cap-
ture from the quantum well and by intra-dot relaxation from the ES to GS, respec-
tively, which depend nonlinearly on the carrier reservoir charge-carrier densities
and the quasi-equilibrium carrier temperature. The corresponding out-scattering
rates are calculated via detailed balance relations, Eqs. (2.22).

We consider only relaxation between quantum-dot states between the ground
and excited states of the same quantum-dot subgroup, i.e., we assume a direct
mapping of one specific excited state energy to a given ground-state energy. This
assumption is strictly valid only if the inhomogeneous broadening of the quantum-
dot states is due to the non-uniformity of one specific quantum-dot parameter.
As different quantum-dots might differ, e.g., both in size and shape, it might be
possible that any two given quantum-dots share the same ground-state energy but
have different excited-state energies, or vice versa. There is an ongoing discussion in
the literature whether the assumed one-to-one mapping of ground-state to excited-
state energies is valid [KAP14b, KAP14c], with experimental results supporting the
approximate validity of this assumption. We will therefore only consider the charge-
carrier relaxation between equal quantum-dot subgroups.

The dynamic equation for the reservoir charge-carrier densities, Eq. (2.57), can
be written as:

d

dt
wb(t) =

J

e0
− rw

loss(t) − 2NQD
∑

j,m

νmf(j)Sj,cap
b,m (t) − ∂wb

∂t

∣∣∣
stim

, (2.67)

where now the sum over all quantum-dot states was replaced by the sum over
all quantum-dot subgroups. The sheet density of quantum-dots within the active
region per quantum-well layer is given by NQD.
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Using Eqs. (2.55) and (2.56), the dynamic equation for the electric field amplitude
of the lasing mode can be written as

∂

∂t
E(t) =

iωΓ

ε0εbghQW

⎡
⎣2NQD

∑

j,m

νmf(j)μ∗
mpj

m +
2

Aact

∑

k2D

μ2D
k

∗
p2D

k

⎤
⎦ − κE , (2.68)

where we used Vact = aLAhQW, with hQW the height of a single quantum-well layer
and aL the number of quantum-well layers.

2.4.2 Adiabatically Eliminated Polarization

As a further simplification of the previously derived quantum-dot laser model, the
dynamics of the microscopic inter-band polarization can be eliminated. The reason-
ing behind this is the fast dephasing time T2 of the polarization, which is usually
in the order of ≈ 100 fs at room temperature [BOR01a, BOR02, VU06]. Considering
that the charge-carrier scattering times are commonly in the order of a few ps

[NIE04, MAJ10, WIL12b, STE13], and the photon lifetime in conventional Fabry-Perot
or DFB-type cavities is several ps, this assumption is in many cases justified. All
other dynamic variables can then be assumed to be slowly varying, such that the
microscopic polarization amplitudes follow a quasi-static relation given by

d

dt
pj

m(t) = 0 . (2.69)

Inserting the dynamic equation for the polarization Eq. (2.64a) then yields

pj
m(t) = − iT2

μmE(t)

2�

(
ρj

e,m(t) + ρj
h,m(t) − 1

)(
1 − iT2(ωj

m − ω)

1 + [T2(ωj
m − ω)]2

)
, (2.70)

with analogous expressions for the reservoir optical transitions. Inserting this ex-
pression in the charge carrier and electric field dynamic equations yields

∂

∂t
ρj

b,m(t) = − Re(gj
m)

(
ρj

e,m(t) + ρj
h,m(t) − 1

)
|E|2

− Wmρj
e,m(t)ρj

h,m(t) +
∂

∂t
ρj

b,m(t)
∣∣∣
sc

, (2.71)

∂

∂t
E(t) =g(t)E(t) − κE(t) , (2.72)

with the complex gain coefficient of each subgroup

gj
m =

T2|μm|2
2�2

(
1 − iT2(ωj

m − ω)

1 + [T2(ωj
m − ω)]2

)
. (2.73)
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2.4 Quantum-Dot Laser Rate Equations

Figure 2.7.: Lorentzian gain profile of a single optical transition. The real part of the
quantum-dot gain coefficient gj

m has a Lorentzian profile around the carrier frequency ω,
the imaginary part becomes extremal at |ω − ωj

m| = T2
−1, while vanishing for resonant

transitionts ω = ωj
m. Note the slower decay of the imaginary part compared to the real

part for optical frequencies far from the transition frequency.

The gain coefficients g2D
k for the quantum-well inter-band transitions can be written

in the same form. Equation (2.73) leads to a Lorentzian-shaped gain spectrum for
each individual optical transition, with a FWHM of 2�T2

−1. The corresponding
imaginary part of the gain vanishes directly at the transition but becomes large
at �ω ± �T2

−1 and then decays slowly towards higher detunings from the carrier
frequency ω, as illustrated in Fig. 2.7. This means that for large detuning of
the optical field frequency from a given optical transition, the imaginary part of
the gain coefficient will predominate. Thus, if we assume the lasing frequency is
detuned far enough from the reservoir transitions, we can neglect the real part of the
corresponding reservoir gain coefficients. This allows us to neglect the stimulated
recombination contribution in the dynamic equation for the reservoir charge-carrier
densities:

Re g2D
k ≈ 0 ⇒ ∂wb

∂t

∣∣∣
stim

≈ 0 . (2.74)

The resulting complex gain can then be written as

g(t) =
�ωΓ

ε0εbghQW

[
2NQD

∑

j,m

νmf(j)gj
m

(
ρj

e,m(t) + ρj
h,m(t) − 1

)

+
2i

Aact

∑

k2D

Im g2D
k

(
f(ε2D

e,k, Eeq
F,e, T eq) + f(ε2D

h,k, Eeq
F,h, T eq) − 1

) ]
. (2.75)

The downside of using the adiabatically eliminated polarization is the loss of op-
tical frequency dependence. By assuming ∂

∂tp
j
m(t) = 0, the response of the active

medium is fixed to a single frequency ω, since pj
m is the polarization within the ro-

tating frame of the carrier frequency ω. Taking the full polarization dynamics into
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2 Theory of Quantum-Dot Optical Devices

account, an electric field E(t) ∝ exp(−i∆ωt) would excite optical transitions at any
arbitrary frequency (ω + ∆ω). However, the adiabatically eliminated polarization
reacts to every electric field as if it was centered at the frequency ω. Thus, when a
spectrally broad electric field signal needs to be treated, the full polarization equa-
tions must be taken into account. For narrow signals, as, e.g., in single-mode laser
devices, the adiabatically eliminated polarization will yield satisfyingly accurate
results, with the advantage of lower complexity of the differential equation system.

2.4.3 Modeling of Spontaneous Emission

So far we have only considered the stimulated emission contributing to the electric
field in the laser cavity, but have neglected spontaneous emission. In a rigor-
ous derivation, spontaneous emission can only be derived from a fully quantum-
mechanical description of the electric field [HAK83a, LOU00], which goes beyond the
semi-classical picture used in this work. Instead, we will derive the spontaneous
emission terms phenomenologically from energy conservation criteria.

We have written the spontaneous charge-carrier losses in the quantum-dot states
as

∂

∂t
ρj

b,m(t)
∣∣∣
sp

= −Wmρj
e,mρj

h,m . (2.76)

The total energy lost by this recombination process can be calculated to

2ZQD
∑

j,m

νmf(j)Wmρj
e,mρj

h,m�ωj
m , (2.77)

with the total quantum-dot number ZQD. We now assume that only a fraction β of
the spontaneously recombining charge-carriers emit a photon into the lasing mode.
The remaining recombination processes are assumed to either be non-radiative, or
emit photons into other modes. The change in the optical energy density 〈uopt〉 in
the laser mode is thus given by

∂

∂t
〈uopt〉

∣∣∣
sp

= β
Γ2NQD

hQW

∑

j,m

νmf(j)Wmρj
e,mρj

h,m�ωj
m . (2.78)

From the electric field amplitude, the optical energy density can furthermore be
calculated to

〈uopt〉 =
εbgε0

2
|E|2 . (2.79)
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As the spontaneous emission process can be viewed as a stochastic process with
random phase, the contribution to the electric field can be written in terms of a
Gaussian white noise process:

∂

∂t
E(t)

∣∣∣
sp

=

√
Dsp

2
ξ(t) , (2.80)

with the complex white noise term ξ(t) = ξ′(t) + iξ′′(t), with ξ′, ξ′′ ∈ R, and the
spontaneous emission amplitude Dsp. The individual terms ξ′, ξ′′ are assumed to
be uncorrelated Gaussian white noise processes. From this the average change in
|E|2 can be shown to be [GAR06, FLU07]:

∂

∂t
〈|E(t)|2〉

∣∣∣
sp

= Dsp . (2.81)

Comparing Eqs. (2.78) and (2.81), the spontaneous emission strength is calculated
to

Dsp = 2β
Γ2NQD

εbgε0hQW

∑

j,m

νmf(j)Wmρj
e,mρj

h,m�ωj
m . (2.82)

Deterministic Approximation

The time-evolution of |E|2 can also be written as

∂

∂t
|E(t)|2 = 2|E| ∂

∂t
|E| , (2.83)

which leads to the deterministic approximation of spontaneous emission:

∂

∂t
E(t)

∣∣∣
sp

=
Dsp

2E∗
. (2.84)

While numerically easier to implement than the stochastic approach, this approx-
imation, however, diverges for E = 0. A description in the photon picture could
circumvent this problem.

2.4.4 Carrier-Induced Gain and Refractive Index Changes

From Eq. (2.72) it becomes clear that the real part of the gain coefficients gj
m

contribute to the amplitude gain or loss of the electric field. The imaginary parts
lead to a rotation of E(t) in the complex plane. Since E(t) is the slowly varying
amplitude of the electric field in a rotating frame with the carrier frequency ω, the
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imaginary part of the gain leads to a frequency shift of the electric field towards
ω − Im g(t).

This shift of the electric field frequency induced by interaction with the active
medium can be understood as a change in the optical length of the cavity due to
a change in refractive index. Writing the total medium susceptibility as

χ(t) = χbg + δχ(t) , (2.85)

with the charge-carrier-induced susceptibility δχ, which is related to the electric
field gain via

δχ(t) =
2εbg

iω
g(t) , (2.86)

results in a refractive index

n(t) =
√

1 + χ(t)

=

√
εbg +

2εbg

iω
g(t)

= nbg

√
1 +

2

iω
g(t)

≈ nbg

(
1 +

1

ω
Im g(t)

)
, (2.87)

where in the last line we assumed |g(t)| ≪ ω. Considering now a Fabry-Perot cavity
of length ℓ, the shifted resonance frequency ωC of the cavity can be calculated from
the resonance condition

ωC(t) = q
c0

2πℓn(t)

≈ q
c0

2πℓnbg

(
1 − 1

ω
Im g(t)

)

= ω − Im g(t) , (2.88)

with q ∈ N, and ω = qc0/(2πℓnbg). The above shows that the frequency shift
of the electric field is due to the shift of the cavity resonance frequency. This
argumentation is valid under the assumption of slowly varying g(t) in relation to
the cavity round-trip time, i.e., that the build-up of the standing electric field can
follow the induced refractive index changes adiabatically.

Equations (2.88) and (2.73) reveal that optical transitions with a higher energy
than the considered carrier frequency will lead to a negative non-zero contribution
to the imaginary part of the gain. Following Eq. (2.88), these transitions will there-
fore lead to a blue-shift of the resonance frequency with increasing population by
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charge carriers. Correspondingly, transitions at lower frequencies than the optical
field will lead to a red-shift. By taking into account only the imaginary part of
the gain coefficients of the reservoir states in Eq. (2.75), we neglect the optical
gain induced by these transitions, but still take into account the induced refractive
index changes.

The direct change of the refractive index by charge carriers in the states of the
off-resonant transitions is not the only mechanism by which the optical length and
thus the resonance frequency of the laser resonator can change. The charge carriers
that are lost in non-radiative recombination processes lead to a heating of the
semiconductor lattice by emission of phonons in addition to Joule-heating by the
applied current. Due to the expansion of the lattice by the increasing temperature
the physical length of the resonator increases, leading to a decrease of the resonance
frequency and thus a red-shift of the lasing wavelength. This temperature-induced
frequency shift is pronounced, e.g, in edge-emitting laser structures, where the
active medium runs across the whole length of the laser cavity. The small physical
footprint of vertical-cavity surface-emitting lasers (VCSELs) leads to a reduced heat
transfer to the surrounding medium or an attached heat sink and subsequently to
a pronounced heating of the semiconductor material and a red-shift [LIU05a].

Furthermore, not all optical transitions have been accounted for in the present
model. In addition to the direct optical transitions already considered, also transi-
tions between confined quantum-dot states and the continuum states of the reser-
voir involving only conduction band or valence band states are possible. The effect
of such transitions on the refractive index can be approximately expressed by a
modified Drude formula for the optical susceptibility [USK04, LI13b]. In the remain-
der of this work, we will, however, concentrate on the effects of direct inter-band
transitions.
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2 Theory of Quantum-Dot Optical Devices

2.5 Quantum-Dot Laser Carrier-Heating Model

Temperature effects in semiconductor optical devices have been previously shown
to be important for device design considerations. An increase in lattice and charge-
carrier temperature often leads to reduced efficiency and diminished device perfor-
mance [KLO99, ROS09a]. On the other hand, higher temperatures were shown, e.g.,
to improve the performance of mode-locked laser devices [CAT07]. Quantum-dot
lasers have been theoretically predicted to exhibit lower sensitivity to temperature
effects compared to quantum-well devices, due to their confined levels inhibiting
thermal escape of optically active carriers to the surrounding reservoir [ARA82].
Experimental findings in some cases confirm an improvement regarding tempera-
ture stability, especially in p-doped quantum-dot lasers [OTS04, TAN04, MIK05, SUG05],
while other results suggest a sensitivity to temperature in quantum-dot lasers that
is comparable to quantum-well devices [KLO99, SHC00]. Taking into account carrier
heating and temperature effects can therefore be important for a realistic modeling
of quantum-dot optical devices.

In the previous sections, the importance of charge-carrier scattering processes
in quantum-dot optical devices has been discussed. The involved Auger processes
enter the dynamic equations for the charge-carrier occupations and densities as
Boltzmann-like scattering terms. They lead to a redistribution of the charge carriers
between the reservoir and quantum-dot states, and, in the process, create so-called
hot electrons, which increase the charge carrier distribution temperature. In the
following, dynamic equations for the charge-carrier energy and thus the quasi-
equilibrium temperature will be derived by formulating energy balance equations
for the reservoir charge carriers. These equations can then be used to dynamically
include carrier heating in quantum-dot optical devices.

2.5.1 Charge-Carrier Energy and Temperature

As stressed in the previous sections, Auger processes conserve the total charge-
carrier energy by redistributing the charge-carrier population. Specifically, when
carriers from reservoir states scatter into the lower quantum-dot confined states,
energetically higher reservoir states will be occupied by the Auger-electron or hole.
A rigorous way to treat this Auger-heating would involve the description of all
k-states in the reservoir and resolving every possible scattering process in order to
determine the dynamic change of each k-state. As was detailed previously, such
an approach would be numerically very expensive.

Nevertheless, under the assumption of fast quasi-equilibration of the reservoir
carrier distributions, an alternative treatment of the Auger-induced carrier dis-
tribution changes can be formulated. In quasi-equilibrium, the carrier distribu-
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tion ρb,QW(ε2D
b,k) is given by the quasi-Fermi distribution f(ε2D

b,k, Eeq
F,b, T eq). In or-

der to fully characterize the carrier distribution, only the quasi-Fermi level and
quasi-equilibrium temperature must be known. While the quasi-Fermi level can
be inferred from the charge-carrier densities in the carrier reservoir, the quasi-
equilibrium temperature in most models is assumed to be constant, and thus Auger
heating as well as other heating effects are neglected. Here, an energy balance ap-
proach is presented that can be used to dynamically calculate the change of the
quasi-equilibrium charge-carrier temperature.

Carrier heating has been previously shown to crucially influence the performance
of electro-optic devices. For example in quantum-well lasers carrier heating has
been shown to contribute to the nonlinear gain compression, i.e., the reduction of
differential gain with increasing optical power [WAN97a]. In quantum-well optical
amplifiers it was shown that Auger-heating leads to a nonuniform carrier temper-
ature along the device [FEH02]. Carrier heating in quantum-dot lasers has a strong
impact on the charge-carrier scattering dynamics due to a change in the detailed
balance condition Eq. (2.22) with temperature [USK11], as well as a quantitative
change of the Auger-scattering rates [MAJ11].

The total kinetic energy density of the charge carriers in the reservoir states can
be written as

u =
∑

b

∞∫

−∞

dε2D
b,k Db(ε

2D
b,k) ε2D

b,k ρb,QW(ε2D
b,k) , (2.89)

which, under the assumption of a quasi-Fermi distribution in the reservoir states,
is related to the quasi-equilibrium charge-carrier temperature T eq via

ueq =
∑

b

∞∫

−∞

dε2D
b,k Db(ε

2D
b,k) ε2D

b,k

[
1 + exp

(
ε2D

b,k − Eeq
F,b

kBT eq

)]−1

. (2.90)

In the case of non-degenerate semiconductors, i.e., for small carrier numbers, the
charge carrier distribution in the continuum states approximately follow Boltzmann
statistics, and the charge carrier energy density and quasi-equilibrium temperature
are simply related via

ueq(we, wh, T eq)
∣∣
Boltzmann

≈
∑

b

∞∫

0

dε2D
b,k Db(ε

2D
b,k) ε2D

b,k exp

[
Eeq

F,b − ε2D
b,k

kBT eq

]

= kBT eq(we + wh) (2.91)

where, for simplicity, the corresponding band edge energies were set to zero.
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Generally, however, semiconductor optoelectronic devices can exceed the low-
density limit and the above approximation cannot be applied. Instead, the full
expression Eq. (2.90) which takes the quasi-Fermi statistics into account must be
evaluated.

The quasi-Fermi levels in the reservoir Eeq
F,b can be expressed in terms of the

charge-carrier densities wb by using Eq. (2.19). The total charge-carrier energy
density then becomes a function of the carrier densities and their quasi-equilibrium
temperature: ueq ≡ ueq(we, wh, T eq). For constant we and wh, the quasi-
equilibrium energy density increases monotonically with the temperature. As such,
it is possible to invert the function ueq(we, wh, T eq) and instead calculate the quasi-
equilibrium carrier temperature from the charge-carrier densities and energy den-
sity:

T eq ≡ T eq(we, wh, ueq). (2.92)

In order to calculate the dynamic changes of the charge carrier temperature
during operation of the optoelectronic device, dynamic equations for the charge
carrier energy must be formulated.

2.5.2 Carrier Heating by Auger-Scattering Processes

The change of the total kinetic charge carrier energy due to Auger-scattering pro-
cesses can be determined by calculating the net energy change of the reservoir
charge carriers involved in each considered scattering process. This is illustrated
in Fig. 2.8. In a charge carrier capture event, a quantum-well charge carrier at en-
ergy ε1 (relative to the quantum-well band edge EQW

b,0 ) fills a vacant quantum-dot
state with energy εQD, under scattering of a quantum-well carrier from ε2 to the
vacant state ε3, where energy conservation dictates ε3 = ε2 + (ε1 − εQD). The total
quantum-well energy change is thus ∆UQW = ε3 −ε2 −ε1 = εQD, and thus equal to
the localization energy of the involved quantum-dot state. Similarly, for intra-dot
scattering from the excited to the ground state, a net energy equal to the GS-ES
separation ∆b is added to the total quantum-well charge carrier energy.

Considering now all possible Auger-scattering processes in the considered system,
the change of the reservoir energy density due to this scattering can be written as:

∂u

∂t

∣∣∣
Auger

=
∑

b

2NQD
∑

j,m

νmf(j)(EQW
b,0 − εQD,j

b,m )Sj,cap
b,m

+
∑

j

νGSf(j)(εQD,j
b,ES − εQD,j

b,GS )Sj,rel
b . (2.93)

44



2.5 Quantum-Dot Laser Carrier-Heating Model

E
n
e
rg
y (a) (b)

e

e

QW QW

ES

GS

ES

GS

Figure 2.8.: Mechanism of Auger-heating in quantum-dot devices, shown representatively
for electrons only. (a) Direct capture processes: a carrier with energy ε1 relative to the
quantum-well (QW) band edge EQW

b,0 scatters in to a quantum-dot state εQD below the
band edge, while another carrier in the QW gains kinetic energy equal to ε1 + εQD. The
net energy change in the QW is then εQD. (b) Relaxation process: a carrier relaxes from
the quantum-dot excited state (ES) into the ground state (GS). The Auger electron in
the QW adds a net energy of ∆e to the total QW charge-carrier energy.

Here, Sj,cap
b,m and Sj,rel

b denote the net scattering rates for capture and relaxation
processes, respectively, as defined in Eq. (2.66).

2.5.3 Energy Balance Equations

In addition to the above-mentioned contribution of Auger-heating, other mecha-
nisms that influence the charge carrier energy need to be be considered. Not only
the scattering of charge carriers with quantum-dot states will change the carrier
energy density, but also the scattering of carriers into the reservoir by the pump-
ing process. As the charge carriers can be expected to be thermalized with the
lattice when they reach the bulk material surrounding the active medium, the en-
ergy gained by the capture of a pump carrier into the reservoir is roughly given by
the band-gap energy spacing between the reservoir and bulk materials. We thus
assume an average pump energy of εpump per charge carrier. The corresponding
contribution to the energy density balance is therefore:

∂u

∂t

∣∣∣
pump

=
J

e0
εpump (2.94)

Furthermore, the spontaneous recombination of charge carriers in the reservoir
will effectively remove energy from it. Here, we assume that the recombination is
equally probable for all reservoir carriers, i.e., a recombination event will remove

45



2 Theory of Quantum-Dot Optical Devices

twice the average charge carrier energy 〈u(t)〉 ≡ u(we + wh)−1 from the reservoir,
as both an electron and a hole are simultaneously annihilated in the process:

∂u

∂t

∣∣∣
rec

=
∂(we + wh)

∂t

∣∣∣
rec

〈u(t)〉 = −2BSwe(t)wh(t)

we(t) + wh(t)
u(t) (2.95)

Lastly, we have to consider the cooling of the charge carrier gas due to the
interaction with lattice phonons. Here, carriers interact with the lattice by emitting
a phonon, effectively removing the phonon energy from the total charge carrier
energy. This process will cool the carriers towards the lattice temperature Tℓ. We
assume that the rate of cooling is proportional to the excess energy of the charge
carrier gas with respect to the thermal energy it would have at Tℓ:

∂u

∂t

∣∣∣
phon

= −γp [u(t) − ueq(we, wh, Tℓ)] (2.96)

The carrier-phonon interaction rate γp is a measure for the timescale on which the
carriers are cooled.

Collecting all the above contributions to the energy density balance, we can write
the dynamic equation for u(t) as

d

dt
u(t) =

∂u

∂t

∣∣∣
pump

+
∂u

∂t

∣∣∣
rec

+
∂u

∂t

∣∣∣
Auger

+
∂u

∂t

∣∣∣
phon

. (2.97)
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3.1 Introduction

The stability of semiconductor laser operation plays a crucial role in almost ev-
ery possible application of these devices [ERN10b, LUE11b, CHO13a, OTT14]. In most
fields of operation, one would require a stable steady-state output with constant
intensity that follows any change in external operating parameters instantaneously,
thus enabling, e.g., arbitrarily fast switching of the laser output. In reality such
requirements can naturally never be met.

The semiconductor laser itself is a nonlinear dynamical system which can exhibit
a variety of dynamical instabilities and nonlinearities with respect to parameter
changes. In a dynamical sense, the appearance of different solutions and their
bifurcations then determine which types of operation are experimentally accessible.
In order to understand and correctly predict the laser behavior in different setups,
a thorough analysis of the quantum-dot laser system is required. By means of
such analysis, one can predict and explain the performance of the laser device
under different types of applications as well as determine the stability of different
types of solutions. Furthermore, the effects of noise, which is omnipresent in the
real world, e.g., due to spontaneous emission of photons or charge carrier injection
noise, can be discussed, and the sensitivity of the different solutions to noise can
be assessed.

As shown in Chapter 2, the charge carrier dynamics in semiconductor quantum-
dots strongly depend on the scattering processes between the quantum-dot states
and the surrounding charge carrier reservoir. The scattering rates for these pro-
cesses are in itself highly nonlinear, depending on the reservoir carrier densities
and temperature. Compared to conventional bulk and quantum-well semiconduc-
tor lasers, where charge carrier equilibration happens on a fast timescale, the carrier
dynamics between the quantum-dots and the surrounding material is of the same
order as other dynamic timescales. Carrier scattering thus plays an important
role in quantum-dot lasers, and its effects become evident in many experimental
observations [LUE09, MAJ10].
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In this chapter the dynamics of quantum-dot lasers will be discussed with focus
on the underlying charge-carrier scattering dynamics. The properties and behavior
of solitary and directly modulated quantum-dot lasers as well as setups with optical
injection or feedback will be discussed. Here, interference effects and thus the phase
dynamics of the electric field play an important role. It will be shown that the
carrier scattering sensitively influences these phase dynamics by a dynamic shift of
the active medium refractive index, which gives rise to important differences in the
dynamic response of quantum-dot lasers when compared to conventional lasers.

In Section 3.2, the relaxation oscillations of quantum-dot lasers will be inves-
tigated and compared to the predictions of established rate-equation systems.
We will determine the dependence of the relaxation oscillation parameters on the
charge-carrier scattering rates in quantum-dot lasers and identify different dynamic
regimes of laser operation. We then present a minimal rate-equation model for
quantum-dot lasers in Section 3.3. This model is used to identify the key aspects
of charge-carrier dynamics that determine the unique features of quantum-dot laser
dynamics. Analytical expressions for the relaxation oscillation damping and fre-
quency in the limits of slow and fast charge-carrier scattering will be derived.

We will discuss the quantum-dot laser response to direct modulation in Sec-
tion 3.4, emphasizing the dependence of the small-signal response on the charge-
carrier scattering rates. Important differences of the modulation behavior of quan-
tum-dot lasers compared to conventional laser devices will be presented.

In Section 3.5, we will investigate the dynamics of carrier-induced refractive-index
changes in quantum-dot lasers. We will discuss the applicability of the commonly
used linewidth enhancement factor α in quantum-dot lasers and highlight impor-
tant effects in the frequency-response of quantum-dot lasers to external perturba-
tions. These lead to important differences to the behavior of conventional laser
devices when discussing optical interactions. The quantum-dot laser dynamics un-
der optical injection will thus be discussed in Section 3.6, where we will compare
the predictions of our quantum-dot laser model with those using an α-factor. In
Section 3.7, we will subsequently simplify our laser model and make it suitable
for implementation in path-continuation tools, allowing for the investigation of the
detailed bifurcation structure of the quantum-dot laser under optical injection. We
will extend the investigation to the application of time-delayed optical feedback in
Section 3.8.

Then, we will discuss the frequency chirp and modulation of the quantum-dot
laser in response to generalized, frequency-dependent external modulations in Sec-
tion 3.9, again highlighting the unique features of quantum-dot lasers due to their
complex charge-carrier scattering dynamics. Finally, a conclusion will be given in
Section 3.10.
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3.2 Laser Dynamics – Relaxation Oscillations

In general, the dynamics of lasers is determined from the interaction between the
electric field, the inter-band polarization of the active medium, and the charge
carrier dynamics. A classification of lasers due to Arecchi et al. [ARE84] characterizes
lasers by the order of magnitude of characteristic dynamic timescales of these three
parts:

• Class-C lasers are characterized by timescales of the polarization dephasing,
charge carrier decay, and cavity photon lifetime on the same order of magni-
tude. Their dynamics is characterized by the interaction of all three values.
Most importantly, solitary class-C lasers can exhibit deterministic chaos af-
ter a so-called second laser threshold [OHT06, ZEG88]. This behavior can be
explained by the formal identity of the class-C Maxwell-Bloch laser equa-
tions to the Lorenz-Haken equation system, which is known to exhibit chaos
[WEI88, NIN90]. Examples for class-C lasers include NH3, Ne-Xe, and infrared
He-Ne lasers.

• In class-B lasers the polarization dephasing lifetime is much smaller than the
corresponding photon and carrier lifetimes. The polarization will therefore
adiabatically follow the changes in both photon and carrier number. As such,
no independent motion of the polarization is possible, reducing the dynamical
dimension by one. Class-B lasers include CO2 lasers and most semiconductor
lasers.

• Class-A lasers possess photon lifetimes much longer than both the polariza-
tion and charge carrier lifetimes. Only the optical intensity remains as a
dynamical variable, with both the charge carrier number and polarization
adiabatically following its time evolution. With only one dynamic degree of
freedom left, class-A lasers cannot exhibit chaos or oscillations. Examples for
class-A lasers are dye lasers and visible He-Ne lasers [OHT06].

3.2.1 Relaxation Oscillations in Two-Variable Laser Equations

Semiconductor lasers, including quantum-dot lasers, are generally class-B lasers. As
such, they exhibit dynamical behavior that is characterized in most parts by the
two-dimensional phase-space given by the optical power (or field amplitude) and the
gain, given by the inversion of the optically resonant transitions. Within this effec-
tively two-dimensional phase-plane the laser can exhibit damped oscillatory motion
about the fixed point, known as relaxation oscillations (ROs). These oscillations

Parts of this section have been published in [LIN12, LIN14].
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3 Quantum-Dot Laser Dynamics

can be modeled using a simple two-variable rate-equation system [ERN10b, COL12a]

for the total charge carrier number N and photon number S:

d

dt
N = J − 2gNS − 1

T1
N (3.1a)

d

dt
S = 2gNS − 2κS , (3.1b)

with a normalized pump current J , a gain coefficient g, the carrier decay time T1,
and the photon decay rate 2κ. The stimulated emission term 2gN(t)S(t) defines
the nonlinearity that is the driving source of the laser action and is included in all
laser models. An analysis of the fixed points of above equations, i.e. the points
which fulfill dN

dt = dS
dt = 0, readily yields the fixed point of the non-lasing state

N∗ =
J

T1
S∗ = 0 , (3.2)

and the lasing state

N∗ =
κ

g
S∗ =

1

2κ
(J − Jth) , (3.3)

where the threshold pump current Jth = κ
gT1

was introduced, below which S∗ ≤ 0,
i.e., the laser is off. The lasing state is characterized by a linearly increasing photon
number with J , and a constant carrier number N∗ = Nth. The gain is therefore
clamped to the threshold gain value, where it first becomes equal to the optical

losses. This is a direct consequence of the lasing condition 2gN
!

= 2κ, i.e., the gain
exactly cancels out the optical losses in the steady-state.

In order to derive the stability of the above fixed points, the differential equation
system will be linearized. In the vicinity of the fixed point solution, i.e., δN ≡
(N − N∗), δS ≡ (S − S∗) are assumed to be “small”, the system can be assumed
to follow linear dynamics. We can thus write

d

dt
δN =

∂

∂N

[
dN

dt

]∣∣∣∣
N∗

δN +
∂

∂S

[
dN

dt

]∣∣∣∣
S∗

δS , (3.4)

with an analogous expression for d
dtδS. The time evolution can be written using

the system’s Jacobian matrix:

d

dt

⎛
⎝δN

δS

⎞
⎠ = J

⎛
⎝δN

δS

⎞
⎠ . (3.5)
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This linearized equation can be solved by using an exponential ansatz. We thus
write δN ≡ δ̂Neλt, with some constant δ̂N . Using the same ansatz for δS, Eq. (3.5)
can be written as

λ

⎛
⎝δ̂N

δ̂S

⎞
⎠ = J

⎛
⎝δ̂N

δ̂S

⎞
⎠ . (3.6)

The above is then an eigenvalue problem, with λ, (δ̂N, δ̂S)T being the eigenval-
ues and eigenvectors of J , respectively. The eigenvalues allow for a classification

of the fixed point as either stable or unstable. For λ > 0, the small deviation
from the fixed point will grow exponentially in time, and the system will move
away from the fixed point, making it unstable. On the other hand, if λ < 0, the
system will asymptotically approach the fixed point – the system is then called
asymptotically stable [SCH07]. The so-called Lyapunov-exponents λ furthermore
allow for the distinction between oscillating and simple decaying solutions. If a
pair of complex-conjugate Lyapunov-exponents with non-vanishing imaginary part
exist, the system will perform oscillations around the fixed point, with an angular
frequency given by the absolute value of the imaginary part.

We now apply the linear stability analysis to the two-variable rate-equation sys-
tem. The eigenvalues of the Jacobian at the lasing fixed point, Eq. (3.3), can be
calculated to

λ1,2 = −1

2

(
2gS∗ +

1

T1

)
± i

√

4κgS∗ − 1

4

(
2gS∗ +

1

T1

)2

≡ ΓRO ± i
√

ω2
res − Γ2

RO . (3.7)

Here, the relaxation-oscillation damping rate ΓRO as well as the relaxation-oscillation
resonance frequency ωres was introduced. The fact that the real part of the eigen-
values is always negative (or, ΓRO positive) for all J > Jth, means that the lasing
fixed point is always stable, and slight deviations from it will decay in time with the
relaxation-oscillation damping rate. Furthermore, oscillations about the fixed point

with the angular frequency ωRO ≡
√

ω2
res − Γ2

RO will appear, provided ΓRO < ωres.
The fixed point is thus a stable focus. As can be seen, the relaxation oscillation
damping ΓRO scales linearly with the steady-state laser intensity, whereas the os-
cillation frequency scales with its square root. For increasing power, the relaxation
oscillations will therefore become less pronounced.

The relaxation oscillations are illustrated in Fig. 3.1 a and 3.1b, showing the
time-series of the two dynamic variables and the trajectory in the (N, S)-phase-
space, using Eqs. (3.1). Clearly visible are the damped relaxation oscillations in
both dynamic variables. When the trajectory is still far from the fixed point, the
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Figure 3.1.: Relaxation oscillations after the laser turn-on in a two-variable laser rate-
equation system from simulation of Eqs. (3.1) with T1 = 1, g = 1, 2κ = 25, J = 50 =

2Jth, and S(0) = 0.01, N(0) = 0. (a) Time-series of the normalized optical power S/S∗

and the normalized charge carrier number N/N∗. (b) Trajectory in the (N, S)-phase-
space.

oscillations are highly anharmonic, owing to the nonlinearity in the rate equations,
and only become harmonic close to the fixed point.

The relaxation oscillations of a laser define the laser response to small perturba-
tions from its lasing fixed point. Therefore, the relaxation oscillation damping and
frequency already can give an indication about the stability properties of lasers, as
well as its small-signal modulation capabilities. For example, when the laser oper-
ation is perturbed by optical feedback, e.g. due to reflections, the critical feedback
strength needed to destabilize the cw operation of the laser is directly proportional
to the relaxation-oscillation damping ΓRO [MOR92, LEV95, OTT10]. In applications
where a constant output power is required, strong damping of the relaxation os-
cillations is therefore favorable. The relaxation-oscillation frequency is important
for modulation applications, as a modulation of the laser with a frequency near
ωRO can resonantly excite relaxation oscillations and lead to unwanted nonuniform
laser responses [CHU95], as will be discussed in Sec. 3.4.

From Eq. (3.7) it can be seen that the charge carrier lifetime T1 enters in both
the frequency and damping of the relaxation oscillations. In the case of quantum-
dot lasers, it is in general not possible to assign a single characteristic lifetime to
the charge carriers, due to the coupling of quantum-dot and reservoir states. The
relaxation oscillation behavior of quantum-dot lasers can therefore be expected to
differ from conventional lasers and to depend on the scattering lifetimes as well as
the respective charge carrier decay (recombination) times. In the following sections,
the dependence of the relaxation oscillation dynamics in quantum-dot lasers and
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3.2 Laser Dynamics – Relaxation Oscillations

their dynamical performance on the underlying scattering processes and charge
carrier dynamics will be discussed.

3.2.2 Turn-On Dynamics of Quantum-Dot Lasers

We now utilize the quantum-dot laser rate equations derived in Section 2.4 to simu-
late the turn-on dynamics of quantum-dot lasers. We consider a 1.2 mm long ridge
waveguide edge-emitting dot-in-a-well (DWELL) single-mode laser device, with a
number of aL = 15 stacked InGaAs quantum-wells, each embedding a density of
NQD InAs quantum-dots. We consider an emission wavelength around λ = 1.3µm

and set the carrier-frequency of our rotating frame to ω = 230 THz. The quantum-
dots are assumed to have a localized ground-state and a twofold degenerate excited
state both for electrons and holes, each with an additional twofold spin-degeneracy.

The equations governing the dynamics of charge carriers in the device are thus
given by:

d

dt
wb =

J

e0
− BSwewh − 2NQD

∑

j,m

νmf(j)Sj,cap
b,m , (3.8)

d

dt
ρj

b,m = − Re(gj
m)

(
ρj

e,m + ρj
h,m − 1

)
|E|2 − Wmρj

e,mρj
h,m + Sjcap

b,m ± 1

νm
Sj,rel

b

(3.9)

where the carrier relaxation rate enters with a positive (negative) sign for m = GS

(m = ES). The charge-carrier in-scattering rates S
cap/rel,in
b,m (we, wh, T eq) are precal-

culated for the reservoir carrier densities and temperature commonly encountered
in the quantum-dot laser and implemented as look-up tables in the simulations to
minimize computational effort.

The electric field dynamics are written as

d

dt
E =(g(t) − κ)E +

∂

∂t
E
∣∣∣
sp

. (3.10)

with the complex optical gain given by the sum over all quantum-dot subgroup
gain coefficients,

gj
m =

T2|μm|2
2�2

(
1 − iT2(ωj

m − ω)

1 + [T2(ωj
m − ω)]2

)
, (3.11)
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as well as the frequency shift induced by the quantum-well transitions in quasi-
equilibrium approximation,

δωQW = − �ωΓ

ε0εbghQW

2

Aact

∑

k2D

Im g2D
k

(
f(ε2D

e,k, Eeq
F,e, T eq) + f(ε2D

h,k, Eeq
F,h, T eq) − 1

)
.

(3.12)

The gain can then be written as

g(t) =
�ωΓ

ε0εbghQW
2NQD

∑

j,m

νmf(j)gj
m

(
ρj

e,m(t) + ρj
h,m(t) − 1

)
− iδωQW . (3.13)

The spontaneous emission is included deterministically, by using

∂

∂t
E(t)

∣∣∣
sp

=
1

2E∗

4βΓNQD

εbgε0hQW

∑

j,m

νmf(j)Wmρj
e,mρj

h,m�ωj
m . (3.14)

The charge-carrier distribution temperature is calculated dynamically from the
energy density balance equations as derived in Se. 2.5.2

d

dt
u =

du

dt

∣∣∣
pump

+
du

dt

∣∣∣
rec

+
du

dt

∣∣∣
Auger

+
du

dt

∣∣∣
phon

. (3.15)

The above coupled differential equation system describes the complete dynamics of
the quantum-dot laser active medium with a separate treatment of electrons and
holes in the inhomogeneously broadened first two localized quantum-dot states as
well as in the surrounding quasi-two-dimensional charge carrier reservoir, taking
microscopically calculated Auger-scattering rates into account. The carrier-induced
gain and refractive index change is calculated separately for each optical transition,
driving the light-matter interaction.

In the following sections the above equations are solved numerically, using the
simulation parameters given in Table 3.1, and the quantum-dot structure as illus-
trated in Fig. 3.2.

Figure 3.2: Energy scheme of the localized quantum-dot
states, unless stated otherwise. The energy spacings
are given in meV. The reservoir band edges are shown
by the light-blue shaded areas.
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Table 3.1.: Parameters used in the quantum-dot laser simulations, unless stated otherwise.

Symbol Value Meaning

NQD 1011 cm−2 QD density per layer

aL 15 number of layers

hQW 5 nm QW layer height

nbg 3.77 background index

ΔEinh 40 meV QD inhomogeneous broadening FWHM

BS 540 nm2 ns−1 QW bimolecular recombination rate

WGS 0.44 ns−1 GS spontaneous recombination rate

WES 0.55 ns−1 ES spontaneous recombination rate

β 2 × 10−3 spontaneous emission ratio

µm 0.6 nm e0 QD transition dipole moment

µQW 0.5 nm e0 QW transition dipole moment

T2 100 fs QD polarization dephasing time

Γ 0.03125 Geometric confinement factor

κ 50 ns−1 optical loss rate

γp 0.2 ps−1 carrier-phonon interaction rate

εpump 0.23 eV charge carrier pump energy

ΔEe(ΔEh) 64 meV (35 meV) electron (hole) QD GS localization energy

Δe(Δh) 50 meV (20 meV) electron (hole) QD GS-ES energy spacing

The light-current characteristic of the modeled quantum-dot laser device is shown
in Fig. 3.3, along with the steady-state charge-carrier densities per quantum-well
layer in the quantum-dot and quantum-well reservoir states:

nQD
m = 2NQD

∑

j

νmf(j)
(
ρj

e,m + ρj
h,m

)
(3.16a)

nQW = we + wh . (3.16b)

After the threshold current is reached, the output power increases linearly with the
pump current and the quantum-dot ground-state carrier density is clamped to its
threshold value. These characteristics closely resemble the behavior of the simple
two-variable rate-equation system, Eqs. (3.1). The off-resonant charge carriers
in the excited and reservoir states, however, keep increasing above their threshold
values, shown by the dashed horizontal lines in Fig. 3.3. This is a direct consequence
of the scattering processes filling the active quantum-dot states: In the steady
state the ground-state charge carriers lost in stimulated emission processes, i.e.,
the lasing action, must be replenished by the in-scattering of charge carriers from
the other states. Since the laser intensity increases with current, the increase in
stimulated losses must be compensated by higher in-scattering of charge carriers,
which thus necessitates higher carrier occupations in the other states. The charge
carrier occupations in quantum-dot lasers are therefore not clamped [LUE10], in
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Figure 3.3.: Simulated quantum-dot laser light-current characteristics. Shown is the
laser output power (red), total quantum-dot ground-state (GS) carrier density (green),
quantum-dot excited-state (ES) density (cyan) and quantum-well (QW) density (blue)
in each QW layer, all in dependence on the pump current normalized to the threshold
current Jth. The horizontal dashed lines show the respective values at the threshold
current.

contrast to simpler laser models. This will lead to important differences in the
dynamical behavior of quantum-dot laser compared to conventional lasers, as will
be shown in the following sections.

The steady-state characteristics shown in Fig. 3.3 depict the dependence of the
stationary steady-state values of the output power and carrier densities. For a char-
acterization of the dynamic properties, the time-dependence of the laser variables
must be investigated. We thus integrate the quantum-dot laser equations in time
after the onset of the pump current. The resulting turn-on dynamics at a pump
current of twice the threshold current Jth are shown in Fig. 3.4.

The intensity time-series, Fig. 3.4 a, reveals an intensity peak after a turn-on
delay time of about 600 ps and subsequent strongly damped relaxation oscillations.
This comparably high damping is characteristic of quantum-dot lasers and has been
related to the charge-carrier scattering dynamics between the localized quantum-
dot and reservoir states as a limiting factor [HEI01, KUN02, ISH07, LUE10]. The turn-on
trajectory plotted in the phase-space spanned by the output power and the total
quantum-dot ground-state charge-carrier density (nQD

e + nQD
h ) in Fig. 3.4 b show

a qualitative similar behavior as the simple two-variable rate equations shown in
Fig. 3.1 b, i.e., the fixed point is a stable focus as well, albeit with much higher
damping.
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Figure 3.4.: Simulated quantum-dot laser turn-on dynamics. (a) Time-series of the out-
put power after onset of the pump current at t = 0. (b) Phase-space trajectory in
the phase-space spanned by total quantum-dot ground-state carrier density and output
power. (c) Phase-space trajectory in the phase-space spanned by total quantum-dot
carrier density and total reservoir carrier density.

The phase-space plot in Fig. 3.4 c shows the trajectory in the quantum-dot -
quantum-well charge-carrier density phase-space. Here, also a spiraling motion into
the fixed point is visible. This reveals a phase-shift between the oscillations in the
corresponding charge-carrier ensembles, i.e., the carrier reservoir and quantum-dot
carriers exhibit desynchronized dynamics. A constant quasi-equilibrium between
the different charge-carrier sub-ensembles would translate to a functional depen-
dence of nQD

b on wb, and vice versa, from which the shown result (Fig. 3.4) clearly
deviates. The nonequilibrium description of the charge carriers in quantum-dot
devices is therefore required and leads to important dynamic effects, as will be
shown in the following sections.

3.2.3 Influence of Charge-Carrier Scattering

As detailed before, the charge-carrier scattering processes in quantum-dot lasers
are an important aspect that distinguishes them from conventional quantum-well
or bulk lasers. We will therefore investigate the dependence of the quantum-dot
laser dynamics on the timescales of the involved scattering processes. The exact
numeric value of the scattering rates can depend on the operating current and tem-
perature [MAJ11], the material composition [NIE04, NIE05], the quantum-dot size, or
the dimensionality of the carrier reservoir [WIL12b]. The scattering rates can there-
fore vary between different devices and applications. In order to understand the
quantum-dot laser dynamics, a systematic study of the influence of the scattering
processes is thus needed.
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The scattering contribution to the quantum-dot ground-state carrier occupation
is given by

d

dt
ρj

b,GS

∣∣
sc

= Sj,cap
b,GS + Sj,rel

b

=
(
Scap,in

b,GS + Srel,in
b ρj

b,ES

)
(1 − ρj

b,GS)

−
(
Scap,out

b,GS + Srel,out
b (1 − ρj

b,ES)
)

ρj
b,GS . (3.17)

Looking now at a small deviation δρ from the steady-state value of ρj
b,GS, the above

equation can be linearized in ρj
b,GS and rewritten as

d

dt
δρ = −δρ

τb
, (3.18)

where the effective scattering lifetime τb was introduced, given by

τb
−1 = Scap,in

b,GS + Scap,out
b,GS + Srel,in

b ρj
b,ES + Srel,out

b (1 − ρj
b,ES) , (3.19)

which allows for a characterization of the scattering processes by a single value. The
scattering processes will thus drive the occupation after a small perturbation back
towards the steady-state value, with a time constant given by this effective scat-
tering lifetime. This makes τb experimentally accessible, e.g, by pump-probe mea-
surements of the gain recovery of quantum-dot lasers or amplifiers, which measure
the time-dependence of the optical gain after an optical excitation which depletes
the initial carrier occupation of the system [BOR00, DOM07, PIW07, GOM08, KAP14c].
Provided the initial depletion is not too large, the subsequent gain recovery can be
fitted by a single-exponential recovery, which then yields the effective scattering
lifetime as the time constant. For strong perturbation, however, the linearization
approach used to derive τb no longer holds, and also the charge carriers in the ex-
cited and reservoir states will be depleted, which introduces a nonlinear recovery,
as the individual scattering rates depend on these occupations.

We now proceed by analyzing the quantum-dot laser dynamics in dependence
on the scattering rates. In order to isolate their effects, we start from the micro-
scopically calculated rates and introduce a common constant scaling factor to all
individual scattering rates. As before, we simulate the turn-on dynamics of the
quantum-dot laser with three different scaling factors, leading to effective scatter-
ing lifetimes τb in the steady-states. The resulting turn-on curves are shown in
Fig. 3.5 a. Both for the fast scattering τ−1

e = 1012 s−1 (red) and the slow value
τ−1

e = 1010 s−1 (blue) the laser exhibits relatively strong relaxation oscillations af-
ter turn-on. For intermediate rates, the quantum-dot laser exhibits an overdamped

58



3.2 Laser Dynamics – Relaxation Oscillations

Figure 3.5.: Simulated quantum-dot laser turn-on dynamics for fast (red), intermediate
(green), and slow (blue) scattering. (a) Time-series of the normalized output power
Pnorm after onset of the pump current at t = 0. (b) Phase-space trajectory in the phase-
space spanned by total quantum-dot carrier density and output power. (c) Phase-space
trajectory in the phase-space spanned by total quantum-dot carrier density and total
reservoir carrier density. (d) Phase-space trajectory in the phase-space spanned by total
reservoir carrier density and the normalized output power. The laser was biased at twice
the threshold current in each case. After [LIN12].

response, with a steady decay of the output power towards the steady-state value
without oscillations.

Taking into account the expression for the relaxation oscillation frequency and
damping determined from the simple two-variable rate-equation system, Eq. (3.7),
the damping could be expected to grow linearly with the inverse carrier lifetime
T1

−1. As the effective scattering lifetime enters the linearized equation Eq. (3.18)
in the same form as T1 in Eqs. (3.1), the damping could be expected to grow
with τ−1

e , which is also supported by analytical treatment of more sophisticated
quantum-dot models [LUE11]. The corresponding behavior can be observed when
increasing the scattering rates from the slow to intermediate scattering cases in
Fig. 3.5 a, where the damping increases. The reoccurring relaxation oscillations at
even faster scattering, however, is not predicted by the simple model [ERN07a].
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In order to understand this behavior, it is useful to analyze the turn-on process
in different projections of the phase-space, shown in Fig. 3.5 b-d. Here, the trajec-
tory in the phase-space spanned by the quantum-dot carrier density (nQD

e + nQD
h )

and normalized output power Pnorm shows a spiraling motion or a simple linear
motion towards the steady-state values for the oscillating and overdamped cases,
respectively. This transition corresponds to a change of the fixed point from a
stable focus to a stable node. The trajectories in Fig. 3.5 c-d involving the carrier
reservoir carrier densities (we + wh) reveal the nature of the observed turn-on be-
havior. For the slow scattering, the motion in the (we + wh, Pnorm)-phase-space
shows a very different behavior from the (nQD

e + nQD
h , Pnorm)-phase-space. During

the whole turn-on, the reservoir carrier density continues to rise. The interaction
with the photons during the relaxation oscillations is thus limited to the quantum-
dot carriers, while the reservoir carriers are not affected. We therefore refer to this
regime of slow scattering as the “constant-reservoir regime”.

With increasing scattering rates, the reservoir starts to be affected by the light-
matter interaction in the quantum-dots, manifesting itself in qualitative similar
dynamics of the quantum-dot and reservoir carriers. For very fast scattering, the
different carriers are closely coupled, and perturbations to the quantum-dot pop-
ulation will be transmitted to the reservoir population. In the limit of instanta-
neous scattering, i.e., τb → 0, the reservoir carriers would adiabatically follow the
quantum-dot occupation. The dynamic degree of freedom of the reservoir and ex-
cited state carriers could then be adiabatically eliminated and the carriers would
behave as a combined charge-carrier system, and a single variable would suffice
to describe all charge carrier occupations. The quantum-dot laser dynamics could
then be described to good accuracy by a simple rate-equation system similar to
quantum-well laser models. As shown for the two-variable laser model Eqs. (3.1)
before, the relaxation oscillation damping in this case is given by the carrier life-
time related to the non-radiative losses, which are in the order of ns, leading to
the reappearance of relaxation oscillations for the fast scattering. We call this
dynamic regime of fast scattering the “synchronized” regime, where the different
carrier sub-ensembles are strongly coupled. Here, the quantum-dot laser dynamics
approach that of quantum-well lasers [ERN07a].

For a detailed study of the quantitative dependence of the quantum-dot laser
dynamics on the scattering rates, we extract the relaxation oscillation frequency
and damping in dependence of the scattering lifetime. Numerically, this is done
by fitting the output power time-series after a small perturbation with a damped
harmonic oscillation (see Appendix A.1). The resulting relaxation oscillation pa-
rameters in dependence on the averaged effective carrier scattering rate, Seff ≡
1
2(τ−1

e + τ−1
h ), is shown in Fig. 3.6.
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3.2 Laser Dynamics – Relaxation Oscillations

Figure 3.6.: Relaxation oscillation (RO) parameters in dependence of the scattering rates.
Shown is the RO frequency ωRO and the RO damping ΓRO for different effective carrier
scattering rates Seff ≡ 1

2
(τ−1

e + τ−1
h ), averaged over electrons and holes. (i) Constant-

reservoir regime, (ii) overdamped regime, (iii) synchronized regime. The pump current
was set to twice the respective threshold current at each data point. The dashed vertical
line denotes the microscopically calculated scattering rates for the device parameters
given in Table 3.1. After [LIN12, LIN14].

Clearly visible are the three qualitatively different dynamic regimes. The relax-
ation oscillation frequency vanishes around Seff ≈ 1.5 × 1011 s and the damping
becomes maximal, indicating the overdamped regime. Changing the scattering
rates from there to either lower or higher values, the damping decreases and the
relaxation oscillations reappear. The microscopically calculated scattering rates lie
in the synchronized regime, close to the overdamped regime, such that the cou-
pling between quantum-dot and reservoir states is strong enough for the reservoir
states to be affected by the laser dynamics. On the other hand, the scattering
is not fast enough as to lead to a near-instantaneous coupling of the two carrier
sub-ensembles, therefore still allowing for independent carrier dynamics.
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3.3 Minimal Model for Quantum-Dot Laser Dynamics

The crucial dependence of the quantum-dot dynamics on the involved scattering
rates can not be described by the traditional rate-equation approach given by
Eqs. (3.1), as seen in the previous section. An important task is therefore to
find the effects responsible for the strong differences between the two models. By
pinpointing these physical processes, one can then formulate requirements for a
given model to be able to describe the physical phenomena in quantum-dot lasers.
This way it becomes possible to derive a minimal model taking all these effects into
account, which can then qualitatively describe the quantum-dot laser dynamics.
The derivation of such a simple model will be done in this section.

As we have stressed before, the most important difference between conventional,
e.g., quantum-well lasers and quantum-dot devices is the complex charge carrier
scattering dynamics between the optically active states and the surrounding carrier
reservoir. An intuitive approach in order to extend the existing rate-equation sys-
tem Eq. (3.1) to quantum-dot devices is to introduce the quantum-dot occupation
probability, and taking the charge carrier density N as the reservoir charge carrier
density. The resulting three-variable system can be written as

d

dt
N = J − N

T1
− S̃(N, ρ) (3.20a)

d

dt
ρ = S̃(N, ρ) − ρ

Tsp
− g(2ρ − 1)S (3.20b)

d

dt
S = 2g(2ρ − 1)S − 2κS , (3.20c)

where the coupling between ρ and N is for now expressed as a general scattering
term S̃(N, ρ). The variable N expresses the reservoir charge-carrier density in units
of 2NQD. The spontaneous losses in the quantum-dot are taken into account by the
spontaneous loss time Tsp, the stimulated emission is given by the gain coefficient
g and the inversion (2ρ − 1).

We now need to define the scattering contribution S̃(N, ρ). For direct capture
processes, i.e., the charge carrier scattering between the quantum-dot and reservoir
states, the scattering can be written as

S̃(N, ρ) = Scap,in(N)(1 − ρ) − Scap,out(N)ρ . (3.21)

We rewrite this expression as [LIN12]

S̃(N, ρ) = R(N)(ρeq(N) − ρ) , (3.22)
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with

R(N) ≡ Scap,in + Scap,out ρeq(N) ≡ Scap,in

Scap,in + Scap,out
. (3.23)

The scattering processes can thus be described as driving the quantum-dot pop-
ulation towards the quasi-equilibrium occupation probability ρeq. The individual
rates depend on the carrier-reservoir density, and thus also ρeq. This dependence
is given by the detailed balance relationship,

Scap,out = Scap,in exp

(
εQD − Eeq

F

kBT

)

= Scap,in exp

(
εQD − EQW

0

kBT

)[
exp

(
w

DkBT

)
− 1

]−1

, (3.24)

with the quasi-Fermi level in the reservoir Eeq
F , the reservoir band edge EQW

0 and the
quantum-dot energy level εQD, as well as the reservoir carrier density w = 2NQD · N

and the corresponding density of states D. This expression leads to a rather com-
plicated dependence of the scattering term on the reservoir density. Thus, in order
to simplify the resulting terms, we linearize ρeq in terms of the reservoir carrier den-
sity. We choose a linearization around the corresponding threshold values of N and
ρ. As we have seen previously, the charge-carrier densities in quantum-dot lasers
are not clamped above threshold. Nevertheless, the deviations from the thresh-
old values can be seen as small, such that the linearization should yield reliable
results. Furthermore, the threshold values N th, ρth have an intuitive physical in-
terpretation: N th is the number of charge carriers per quantum-dot in the reservoir
required to reach the lasing threshold. The threshold occupation probability ρth

on the other hand can be easily calculated from the lasing condition, i.e. d
dtS ≡ 0.

We can thus write

ρeq ≈ ρth + d(N − N th) , (3.25)

with

ρth ≡ g + κ

2g
, d ≡ ∂

∂N

[
Scap,in

Scap,in + Scap,out

]∣∣∣∣∣
Nth

. (3.26)

The newly introduced coefficient d thus describes the change of the quasi-equilibrium
quantum-dot occupation with the reservoir carrier density, due to the change in
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3 Quantum-Dot Laser Dynamics

the detailed balance between in and out-scattering. With these expressions, the
three-variable system for the quantum-dot laser is written as:

d

dt
N = J − N

T1
− R

(
ρth + d(N − N th) − ρ

)
(3.27a)

d

dt
ρ = R

(
ρth + d(N − N th) − ρ

)
− ρ

Tsp
− g(2ρ − 1)S (3.27b)

d

dt
S = 2g(2ρ − 1)S − 2κS . (3.27c)

3.3.1 Linearization and Eigenvalue Problem

In the following, the derived rate-equation system will be analyzed in terms of
its relaxation oscillation damping and frequency. To this end, we will perform a
linear stability analysis around its fixed point. Subsequently, the dependence on
the effective scattering rate R will be analyzed.

The lasing fixed point of the three-variable equation system Eqs. (3.27) is given
by

N∗ =
T1(J + dRN th)

1 + dRT1
, ρ∗ =

g + κ

2g
, S∗ =

dR

κ
(N∗ − N th) − ρ∗

κTsp
. (3.28)

In order to determine the eigenvalue problem we determine the Jacobian matrix

J =

⎛
⎜⎜⎜⎝

− 1
T1

− dR R 0

dR − 1
Tsp

− R − 2gS∗ −κ

0 4gS∗ 0

⎞
⎟⎟⎟⎠ , (3.29)

from which we can determine the eigenvalues as the roots of the characteristic
equation

0 = −λ

[(
1

T1
+ dR + λ

)(
1

Tsp
+ R − 2gS∗ + λ

)
− dR2

]
− 4gκS∗

(
1

T1
+ dR + λ

)
.

(3.30)

The roots of above equation, however, are very complex expressions which can
not be used for an analytic treatment of the problem. In order to determine the
stability properties and Lyapunov-exponents of the fixed points, the solutions to
the above equations will be determined numerically.

We choose parameters as given in Table 3.2. These parameters were chosen in
correspondence with those given in Table 3.1 for the full quantum-dot laser model,
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3.3 Minimal Model for Quantum-Dot Laser Dynamics

Table 3.2.: Parameters used in the minimal quantum-dot laser model, unless stated oth-
erwise.

Symbol Value Meaning

T1 0.17 ns reservoir charge carrier lifetime
Tsp 1.85 ns quantum-dot charge carrier lifetime
g 230 ns−1 gain coefficient
κ 50 ns−1 optical losses
N th 2.3 reservoir carrier density at threshold (in units of 2NQD)
d 0.022 detailed balance coefficient

evaluated at twice the threshold current. The effective charge carrier lifetimes are
given by

T1 =
[
BS(we + wh)

]−1
, Tsp = [WGS(ρe,GS + ρh,GS)]−1 , (3.31)

with the average quantum-dot ground-state occupations ρb,GS. The eigenvalues
in the steady-state are determined numerically. The resulting dependence on the
effective scattering rate R is shown in Fig. 3.7. The minimal model reproduces
the three qualitative dynamic regimes that have been previously found for the

Figure 3.7.: Eigenvalues λ in the minimal quantum-dot model. Shown are the relaxation
oscillation (RO) damping ΓRO (≡ Reλ, blue) and frequency ωRO (≡ Imλ, red) of the
eigenvalues that are complex conjugate pairs. The dotted black line shows the eigen-
values that are not related to the relaxation oscillations. The dashed lines show the
results from the full quantum-dot laser model. The inset shows the comparison in the
constant-reservoir regime. The pump current was set to twice the respective threshold
value at each data point.

65



3 Quantum-Dot Laser Dynamics

quantum-dot laser: two regimes with pronounced relaxation oscillations for low
and high R, with an intermediate overdamped regime around R ≈ 1011s−1. In
the synchronized regime for large R also the results from the full quantum-dot
laser model are shown as dashed lines. Here, a very good quantitative agreement
between the two approaches is visible. For slower scattering, however, while the
three-variable model correctly predicts the qualitative dependence of the dynamic
regimes on the scattering rate, the two approaches differ (see inset). There are
possible reasons for this discrepancy:

• The three-variable rate-equation model does not take into account the dif-
ferent dynamics of electrons and holes. Especially for slow scattering this
can introduce additional nonlinearities, as their dynamics then become less
synchronized [LUE09].

• For slow scattering the reservoir densities deviate from their respective thresh-
old values, as higher reservoir densities are required to supply the quantum-
dot states with enough charge carriers. Thus, the linearization approxima-
tions may not hold any longer.

• Further effects, such as gain compression, which are especially pronounced
for slow charge carrier scattering [CHO99, FIO07], have not been addressed in
the simple model. Gain compression is known to influence the relaxation
oscillation parameters [COL12a], and might thus change the shown dependence
for low R.

One must therefore keep in mind that the derived model should not be used for
a quantitative description of a given quantum-dot laser device. Nevertheless it
already offers a much better description than the conventional two-variable rate-
equation model. At a given operation point a correct choice of the effective model
parameters, e.g., from comparisons with experiments, should also yield quantita-
tively reliable results.

In contrast to three-variable models for quantum-dot lasers that do not take into
account the detailed balance of the scattering rates [ERN07a], our model is able to
reproduce the reappearance of relaxation oscillations in the synchronized dynamic
regime for high scattering rates. As we have seen this is a direct consequence of a
reservoir-carrier-density dependent out-scattering rate.

Furthermore, the derived model can yield important analytical results. By apply-
ing additional model reductions an analytical treatment and formulation of closed-
form expressions become possible, e.g., for the relaxation oscillation parameters.
This will be done in the following.
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3.3.2 Asymptotic Analysis – Relaxation Oscillations

The characteristic equation Eq. (3.30) needs to be solved in order to calculate the
eigenvalues of the Jacobian and thus the stability as well as relaxation oscillation
parameters. Given its cubic nature, the solutions can in principle be explicitly
determined. However, this would result in lengthy and complicated expressions
with little practical value, as the dependences on different parameters would be
hidden in the multitude of terms. The idea to circumvent these issues is to expand
the characteristic equation in terms of one or more small parameters, and solve
the reduced problem [ERN10b, LUE11]. Depending on the choice of expansion, the
resulting eigenvalues should describe the original system well around the chosen
expansion point or parameter.

Slow Scattering – Constant-Reservoir Regime

At first, we will try to derive a simpler expression for the eigenvalues in the
constant-reservoir regime. Our previous numerical analysis of the quantum-dot
laser dynamics within this regime has shown that the dynamics are dominated
by the quantum-dot charge-carrier dynamics, while the reservoir provides a nearly
constant charge carrier influx into the active quantum-dot states. As such, the
charge-carrier subsystems should be only weakly coupled. This leads us to a choice
of expansion: In the given three-variable system, the direct coupling between the
quantum-dot and reservoir carriers is determined by the coefficient d, describing
the change of quasi-equilibrium occupation in the quantum-dots depending on the
reservoir carrier density.

We will therefore expand Eq. (3.30) in terms of d. We assume that the eigenvalues
can be written in the form

λ = λ0 + d λ1 + O(d2) . (3.32)

We proceed by inserting this into Eq. (3.30). Since our assumption was that d

should be small, we can at first neglect all resulting terms of order d or higher,
as the remaining terms should dominate the dynamics. This zeroth-order problem
can then be explicitly solved for λ0.

The resulting zeroth-order characteristic equation is given by

0 = 4gκS∗Tsp

+ (1 + RTsp + 2gS∗Tsp + 4gκS∗T1Tsp) λ0

+ (T1 + Tsp + RT1Tsp + 2gS∗T1Tsp) λ0
2

+ T1Tspλ0
3 (3.33)
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which has three solutions,

λ0 = −Γcr,0
RO ± iωcr,0

RO , (3.34a)

λ0∗ =
1

T1
, (3.34b)

with the zeroth-order relaxation oscillation damping and frequency in the constant-
reservoir regime (superscript cr):

Γcr,0
RO =

1

2

(
1

Tsp
+ R + 2gS∗

)
, (3.35a)

ωcr,0
RO =

√
4gκS∗ − Γcr,0

RO

2
. (3.35b)

This result is identical to the expressions for the relaxation oscillation parameters
obtained from the two-variable system Eq. (3.7), apart from an additional R

2 in the
relaxation oscillation damping rate. This can be understood by a decrease of the
effective carrier lifetime in the quantum-dot states due to the scattering process:
The carriers will be driven towards their equilibrium distribution with the effective
rate (Tsp

−1 + R), which then takes the place of T1 in the simple two-variable rate
equation system.

The solution of the zeroth-order problem thus predicts an increase in the damping
with increasing scattering rate, in accordance with the previous observations. The
remaining third eigenvalue λ0∗ is purely real and thus does not contribute to the
relaxation oscillations, but instead describes the dynamics of the reservoir, with its
lifetime T1.

We now proceed in the expansion of the characteristic equation by solving the
first-order problem, i.e., taking only terms of O(d) in Eq. (3.30) into account, after
inserting Eq. (3.32). The resulting equation reads

0 = 4gκS∗RT1Tsp + (RT1 + 2gRS∗T1Tsp)λ0 + RT1Tspλ0
2

+
[
1 + RTsp + 2gS∗Tsp + 4gκS∗T1Tsp

+ 2 (T1 + Tsp + RT1Tsp + 2gS∗T1Tsp) λ0 + 3T1Tspλ0
2
]
λ1 , (3.36)
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Figure 3.8.: Analytic approximation for the relaxation oscillation (RO) parameters in
the constant-reservoir regime. Shown is the RO damping and frequency of the minimal
quantum-dot laser model (solid lines), along with the analytic approximation in 0th
order (dashed) and 1st order (dotted), cf. Fig. 3.7.

which can be readily solved for λ1. After additional simplification, the resulting
first-order corrections in the constant-reservoir regime then can be written as

Γcr,1
RO = −R2 1

2

[(
ωcr,0

RO

)2
+

(
Γcr,0

RO − 1
T1

)2
] , (3.37a)

ωcr,1
RO = R2

(
Γcr,0

RO − 4gκS∗T1

)

2 ωcr,0
RO

[
1

T1
− 2Γcr,0

RO + 4gκS∗T1

] . (3.37b)

Here we have written λ1 as

λ1 = −Γcr,1
RO ± ωcr,1

RO , (3.38)

such that the resulting relaxation oscillation parameters are given by

Γcr
RO = Γcr,0

RO + d Γcr,1
RO + O(d2) , (3.39a)

ωcr
RO = ωcr,0

RO + d ωcr,1
RO + O(d2) . (3.39b)

The first-order corrections in d thus introduce an additional quadratic dependence
on the scattering rate R.

Figure 3.8 shows a comparison of the analytic approximations in zeroth and
first order in d with the numerically determined values. It can be seen that both
approximations reproduce the dependence of the relaxation oscillation damping
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on the scattering rate very closely. The zeroth order approximation, Eqs. (3.35),
shows minor deviations in the frequency at the beginning of the overdamped regime,
which are alleviated by the first-order correction terms.

Fast Scattering – Synchronized Regime

Next, we will look at the synchronized regime for fast charge carrier scattering. In
order to simplify the characteristic equation, we evaluate it in the limit of R → ∞,
i.e., taking only terms of O(R) into account. The remaining terms can then be
neglected, as the terms including the scattering rate R will dominate the dynam-
ics. The eigenvalues are expanded in a similar manner as before. We choose an
expansion with respect to the inverse scattering rate r := 1

R around r = 0, i.e.,
R → ∞:

λ = λ0 + 1
Rλ1 + O( 1

R2 ) . (3.40)

Inserting this into the characteristic equation Eq. (3.30) and taking only the highest
order in R into account, we can write it in the high-R limit as

0 = 4dgκS∗T1Tsp + (dT1 + Tsp + 2dgS∗T1Tsp) λ0 + (1 + d)T1Tspλ0
2 . (3.41)

This can be readily solved, and we find the relaxation oscillation damping and
frequency in the synchronized regime in zeroth-order approximation:

Γs,0
RO =

1

2(1 + d)

(
1

T1
+

d

Tsp
+ 2dgS∗

)
, (3.42a)

ωs,0
RO =

√
4dgκS∗ − Γs,0

RO

2
. (3.42b)

Similar to the procedure before, this result can now be used to calculate the first-
order correction in 1

R to the eigenvalues. We will not explicitly write this down at
this point, due to the complexity of the resulting terms (see Appendix A.2).

The analytic approximation is shown together with the numerically determined
eigenvalues in Fig. 3.9. The zeroth-order approximation can be seen to reproduce
the values in the limit of very high R, but fails when reducing the scattering rate,
predicting a decrease of the damping. The first-order approximation corrects this
and correctly predicts the increase of the damping with decreasing R. Nevertheless,
the approximation in the synchronized regime is worse as in the constant-reservoir
regime. While the damping of the oscillations increases, the first-order approxima-
tion cannot predict the onset of the overdamped regime. Here, further orders of the
expansion in R−1 would have to be taken into account to improve the approxima-
tion. However, given the already complex expression for the first-order correction,

70



3.3 Minimal Model for Quantum-Dot Laser Dynamics

Figure 3.9.: Analytic approximation for the relaxation oscillation (RO) parameters in the
synchronized regime, cf. Fig. 3.8.

this approach would likely not produce any practical results. As such, expansions
in other variables might yield better results. At this point, however, we will not
pursue this problem further, as it would exceed the scope of this work.
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3.4 Modulation Response of Quantum-Dot Lasers

High-speed laser devices are a building block of current and future digital data
transmission systems [BIM08, CHO11b]. By either direct modulation of the laser out-
put by the pump current or a external modulation of the laser output one can
encode digital data streams in optical signals. Quantum-dot lasers have initially
been suggested as a replacement for currently used semiconductor lasers due to the
prediction of improved characteristics compared to the conventional lasers [BIM97].
However, the maximum attainable modulation speed of quantum-dot lasers still
mostly stays behind expectations. This is commonly attributed to the charge-
carrier dynamics in quantum-dot lasers [ISH04, SUG05, GIO11, WAN12a, LIN12].

The investigation of the quantum-dot laser response to a small modulation of
the pump current can give an indication of the corresponding laser performance.
Depending on the

3.4.1 Small-Signal Response

The small-signal modulation of the quantum-dot laser quantifies the response of
the output power to a small harmonic modulation of the applied pump current.
A “small” modulation in this case means that the response of the laser system
remains linear, i.e., independent of the modulation amplitude. A quantification of
the modulation capabilities of the laser device can be evaluated by the normalized
transfer function [COL12a]

H(ω) =

∣∣∣∣
∆P (ω)

∆P (ω = 0)

∣∣∣∣
2

, (3.43)

where ∆P (ω) is the modulation amplitude of the output power at a given current
modulation frequency ω. H(ω) is normalized to the static value ∆P (ω = 0), which
corresponds to the differential output power change at a simple differential change
of the pump current.

The transfer function measures the reaction of the output power to perturbations
of the driving pump current. This initial perturbation has to “propagate” through
the different dynamic variables in the system. The variation in the pump current at
first modulates the reservoir carrier-densities, which in turn leads to a modulation of
the charge-carrier scattering into the quantum-dot states. The modulated inversion
in the quantum-dots then translates into a modulated optical gain, and finally
influences the optical power of the laser device. Each of these steps is characterized
by a specific timescale determining the speed of the respective coupling process.

Parts of this section have been published in [LIN12].

72



3.4 Modulation Response of Quantum-Dot Lasers

The resulting transfer function will thus be determined by all of these coupling
rates, making the experimental analysis of the small-signal modulation behavior of
laser devices a tool for a direct measurement of device parameters.

Since the external modulation of the pump current is assumed to be small, the
dynamical system will deviate only little from its initial steady state. The ana-
lytical treatment of the small-signal modulation can thus be performed by taking
into account only the linearized dynamical equations, and neglecting higher order
perturbations from the steady-state. Many important aspects of the frequency-
dependence of the modulation response can already be inferred from the analysis
of the simple two-variable rate-equation model. Assuming a harmonically mod-
ulated pump current, J(t) = J∗ + ∆Jeiωt, with the small modulation amplitude
∆J , the dynamic variables N, S of the dynamic system can be assumed to follow
a similar time-dependence:

N(t) = N∗ + ∆Neiωt (3.44a)

S(t) = S∗ + ∆Seiωt , (3.44b)

with the superscript ∗ denoting their respective steady-state values. Inserting the
above expressions into the rate-equation system Eqs. (3.1) then yields:

d

dt
N(t) = iω∆Neiωt = J∗+∆Jeiωt − 2g(N∗+∆Neiωt)(S∗+∆Seiωt)

− 1

T1
(N∗+∆Neiωt) (3.45a)

d

dt
S(t) = iω∆Seiωt = 2g(N∗+∆Neiωt)(S∗+∆Seiωt) − 2κ(S∗+∆Seiωt) .

(3.45b)

We now neglect the terms with order higher than one in the small amplitudes ∆X

(X ∈ {N, S}), thus taking only the first-order deviations from the steady-state into
account. Noting that the terms involving only the steady-state values X∗ on the
right hand side of Eqs. (3.45) equal the time-derivatives dX

dt

∣∣
X∗

= 0, which vanish
in the steady-state, leads to the linearized equations:

iω∆N = ∆J − 2g(S∗∆N + N∗∆S) − 1

T1
∆N (3.46a)

iω∆S = 2g(S∗∆N + N∗∆S) − 2κ∆S , (3.46b)

or, in matrix form,

(iωI − J)

⎛
⎝∆N

∆S

⎞
⎠ =

⎛
⎝∆J

0

⎞
⎠ , (3.47)
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Figure 3.10.: Small-signal modulation transfer function for the two-variable rate-equation
system at currents of 2Jth (red), 3Jth (green), and 4Jth (blue). The dashed line denotes
a small-signal response of −3 dB. Parameters as in Fig. 3.1.

with the identity matrix I and the system Jacobian J . Inverting the above matrix

equation leads to the small-signal modulation amplitudes:

∆N(ω) =
iω∆J

4gκS∗ − ω2 + iω(2gS∗ + 1
T1

)
(3.48a)

∆S(ω) =
2gS∗∆J

4gκS∗ − ω2 + iω(2gS∗ + 1
T1

)
. (3.48b)

From the above expression the small-signal modulation transfer function Eq. (3.43)
for the simple two-variable rate-equation system can be calculated, under the as-
sumption that the output power is proportional to the photon number S:

H(ω) =
ω4

res

(ω2
res − ω2)2 + 4Γ2

ROω2
, (3.49)

where we have inserted the respective expressions for the relaxation resonance fre-
quency ωres and relaxation oscillation damping ΓRO. The resulting transfer function
is plotted in Fig. 3.10. It shows a resonance peak and a quick decrease afterward for
increasing modulation frequency. The peak in the modulation response is caused
by the resonant excitation of the relaxation oscillations by the external modulation,
greatly enhancing the laser response around ωRO. For technological applications
an important parameter is the −3 dB cutoff-frequency, giving the maximum mod-
ulation frequency, for which the transfer function is still above −3 dB ≈ 0.5. The

74



3.4 Modulation Response of Quantum-Dot Lasers

Figure 3.11.: (a) Small-signal modulation response of the quantum-dot laser at pump
currents of 2Jth (red), 3Jth (green), 4Jth (blue). (b) Comparison with the analytically
predicted transfer function Eq. (3.43) (dashed). The dashed gray line denotes a small-
signal response of −3 dB.

cutoff-frequency gives an impression of the maximum frequency at which the laser
can be modulated.

The small-signal analysis as detailed above can in principle be applied to the
given quantum-dot laser model. However, its high dimensionality makes such an
analytical treatment impractical. While the small-signal response has been an-
alytically investigated for simpler quantum-dot laser models [ASR10, WAN12a], we
evaluate the modulation transfer function by numerical integration. The resulting
modulation response curves are shown in Fig. 3.11.

The simulations reveal a relatively flat modulation response, with a shallow and
broad resonance peak, which is a direct consequence of the strongly damped re-
laxation oscillations in the quantum-dot laser. With increasing pump current,
the modulation response curves become flatter and the cutoff-frequency increases.
This behavior could already be seen in the current dependence of the simple rate-
equation system and is related to the different scaling of the relaxation oscillation
frequency and damping with the output power, leading to less pronounced oscilla-
tions with increasing current.

In Fig. 3.11 b the numerically determined modulation response of the quantum-
dot laser is compared to the analytical prediction Eq. (3.43), using the relaxation
oscillation damping and frequency as parameters, which were obtained from the
fits to the quantum-dot laser response to a small perturbation. The analytical
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3 Quantum-Dot Laser Dynamics

Figure 3.12.: Small-signal modulation bandwidth of the quantum-dot laser. Shown is the
modulation frequency f−3 dB at which the modulation response reaches −3 dB ≈ 1

2
for

the first time (blue solid curve). Also shown is the modulation bandwidth predicted from
Eq. (3.43) (black dashed). The pump current was set to twice the respective threshold
current at each data point. The three dynamic regions are as noted in Fig. 3.6. After
[LIN12].

formula is found to match the quantum-dot response closely, leading to a good
approximation of the modulation bandwidth for the given parameters.

As we have seen previously in Fig. 3.1, the relaxation oscillations in quantum-
dot lasers are strongly dependent on the scattering timescales. We will therefore
look at the modulation capabilities of the quantum-dot laser for different scattering
times. The resulting modulation bandwidths in dependence of the effective carrier
scattering rate is shown in Fig. 3.12. The bandwidth can be seen to increase with
the effective scattering rate in the overdamped and synchronized dynamic regimes.
This is in line with the common assumption of a carrier “bottleneck” between
the reservoir and the quantum-dot states limiting the modulation response [HEI01,

TON09]. However, when comparing the modulation bandwidth of the quantum-dot
laser within the synchronized regime with the analytically predicted bandwidth
using Eq. (3.43), it becomes evident that the quantum-dot laser exhibits modulation
capabilities up to higher frequencies than predicted by the simple rate-equation
approach.

The constant-reservoir regime reveals a non-monotonous behavior, with a rela-
tively sharp increase in the bandwidth for scattering rates below ≈ 1010s−1. When
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comparing the numerical results and analytical predictions, it becomes clear that
in this dynamic regime the simple two-variable approach fails. Using the numeri-
cally determined relaxation oscillation damping and frequency as input parameters,
Eq. (3.43) predicts a much higher modulation bandwidth than we observe in the
simulations. The reason for this is the strong dynamical interaction between the
resonant quantum-dot charge carriers and the reservoir, which is not accounted
for in the analytical approximation. For the limit of very slow scattering in the
constant-reservoir regime, the sudden increase in the modulation bandwidth means
that the numerical and analytical curves start converging. This can be understood
by the weak interaction between the resonant and off-resonant states. Since the
reservoir is nearly unaffected by the relaxation oscillations, they provide a constant
carrier influx into the quantum-dot states. This situation is then akin to the simple
two-variable system, where a constant pump current into the optically active states
is assumed, and the modulation response is well described by the analytical approx-
imation. However, it must be noted that in this regime the operating current must
be much higher to provide a sufficiently high in-scattering of charge carriers into
the quantum-dots to enable the lasing action. This makes practical applications
improbable, as also the absolute modulation response of the quantum-dot laser is
strongly inhibited, i.e., a very high modulation amplitude would have to be applied
to achieve appreciable modulation of the output power.

A detailed plot of the modulation response curves for different scattering rates is
shown in Fig. 3.13. For fast scattering (dark red in Fig. 3.13), the transfer function
reveals the already known behavior, with a single resonance peak, after which the
modulation response drops steadily. With decreasing scattering rates, the reso-
nance peak disappears, due to the increasing damping and subsequent disappear-
ance of the relaxation oscillations (yellow to green), which decreases the modulation
bandwidth. For even slower scattering, again a peak appears which, however, only
for very slow scattering becomes appreciably large, leading to the sudden increase in
modulation bandwidth for Seff � 1010 s−1. In the range 1010 s−1 � Seff � 1011 s−1,
where the analytical approximation would predict a much higher modulation band-
width, the interaction between the quantum-dot and reservoir states is still strong
enough to suppress the modulation.
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Figure 3.13.: Dependence of the quantum-dot laser modulation response on the effective
scattering rate Seff . Shown are the small-signal modulation response curves for different
values of Seff , given by the color-code. The curves have been shifted along the vertical
axis for better readability. The black parts of the curves denote the parts for which the
response is below −3 dB.
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3.5 Amplitude-Phase Coupling in Quantum-Dot Lasers

As we have seen previously, the light-matter interaction in the active region be-
tween the optical field and the semiconductor transitions leads to either gain or
absorption, as well as a change in the effective refractive index. These two contri-
butions can be expressed by the complex gain g(ω, t) for a given lasing frequency
ω, and are coupled by the dynamics of the charge carriers in the different optically
active states. This interplay of gain and refractive index (or frequency shift) is
commonly referred to as amplitude-phase coupling.

In semiconductor lasers, the connection between the refractive index and the
optical gain plays an important role in many applications and phenomena. The re-
sponse to external modulations or perturbations [RAD07, GRI11], the laser linewidth
[HEN82], and the occurrence of dynamical instabilities as well as pattern forma-
tion in spatially extended laser systems [SMO02, RIB03] all crucially depend on this
amplitude-phase coupling. Throughout the literature, this connection is com-
monly described by assuming a linear relationship between changes of the reso-
nance frequency shift and gain. The proportionality factor is called the linewidth-
enhancement factor α.

This α-factor is commonly described as a constant device parameter, and used
to characterize the dynamical performance of the laser device. In general, a high
value of α is related to highly complex dynamics, unstable laser operation, and
a large laser linewidth. For example, in optical injection [WIE05, LIN13] or optical
feedback setups [OTT10, LIN12b] the resulting bifurcation structure becomes largely
more complex with increasing alpha. Furthermore, the minimum feedback strength
required to introduce dynamical instabilities or chaos is lowered by α [LEV95, ERN10b,

OTT14], which makes a diligent suppression of undesired reflections in optical setups
necessary.

On the other hand, there are applications which rely on the existence of complex
dynamic solutions. For example, chaotic semiconductor lasers have been success-
fully used for random-number generation [REI09a, OLI11, HAR12, NGU12a], as well as for
secure communication [TRO08, LUE11b, UCH12]. Furthermore, their complex dynam-
ics allow for the studying of many generic nonlinear phenomena in a comparably
simple experimental setup [LAR10]. For example, the appearance of chimera states
– coexisting coherent and incoherent states in coupled dynamic systems – has been
recently predicted in coupled laser networks, with the amplitude-phase coupling as
a driving force [BOE15].

In the following, we will investigate the amplitude-phase coupling in quantum-
dot lasers. In particular, we will look at the dynamics of the electric field phase

Parts of this section have been published in [LIN13].
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induced by the refractive-index dynamics in optical injection and feedback setups,
as well as under direct modulation. We will furthermore discuss the applicability
and limitations of the α-factor for quantum-dot lasers, by comparing our micro-
scopically based modeling approach with conventional, simpler, approaches.

3.5.1 The Linewidth-Enhancement Factor α

Under the dynamic operation of lasers, the complex optical gain changes with
the inversion of all optically active transitions in the active medium. Following
Eq. (2.75), the complex optical gain inside the laser cavity can generally be written
as

g(ω, t) =
�ω

ε0εbgV

∑

i

gi(ω)
[
ρi

e(t) + ρi
h(t) − 1

]
, (3.50)

with the contribution of the individual transitions labeled by the index i, which
can include quantum-dot and reservoir transitions,

gi(ω) =
T2|μi|2

2�2

(
1 − iT2(ωi − ω)

1 + [T2(ωi − ω)]2

)
. (3.51)

As we have shown earlier, the charge-carrier-induced change of the refractive index
∆n, or, analogously, the shift of the resonance frequency ∆ω, can be written as

∆ω = −ω
∆n

nbg
= −Im g(ω, t) , (3.52)

with the background index nbg and the cold-cavity lasing frequency ω. As the imag-
inary part of the complex gain is determined from the off-resonant optical tran-
sitions, the refractive index dynamics is also determined by these states, whereas
the amplitude gain is determined from the resonant transitions.

As the different states in semiconductor lasers are coupled, also the dynamic
changes of the optical gain and refractive index will be coupled. Henry first ex-
plained the high linewidth of semiconductor lasers by introducing the linewidth-
enhancement (or Henry-) factor α, as the ratio of the real and imaginary part of
the variation of the optical susceptibility with the charge carrier number N :

α :=
∂χ′/∂N

∂χ′′/∂N
, (3.53)

or, written in terms of the complex gain g:

α = −∂Im g/∂N

∂Re g/∂N
, (3.54)
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The mechanism responsible for the linewidth broadening then is the following:

By spontaneous emission processes, both the charge carrier distribution as well
as the optical field are subjected to statistical fluctuations. Due to the random
phase of spontaneously emitted photons, the phase of the optical field exhibits a
random walk, which limits the coherence time τcoh of the laser output. The Wiener-
Khinchin-theorem [WIE30, GAR06] then states that the spectral linewidth ∆ν of the
laser output is related to the coherence time via ∆ν =

(
πτcoh

)−1
. The result-

ing laser linewidth then leads to the famous Schawlow-Townes linewidth ∆νST

[SCH58]. Experimental results, however, found a much larger linewidth than pre-
dicted [FLE81].

In order to explain this, not only the direct contribution of the spontaneously
emitted light to the linewidth must be taken into account. Additionally, the fluc-
tuations in the light intensity will translate into a fluctuating charge carrier dis-
tribution by the change in the stimulated emission rate. Thus, variations in the
gain and refractive index will arise, which additionally influences the optical field
phase. This fluctuation of the phase then leads to an additional shortening of the
coherence time, and consequently to a broadening of the laser linewidth, which is
given by [LAX67, HEN82]

∆ν = (1 + α2)∆νST . (3.55)

The concept of the α-factor has since been employed for characterizing laser
devices, as it provides a simple and experimentally accessible way of describing
the connection between index and gain changes in the device [TOF92]. Following its
definition Eq. (3.54), the α-factor can be used to write the dynamic equation for
the electric field inside the laser cavity in a simple way:

d

dt
E(t) = (1 − iα)Re[g(ω, t)]E(t) − κE(t) , (3.56)

thus implementing the linear relation between the instantaneous frequency shift,
−Im g(ω, t), and the amplitude gain Re g(ω, t). This assumption is, of course, gen-
erally not fulfilled, as the dependence of the two components on the charge carrier
number can be nonlinear, and depend on the density of states of the active medium,
as sketched in Fig. 3.14. One could, however, argue that above threshold, where
most lasers will be operated, the optical gain is clamped to its threshold value, and
thus deviations from the value of α at threshold will be small. This is a commonly
made assumption that works well in bulk and quantum-well lasers. In fact, this
approach is widely used in modeling approaches for conventional semiconductor
lasers, and has been successfully used to describe a multitude of dynamical scenar-
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g

N

N

Figure 3.14.: Sketch of the α-factor in conventional laser models. The dependencies of
the gain and frequency shift on the charge-carrier number are linearized around their
value at the threshold carrier number Nth. The ratio of their slopes then define the
α-factor.

ios [ERN10b, LUE11b, OTT14]. We will, however, show that in quantum-dot lasers this
assumption is no longer valid, and the concept of α breaks down.

3.5.2 Charge-Carrier-Induced Susceptibility in Quantum-Dot Lasers

As we have stressed in the previous chapter, the macroscopic dynamics of quantum-
dot laser devices is crucially influenced by the microscopic charge-carrier dynamics
within the active semiconductor medium. We have shown that the charge-carrier
scattering between the quantum-dot and surrounding reservoir states can generate
important difference in the dynamic response of quantum-dot lasers compared to
conventional bulk semiconductor or quantum-well laser systems. We now investi-
gate the required modifications to the concept of the α-factor, which are needed to
account for the different behavior of quantum-dot lasers.

After the advent of quantum-dot lasers, the well-established α-factor approach
has been widely also applied to this new type of laser device, and most works
still rely on this description [HUY04, GRI08a, KIM10e, KEL11]. When semiconductor
quantum-dots were first proposed, initial theoretical works suggested that the
amplitude-phase coupling in these novel devices should be approximately zero,
based on the atom-like energy states of quantum-dots [ASA86]. Atom lasers operat-
ing at their optical resonance do, in fact, exhibit α = 0. This becomes immediately
clear from Eq. (3.51), where for vanishing detuning of the lasing frequency from
the atom resonance the imaginary part of the gain is zero. Early studies, how-
ever, already showed that the influence of off-resonant optical transitions of the
quantum-dot excited states and reservoir states lead to non-vanishing index varia-
tions [BIM97a].
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Furthermore, there have been theoretical and experimental indications that the
use of an α-factor in quantum-dot lasers can be inaccurate. While in quantum-
well lasers values of α ≈ 2 . . . 5 are commonly measured, the measured α-factors in
quantum-dot lasers range from near-zero [NEW99a, KON04a, ALE07] to very high values
[DAG05], and even “infinite” α [CON07, GRI08a]. Furthermore, a strong dependence on
the pump current has been observed [SU05a, JIA12]. Theoretical works have shown
that the α-factor measurements in quantum-dot lasers will yield different results
depending on the measurement procedure and operating parameters [MEL06, GIO07,

LIN12a].

The reasons for this unconventional behavior lie in the charge carrier dynamics
of the quantum-dot material. In its original definition, Henry introduced the alpha
factor using the derivatives of the optical susceptibility (or gain) with respect to
the total charge carrier number or density. This derivative, however, is only well-
defined if there exists a functional dependence of the gain and index on the charge
carrier number. In bulk and quantum-well material systems, this requirement is
approximately fulfilled due to the fast quasi-equilibration of the charge carrier
distribution, provided the optical power is not exceedingly high [AGR93a]. This
allows one to write the charge carrier distribution for each individual state i as a
function of the total charge carrier number:

ρi
m = f(εi

m, Eeq
F,b, T eq) ≡ ρi

m(N) , (3.57)

with the quasi-Fermi distribution f , in which the quasi-Fermi energy Eeq
F,b is a

unique function of the carrier number N .

Thus, the α-factor can be written as a sum over the individual transitions:

α = −∂Im g/∂N

∂Re g/∂N

= −
⎡
⎣∑

i,b

∂Im g

∂ρi
b

∂ρi
b

∂N

⎤
⎦
/⎡

⎣∑

i,b

∂Re g

∂ρi
b

∂ρi
b

∂N

⎤
⎦

= −
⎡
⎣∑

i,b

Im gi ∂ρi
b

∂N

⎤
⎦
/⎡

⎣∑

i,b

Re gi ∂ρi
b

∂N

⎤
⎦ . (3.58)

During operation of the laser device, the change in charge carrier number N can be
caused by different means. Variations in the pump current, the effective optical loss
rate, as well as the dynamical change in the carrier number, e.g. during relaxation
oscillations, will lead to variations in N .
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In quantum-dot lasers, the above expression for the α-factor can be written as
the sum over all contributions to the gain from the individual optical transitions,

α = −

[
2NQD

∑

m,b,j

f(j)νmIm gj
mδρj

b,m +
2

Aact

∑

b,k2D

Im g2D
k δρb,QW(k)

]

[
2NQD

∑

m,b,j

f(j)νmRe gj
mδρj

b,m +
2

Aact

∑

b,k2D

Re g2D
k δρb,QW(k)

] . (3.59)

Here, δρ describe the variation of the charge-carrier distribution of the correspond-
ing states. As we have stressed before, the charge-carrier distribution in quantum-
dot lasers can deviate appreciably from a quasi-equilibrium distribution due to the
complex scattering mechanisms involved in the charge-carrier dynamics. Therefore,
it is no longer possible to define a functional relationship between the occupation
of individual charge-carrier states and the total charge-carrier number. The defi-
nition of derivatives ∂ρ/∂N is therefore in general not possible. Instead, we have
to express the changes of the individual occupations as general variations δρ.

The evaluation of Eq. (3.59) is thus not as straightforward as in conventional
laser devices. Whereas the definition Eq. (3.54) involves the evaluation of the
derivatives at a given operation point, in quantum-dot lasers Eq. (3.59) requires
a perturbing event to induce the variation of the charge-carrier distribution. The
exact shape of this variation is initially unknown and depends on the exact source
of the perturbation.

In order to illustrate this, we simulate the reaction of the quantum-dot laser to-
wards external perturbations. Here we consider two different types of perturbation
sources: excitation by a fast change in the pump current, and the injection of an
external optical pulse resonant to the ground-state transition into the laser cavity.
In both cases, we operate the laser at twice the threshold current and apply the
perturbation as Gaussian-shaped pulses. We therefore write the pump current as

J(t) = J0 + ∆J exp

[
−4 log 2

(
t − t0

∆t

)2
]

(3.60)

with the pulse amplitude ∆J and the pulse FWHM δt. Analogously, we write
the optical perturbation pulse as an additional contribution to the electric field
dynamic equation:

∂

∂t
E(t)

∣∣∣∣∣
inj

= KκE0 exp

[
−4 log 2

(
t − t0

∆t

)2
]

, (3.61)
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Figure 3.15.: Reaction of the quantum-dot laser to optical and pump-current perturba-
tions. (a) Shown is the output power after an initial perturbation pulse in the pump
current (blue) and by an external optical pulse (red). The perturbations are Gaussian-
shaped with an FWHM of 50 ps and centered around t = 50 ps. (b) Phase-space plot in
the plane spanned by the complex gain. The stable fixed point is marked by the cross.
The trajectories show the response of the gain to the perturbation pulses. The dashed
lines show linear fits to the simulated trajectory curves.

where the constant E0 denotes the electric field amplitude in the steady-state, κ is
the optical loss rate, and K then defines a dimensionless injection strength. The
choice of the prefactor KκE0 is arbitrary and we will motivate it later on.

The reaction to the perturbations is plotted in Fig. 3.15. Here, we chose ∆J =

Jth, ∆t = 50 ps, t0 = 50 ps, K = 0.5. The time-series shown in Fig. 3.15 a reveals
an increase in the output power as a response to both perturbation schemes, with
subsequent relaxation oscillations as the laser is driven back into its fixed point.
Fig. 3.15 b shows the trajectories in the complex plane spanned by the optical
gain

(
Re g(t), Im g(t)

)
. These exhibit clearly quite complex forms, which differ

qualitatively between the two cases.

The importance of these trajectories lies in the definition of the α-factor. From
Eq. (3.54) it becomes evident that α describes the slope of the trajectories shown in
Fig. 3.15 b. The conventional way of using α – as a constant – would imply a linear
relationship between the real and imaginary parts of g(t), from which the quantum-
dot laser clearly deviates. A possible approximation of the gain dynamics would be
a linear fit to the shown trajectories, yielding the average slope of the trajectories
as an averaged α-factor, as shown by the dashed lines. Even then, however, the
averaged values calculate to 〈αJ〉 ≈ 2.1 for the pump-current perturbation and
〈αE〉 ≈ 0.73 with the injected optical pulse. Thus, even around the same fixed
point, no uniform value of an average α can be defined [GIO07, LIN12b]. The α-
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Figure 3.16.: Charge-carrier densities of the quantum-dot laser under (a) pump-current
and (b) optical perturbations. Shown are the total quantum-dot ground-state charge-
carrier densities (red), the excited-state densities (green), and the reservoir densities
(blue). (c),(d) The corresponding real (red) and imaginary part (cyan) of the complex
gain after the perturbation, relative to the steady-state gain g0.

factor is therefore an inappropriate measure for describing the gain dynamics of
the quantum-dot medium.

The reason for the unconventional behavior of the quantum-dot laser can be seen
in the charge-carrier dynamics after the perturbation. This is shown in Fig. 3.16 a.
The pump current pulse induces a large increase in the reservoir charge-carriers,
which initially leads to a slight decrease of the quantum-dot occupations due to
carrier-heating effects. The charge-carrier buildup is transmitted to the quantum-
dot states in a delayed fashion, due to the finite charge-carrier scattering rates.
Thus, the excited-state quantum-dot carriers are first affected by the perturbation,
and quickly after that the ground-state. The subsequent relaxation oscillations
also exhibit such desynchronized dynamics between the different charge-carrier
subensembles. As the different charge carriers contribute to the real and imag-
inary parts of the total gain to different extents, this behavior translates into the
desynchronized variation of the optical gain and carrier-induced frequency shift,
shown in Fig. 3.16 c. The complex behavior of the trajectories in the complex gain
plane is thus a direct consequence of the underlying charge-carrier dynamics. When
considering the optical perturbation, this becomes even more apparent. The carrier
dynamics shown in Fig. 3.16 b reveal a strong initial depletion of the quantum-dot
ground-state carriers due to the increased stimulated recombination rate by the
injected optical field. This perturbation is then slowly transmitted to the excited-
state and reservoir charge carriers, with a large time-lag between the individual
densities, again leading to strongly desynchronized dynamics. Compared to the
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case we have considered before, now the quantum-dot ground-state assumes the
“leading” role, with the changes in the excited state and reservoir lagging behind.
This observation reveals the importance of the origin of the charge-carrier variation
in the quantum-dot laser, as the dynamics very clearly differ depending on the type
of perturbation.

In the following, we will thus perform simulations of the quantum-dot laser un-
der different dynamical setups, in order to highlight the differences in the pre-
dicted laser dynamics resulting from the more complex amplitude-phase coupling
in quantum-dot lasers.
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3.6 Dynamics under Optical Injection

In this section we will discuss the dynamics of quantum-dot lasers under optical
injection. Optical injection describes the operation of the laser device under the
injection of an external optical signal into the laser cavity, as sketched in Fig. 3.17.
Depending on the properties of the injected signal, the laser can exhibit versatile
dynamics.

Often, a “master” laser is used to inject a quasi-monochromatic beam into the
cavity of the so-called “slave” laser. If the frequencies of both lasers are sufficiently
close, the slave laser will be phase-locked to the injected signal, a phenomenon
known from driven oscillators [ADL73]. This mechanism was quickly found to be of
technological importance, as the properties of the slave laser can be changed by
phase-locking to an appropriate master signal, allowing for a sensitive tuning of the
lasing frequency to that of the master laser. Additionally, a considerable reduction
of the laser noise and linewidth by injection of a very stable, monochromatic sig-
nal is possible [ERI71]. For this application, the power of the master laser can be
much lower than that of the slave laser, allowing for the realization of high-power
laser devices with extremely low linewidth [LIU02a]. Furthermore, the modulation
bandwidth of laser devices was shown to be greatly increased by an appropriate
injection setup [JIN06, TER08a, LAU09a], with bandwidths exceeding 100 GHz [LAU08a].

The nonlinear dynamics of semiconductor lasers under external optical pertur-
bations have been subject of extensive experimental and theoretical studies in the
past [WIE05, NAD09, KEL11a]. When the frequency of the injected signal is too large,
the beating between the external and cavity fields can induce nonlinear oscillations
[TRE85] as well as deterministic chaos [SIM94a], multi-stability [GAV97], or excitability
close to the boundary of phase-locking [GOU07]. Apart from their scientific ap-
peal, these nonlinear dynamics can also be exploited and used for technological
applications. For example, optically injected lasers have been implemented as an
all-optical memory or switch, allowing for a toggling between two different stable
states by external trigger signals [OSB09a, OSB12]. Furthermore, optically injected

Parts of this section have been published in [LIN12b, LIN13].

Figure 3.17: Sketch of the optical injec-
tion scheme. The external optical sig-
nal Einj has a frequency detuning ∆ωinj

with respect to the free-running laser.
The optical interaction within the laser
cavity can lead to dynamic solutions.
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quantum-dot lasers have been shown to be a promising source for the generation
of THz-radiation [HUR13].

In the following, we will analyze the nonlinear dynamics of quantum-dot lasers
under optical injection. We will focus on the influences of the carrier dynamics
in quantum-dot lasers and the differences in the response of the laser to optical
injection compared to conventional laser devices.

3.6.1 Quantum-Dot Laser Model with Optical Injection

In order to take into account the effect of optical injection on the quantum-dot
laser we have to expand our model. The injected signal will enter the electric field
equation as an additional driving term, which we will derive here.

Considering an external optical field Einj present at the outside of the cavity
mirror, we can calculate the portion of this field transmitted into the laser cavity
as t · Einj, with the cavity mirror transmission coefficient t. After half of the cavity-
round-trip time τin the injected signal arrives at the back facet, where it is reflected
with a reflection coefficient r. The portion rtEinj arrives again at the front facet
after another half round-trip time, as illustrated in Fig. 3.18. From this simple
consideration, we can write the change of the average electric field amplitude in
the laser cavity after one round-trip time due to the injected signal as [WIE05]

[
E(t + τin) − E(t)

]
inj

=
1

2
tEinj +

1

2
rtEinj . (3.62)

Considering now that the internal round-trip time is usually smaller than the dom-
inant dynamic time-scales within the laser, i.e., the relaxation oscillations, we can
approximate the above equation as a derivative:

∂

∂t
E(t)

∣∣∣
inj

=
t(r + 1)

2τin
Einj ≡ kinjEinj , (3.63)

where we have summarized the prefactors into the injection rate kinj. The dynamic
equation for the electric field is thus written as

d

dt
E(t) =

(
g(t) − κ

)
E + kinjEinj . (3.64)

Figure 3.18: Optical injection into the laser cavity. The
external optical field Einj is transmitted through the
cavity mirror with transmission coefficient t, and re-
flected at the back-facet (reflection coefficient r). Af-
ter the internal round-trip time τin = n�

c the injected
signal has filled the whole cavity.
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We now introduce the relative injection strength K, defined via

KκE0 ≡ kinjEinj , (3.65)

where E0 is the steady-state electric field amplitude of the free-running laser. The
term κE0 thus describes the electric field amplitude the free-running laser loses per
time interval. K then describes the electric field injected into the cavity in relation
to the field that is lost.

We write the injected signal as

Einj(t) = |Einj|e−iωinjt , (3.66)

where ωinj is the optical frequency of the injected signal in the rotating reference
frame of the chosen carrier frequency ω. As we have stressed before, the charge
carriers in the laser active medium will lead to a change in refractive index, which
in turn shifts the laser resonance frequency away from the rotating frame frequency.
Thus, in the lasing steady-state, the free-running laser will operate on a frequency
given by

ω̃0 = ω − Im g0 ≡ ω + ω0 , (3.67)

where g0 is the complex optical gain evaluated in the lasing steady-state of the
free-running laser and ω0 the corresponding induced frequency shift. Note that
a positive value of ω0, i.e., a frequency increase, corresponds to a mathematical
negative sense of rotation of E(t). Within the rotating frame the optical field in
the steady state of the free-running laser is thus given by

E(t)
∣∣
fr

= E0e−iω0t (3.68)

We now consider a possible detuning between the injected signal and the optical
frequency of the free-running laser. We thus write ωinj = ω0 +2π∆νinj. The electric
field equation is thus written as

d

dt
E(t) =

(
g(t) − κ

)
E + KκE0e−i(ω0+2π∆νinj)t . (3.69)

This choice of ∆νinj means that a positive value of the detuning refers to an optical
frequency of the master laser that is higher compared to the slave laser.

The explicit time-dependence of the injection term in the above equation results
in a system that is non-autonomous. We can, however, write it in an autonomous
form by a change of the rotating frame. We introduce the new electric field variable

Ẽ(t) := E(t)ei(ω0+2π∆νinj)t , (3.70)
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3.6 Dynamics under Optical Injection

which transforms the electric field E(t) in the rotating frame of the carrier frequency
ω into a new rotating frame of the frequency (ω +ω0 +2π∆νinj) = (ω +ωinj), which
is the optical frequency of the injected signal. Rewriting the electric field equation
in this new rotating frame, we arrive at

d

dt
Ẽ(t) =

(
g(t) − κ + iω0

)
Ẽ + i2π∆νinjẼ + KκE0 . (3.71)

The first of the newly added terms, iω0Ẽ, compensates the carrier-induced fre-
quency shift in the free-running case. Thus, without injection, i.e. K = ∆νinj = 0,
when the laser reaches its steady-state, d

dtẼ vanishes, since iω0 = −Im g0. This
was not the case in the old rotating frame, as there the electric field would rotate
in the complex plane with the carrier-induced frequency-shift. The second term,
i2π∆νinj then transforms the electric field into the frame of the injected signal.
When Ẽ reaches a steady-state in the case with optical injection, the laser field
is thus phase-locked to the injected signal and its frequency matches that of the
master laser. Furthermore, as we now inject a real-valued signal into the laser
cavity, the complex phase of Ẽ immediately gives the phase difference between the
master and slave laser.

The remaining laser equations are unaffected by this change of rotating frame,
as only the absolute square |E|2 ≡ |Ẽ|2 enters the charge-carrier equations.

3.6.2 Injection Locking of Quantum-Dot Lasers

We now implement Eq. (3.71) and simulate the quantum-dot laser under optical in-
jection. The additional term in Eq. (3.71) describing the optical injection adds two
new parameters to the system, the injection strength K and the detuning ∆νinj.
In order to characterize the dynamics of the laser with respect to these param-
eters, we create numerical bifurcation diagrams in the parameter plane spanned
by (K, ∆νinj). In order to characterize the laser dynamics, we distinguish between
steady-state and oscillating solutions. Additionally, we determine the periodicity
of the oscillations by evaluating the number of local extrema in the electric field
amplitude during one oscillation. This allows us to perform a characterization of
the injection-induced dynamics in dependence of the injection parameters. The
resulting bifurcation diagram for the considered quantum-dot laser device is shown
in Fig. 3.19.

Immediately visible is the triangular-shaped region of phase-locking, converging
towards K = 0, ∆νinj = 0. Within this region, the slave laser is phase-locked to
the injected master signal, i.e., the system reaches a steady-state in the rotating
frame of the master laser. Here, the master laser “enslaves” the injected laser,
i.e., the injected signal is strong enough to force the slave laser to assume the
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3 Quantum-Dot Laser Dynamics

Figure 3.19.: Numerically simulated bifurcation diagram of the quantum-dot laser under
optical injection. Shown are the dynamic regimes depending on the injection strength
K and the detuning ∆νinj. The solid and dashed lines denote SNIPER and Hopf bifur-
cations delimiting the triangular phase-locked region. The continuous color code inside
this region shows the relative laser intensity from low (dark blue) to high intensity (light
blue). Outside of the phase-locked region the laser exhibits oscillations. The white area
denotes period-1 oscillations with one local maximum. The discrete color code denotes
oscillations with two (orange), three (yellow) and four (red) maxima per oscillation
period. Oscillations with higher number of maxima, an indication for chaotic and irreg-
ular oscillations, are shown by the dark gray color code. The hatched areas denote the
regions where the laser is oscillating, but still frequency-locked to the injected signal.
After [LIN13].

same wavelength. The frequency detuning interval for which this phase-locking is
possible is in first order proportional to the injection strength K [ARN65, ADL73]. This
phenomenon shows the similarity between the optically injected quantum-dot laser
and harmonically driven oscillators, from which such locking and synchronization
effects are known [MUR05b].

When reaching the boundaries of this locking region for low K � 0.14, the stabil-
ity of the phase-locked steady-state solution is lost in a saddle-node-infinite-period
(SNIPER) bifurcation, denoted by the solid black lines in Fig. 3.19. Here, a stable
fixed point collides with an unstable saddle, eliminating both fixed points in the
process, and creating a periodic orbit. This process is sketched in Fig. 3.20. This
mechanism of unlocking can be derived already in very simple models of driven
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3.6 Dynamics under Optical Injection

(a) (b) (c)

Figure 3.20.: Sketch of a saddle-node-infinite-period (SNIPER) bifurcation. (a) A stable
fixed point (full circle) and an unstable saddle (empty circle) exist with a heteroclinic
connection: the unstable manifold of the saddle is a stable manifold of the stable node.
(b) At the bifurcation point the nodes collide, forming a homoclinic connection. (c) Af-
ter the bifurcation, the fixed points have been annihilated and a periodic orbit was born
from the former homoclinic connection.

phase oscillators [ADL73]. While the numeric evaluation of the injected quantum-
dot laser dynamics does not deliver an immediate conclusion about the involved
bifurcation, the similarity of these systems already give an indication of the un-
derlying dynamics. We will show later on by using numeric path-continuation
techniques that here indeed a saddle-node bifurcation is responsible for the loss of
phase-locking. Close to this SNIPER bifurcation, the injected laser has been shown
to be excitable [GOU07, KEL09, KEL11]. This can be understood by the close distance
of the stable node and the saddle in phase-space. When the laser operates on the
stable fixed point, a small perturbation – either by an external trigger signal or
noise [ZIE13] – will be able to drive the system across the unstable node and induce
a large excursion along the heteroclinic connection. This excitability makes opti-
cally injected lasers an interesting system for nonlinear dynamics studies, e.g., as
“optical neurons” [MOS00].

For higher injection strengths, the phase-locking region is delimited by a Hopf
bifurcation of the stable fixed point on the positive detuning side. At the collision
point of the SNIPER and Hopf bifurcation lines exists a codimension-2 saddle-node-
Hopf point [KRA97b, ZIM97a, NIZ01], where the Hopf bifurcation changes its criticality
from subcritical to supercritical for higher K, as we will see later on. From there
on, at the locking boundary the stability of the stable fixed point is lost in the
supercritical Hopf bifurcation, in which a stable limit cycle is born out of the fixed
point.

The periodic orbit born in the Hopf bifurcation is qualitatively different from
those born in the SNIPER bifurcations. This becomes obvious from its phase
dynamics. We can evaluate the optical frequency of the slave laser by looking at
the time evolution of its electric field phase φ̃:

〈∆νlas〉 := 〈− d

dt
φ̃〉 = 〈−Im

(
d
dtẼ

Ẽ

)
〉 , (3.72)

93



3 Quantum-Dot Laser Dynamics

where 〈 · 〉 means the time average. The quantity 〈∆νlas〉 then describes the average
frequency detuning of the injected laser from the master signal. In the phase-locked
region 〈∆νlas〉 is zero, since the laser is in a steady-state, and d

dt φ̃ = 0. However,
there can also be oscillating solutions that yield 〈∆νlas〉 = 0, even for d

dt φ̃ �= 0. As
long as the optical field phase is bounded, the time-averaged phase-change is zero.
Then, also 〈∆νlas〉 = 0, meaning that the optical frequency of the slave laser is
still locked to the injected signal, while the intensity performs periodic oscillations.
The hatched lines in Fig. 3.19 denotes these regions of frequency-locked or phase-
bounded oscillations [THE11, KEL12].

The transition from a phase-bounded to phase-unbounded oscillations is illus-
trated in Fig. 3.21. Here, we plot the time-series of the laser output power for
K = 5 and ∆νinj = −5 GHz, where the oscillations are phase-bounded, as well
as for ∆νinj = −6 GHz, where they are unbounded. The time-series Fig. 3.21 a,d
look very similar between the two cases. The trajectories in the complex elec-
tric field plane, Fig. 3.21 b,e, reveal the qualitative difference. The oscillation for
∆νinj = −5 GHz is still phase-bounded, i.e., the periodic orbit does not include the
origin of the complex plane. The phase therefore oscillates between two extreme,
but no full revolutions occur. For ∆νinj = −6 GHz, on the other hand, the origin
lies within the periodic orbit and thus every oscillation period correspond to a 2π

phase-shift. Here, the oscillation is thus unbounded and the mean output frequency
of the laser becomes unlocked from the master signal.

The phase-unbounding transition is also visible in the optical spectrum of the
laser output, shown in Fig. 3.21 c,f. Here, we evaluate the optical spectrum of the
laser output by a Fourier-transform of the electric field,

P (f) =

∣∣∣∣
∫

dt Ẽ(t) e−2πft

∣∣∣∣
2

. (3.73)

Since we chose the frequency of the master laser as the reference frame for Ẽ, in
the spectrum f = 0 then refers to the master laser frequency.

Within the phase-bounded region the spectrum is dominated by the frequency
of the master laser, with a smaller beat-signal contribution centered at the free-
running laser frequency. The phase-unbounding then describes the point where
the former beat note becomes the dominant peak, i.e., here the laser returns to its
free-running frequency (with a slight offset due to frequency-pulling). The tran-
sition point has recently been found to be of significant technological importance.
Near this point noise effects can easily introduce strong phase-slips, depending
on whether the noise drives the periodic orbit across the complex origin. Thus,
the phase-noise exhibits a pronounced peak around this transition [ROM14], which
worsens the laser linewidth and coherence.
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3.6 Dynamics under Optical Injection

Figure 3.21.: Phase-unbounding of the optically injected quantum-dot laser after a Hopf
bifurcation. (a) Output power time-series of the optically injected quantum-dot laser for
K = 0.5, ∆νinj = −5 GHz, (b) corresponding periodic orbit in the complex electric field
plane. The complex origin is marked by the dashed lines. (c) Optical power spectrum
P (f) of the laser output. The frequency f = 0 corresponds to the master laser frequency
νinj. The free-running laser frequency is marked by ν0. The spectrum was calculated
with an artificial 350 MHz detector resolution. (d),(e),(f) show the corresponding plots
for ∆νinj = 6 GHz.

Apart from the near-harmonic oscillations dominated by the beat-note between
the injection signal and the slave laser, more complex oscillating solutions are
observed in the bifurcation diagram Fig. 3.19. Most prominent is the elliptic region
of higher periodicity located around K = 0.3, ∆νinj = −3 GHz. Here, bifurcations
of the periodic orbits lead to highly complex dynamics, due to the near-resonant
excitation of relaxation-oscillations in the quantum-dot laser. Lying within bubbles
of highly-periodic oscillations there exist two regions of chaotic dynamics. The
generation mechanisms of such chaotic regions can be manifold [WIE05]. For K = 0.3

we find a period-doubling route to chaos when increasing the detuning ∆νinj from
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Figure 3.22.: Period-doubling bifurcations to chaos. Shown are the power time-series
(top), trajectories in the complex electric field plane (middle), and the optical spec-
tra relative to the master laser frequency. Shown are the dynamics for ∆νinj ∈
{−4.5, −4, −3.8, −3.6} GHz ((a) to (d)) and K = 0.3, cf. Fig. 3.21.

negative values outside of the period-2-oscillation region. This is illustrated in
Fig. 3.22.

Starting at ∆νinj = −4.5 GHz, we encounter period-1 oscillations with the dis-
tinct beat note in the optical spectrum. Once we cross the period-doubling bi-
furcation, at ∆νinj = −4 GHz, the periodic orbit breaks into a dual loop. This is
accompanied by the appearance of subharmonic peaks in the optical spectrum at
half the distance between the two main peaks, due to the doubling of oscillation
period. A period-4 oscillation is shown for ∆νinj = −3.8 GHz, until finally the
chaotic attractor is born from the period-doubling cascade, following an infinite
number of further period-doubling bifurcations.

Fig. 3.19 also shows a region of higher periodicity around K = 0.1 at either
side of the locking region. A further look into the periodic orbits involved in these
regions, however, reveals that here no bifurcation occurs. Instead, the appearance
of relaxation oscillations induces additional extrema in the output power. The
recorded higher number of maxima is therefore a consequence of a deformation of
the periodic orbits and no indication of period-doubling bifurcations. The chosen
evaluation routine thus can not discriminate complex trajectory shapes from higher
periodicity. The corresponding periodic orbits are shown in Fig. 3.23.
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3.6 Dynamics under Optical Injection

Figure 3.23.: Additional maxima due to deformation of the periodic orbit. Shown are
the power time-series (top), trajectories in the complex electric field plane (middle), and
the optical spectra relative to the master laser frequency. Shown are the dynamics for
∆νinj ∈ {1.8, 1.7, 1.5} GHz ((a) to (c)) and K = 0.1, cf. Fig. 3.21.

3.6.3 Dependence on the Quantum-Dot Structure and Pump-Current

In the previous section we have presented the rich nonlinear dynamics of the op-
tically injected quantum-dot laser. We will now investigate the dependence of the
bifurcation structure on key parameters of the quantum-dot laser. The easiest pa-
rameter to control is the pump current driving the quantum-dot laser. As we have
shown before, the pump current influences the charge-carrier dynamics in the sys-
tem by a change of the reservoir charge-carrier densities and the subsequent change
of the individual scattering-rates.

When comparing different quantum-dot structures, a change of material com-
position or crystal growth parameters can change the underlying energy structure
[BIM08a]. In addition to the quantum-dot device we have considered so far, we will
investigate a different structure, which we will refer to as “deep-dot”. The difference
to the previously discussed structure (the “shallow-dot” structure, see Fig. 3.2) lies
in the different energy levels, as shown in Fig. 3.24, with a deeper confinement of
the quantum-dot states.

We now proceed by evaluating the bifurcation diagrams of both quantum-dot
laser structures at different pump-currents. For the shallow-dot quantum-dot laser
the resulting bifurcation diagrams are shown in Fig. 3.25. Here, we compare the
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3 Quantum-Dot Laser Dynamics

Figure 3.24: Energy scheme of the localized quantum-
dot states for the deep-dot structure. The energy spa-
cings are given in meV. The reservoir band edges are
shown by the light-blue shaded areas.
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dynamics of the optically injected laser for J = 2Jth, which we had already shown
in Fig. 3.19, with the resulting dynamics at J = 5Jth.

Comparing the two bifurcation diagrams, a shift of the saddle-node-Hopf point
for positive detuning towards higher injection strengths can be observed, along with
a similar shift of the period-doubling region on the negative-detuning side outside
of the locking region. We can understand this behavior from the dependence of the
quantum-dot laser relaxation oscillation parameters on the pump current, which
we have investigated in Sec. 3.2. With increasing pump-current, the relaxation
oscillation damping and frequency both increase. It has been previously shown
that the injection strength at which the saddle-node-Hopf point is located increases
nearly linearly with the relaxation oscillation damping rate [OTT14]. This is in line
with the interpretation of the excitation and undamping of relaxation oscillations by
the injected signal, as the initial relaxation-oscillation damping must be overcome
by the injected signal.

The period-doubling region outside of the locking region for negative detuning is
shifted towards higher K and enlarged nearly proportionally. The internal struc-
ture, however, remains the same, with two pronounced chaotic regions located
inside the ellipse, suggesting a high robustness of the global bifurcation structure
towards changes in the pump current [PAU12].

We now simulate the bifurcation diagrams for the deep-dot structure, again at
twice and five times the threshold current. This is shown in Fig. 3.26. The bifur-
cation diagrams reveal a generally similar shape, with a triangular phase-locking
region and regions of more complex oscillatory dynamics on the outside. Here, how-
ever, both the onset of the Hopf bifurcation on the positive detuning side of the
locking region as well as the period-doubling regions are shifted towards lower ab-
solute K, due to the lower relaxation oscillation damping rate of the quantum-dot
laser with deeply confined energy levels.

The bifurcation structure inside of the period-doubling ellipse on the lower half of
the bifurcation diagram reveals a much more involved arrangement of bifurcations.
An extensive discussion of the dynamical details of this structure can be very
complicated [WIE05] and goes beyond the scope of this work. Nevertheless, we
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3.6 Dynamics under Optical Injection

Figure 3.25.: Numerically simulated bifurcation diagram of the shallow-dot quantum-dot
laser under optical injection, cf. Fig. 3.19. Shown are the bifurcation diagrams for (a)

J = 2Jth, and (b) J = 5Jth. After [LIN13].

can again see that an increase in the pump current leads to the same shift of the
bifurcations towards higher K that we have already seen for the shallow-dot laser,
while keeping the overall structure the same. It is interesting to note that for the
deeply confined quantum-dots there exists an additional period-doubling region
for positive detuning, close to the saddle-node-Hopf point. This region, however,
overlaps with the region of induced relaxation peaks that we have discussed earlier
(see Fig. 3.23), making a separation of these two effects difficult.

We have now gotten a first impression of the quantum-dot laser dynamics under
optical injection. In the following, we will discuss the impact of the amplitude-
phase coupling in the quantum-dot laser on its dynamics, by comparing our full
model to the dynamics that conventional models predict.

99



3 Quantum-Dot Laser Dynamics

Figure 3.26.: Numerically simulated bifurcation diagram of the deep-dot quantum-dot
laser under optical injection, cf. Fig. 3.19. Shown are the bifurcation diagrams for (a)

J = 2Jth, and (b) J = 5Jth. After [LIN13].

3.6.4 Evaluation of the α-Factor from Optical Injection

From the discussion of the injection-locking dynamics of the quantum-dot laser in
the previous section we can conclude that quantum-dot lasers possess a similar
general response to the injection of a master-laser signal, when compared to con-
ventional laser devices. This includes a region of phase-locking for not too large
detuning and areas of highly complex dynamics outside of this region.

In the following, we will thus try to describe the quantum-dot laser dynamics
in the best way possible using a conventional modeling approach, i.e., using an
α-factor to describe the amplitude-phase coupling. As we have shown earlier, the
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α-factor implements a linear dependence of the carrier-induced index change on
the optical gain:

Im g(t) ≡ −α Re g(t) . (3.74)

We will therefore rewrite Eq. (3.71) as

d

dt
Ẽ(t) =

(
Re g(t) − κ

)(
1 − iα

)
Ẽ + i2π∆νinjẼ + KκE0 , (3.75)

where we have exploited the fact that the frequency shift ω0 of the free-running laser
is given by ω0 = α Re g0 = ακ due to the gain-clamping in the steady-state. While
neglecting the complex charge-carrier dynamics which determines the frequency-
shift in the full model, the α-factor approach greatly simplifies the dynamics of the
electric field. Using only the field dynamics Eq. (3.75), we can derive an analytical
expression for the saddle-node bifurcation delimiting the phase-locking region in
dependence of K and ∆νinj.

Assuming that the laser is in a phase-locked steady-state, the time-derivative of
Ẽ must vanish:

0 =
(
Re g(t) − κ

)(
1 − iα

)
Ẽ + i2π∆νinjẼ + KκE0 . (3.76)

By splitting the above equation into its amplitude Ã and complex phase φ̃, we
arrive at

0 =
d

dt
φ̃(t) = −α

(
Re g(t) − κ

)
+ 2π∆νinj − sin φ̃

KκE0

Ã
(3.77a)

0 =
d

dt
Ã(t) =

(
Re g(t) − κ

)
Ã + cos φ̃ KκE0 . (3.77b)

Inserting Eq. (3.77b) into Eq. (3.77a), we can rewrite it as

2π∆νinj =
KκE0

Ã

[
−α cos φ̃ + sin φ̃

]
(3.78)

Utilizing the trigonometric identity sin(φ) − α cos(φ) =
√

1 + α2 sin(φ − arctan α),
we can write

2π∆νinj
Ã

KκE0
√

1 + α2
= sin(φ̃ − arctan α) , (3.79)
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Figure 3.27.: Bifurcation diagram of the optically injected shallow-dot laser with the
analytical expression Eq. (3.80) for the SNIPER bifurcation line (red), using α ≡ αinj =

1.19. Cf. Fig. 3.19.

which admits only solutions if the left-hand side stays within [−1, 1]. From this,
we acquire the locking boundaries as

∆νlock
inj = ±Kκ

2π

E0

Ã

√
1 + α2 ≈ ±Kκ

2π

√
1 + α2 , (3.80)

where the last term approximates the locking boundaries for Ã ≈ E0, i.e., for low
injection strengths. Eq. (3.80) describes the linear increase of the locking range
with the injection strength K that we have already observed in the numerical
evaluation of the bifurcation structure. Under the assumption of constant electric-
field amplitude and α = 0, the above equation would reproduce the phase-locking
behavior known from Adler’s equation [ADL73], showing the connection between the
optically injected quantum-laser and simple driven phase oscillators.

Eq. (3.80) gives an expression for the locking boundaries in dependence on the
parameter α. We can thus fit our numerical results for the SNIPER bifurcation
lines using the above expression to extract a value for α. For the shallow-dot laser
device at twice the threshold current we obtain α ≡ αinj = 1.19. We use the symbol
αinj to label the α-factor extracted from the optical injection simulations.

Fig. 3.27 shows the comparison between the analytical approximation Eq. (3.80)
and the numerically obtained bifurcation diagram. The analytical expression (red
curve) shows perfect agreement with the numerical results for low injection strength.
With increasing K, the numerically determined SNIPER bifurcation lines show a
deviation towards higher ∆νinj. Here, the approximation Ã ≈ E0 fails. In order to
resolve this problem, one would need to derive an expression for Ã in dependence
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of the injection parameters, for which a consideration of the charge-carrier dynam-
ics is required. Analytical expressions can be derived for simple carrier dynamics
[ERN10b, OTT14], but are not feasible for our full modeling approach.

The approach used in determining αinj by fitting the bifurcation lines apparently
yields an accurate, but also rather complicated task. We can circumvent the fitting
procedure by directly applying the definition of the α-factor, Eq. (3.59), using the
ratio of variation in the imaginary and real parts of the optical gain. As we have
stressed before, this definition is in general not well-defined, as it depends on the
individual charge-carrier occupation changes δρ. In the present case of optical
injection, we can however explicitly determine these changes from the numerics.

We thus evaluate the reaction of the quantum-dot laser towards a small change
in the electric-field amplitude, realized by a change in the injection strength K:

αinj := −∂ Im g / ∂K

∂ Re g / ∂K
= − Im g|K=∆K − Im g|K=0

Re g|K=∆K − Re g|K=0
. (3.81)

We evaluate this expression at K = 0 and ∆νinj = 0, i.e., the numerical derivatives
∂/∂K become the differences of the real and imaginary parts of the gain with
respect to their values obtained for the free-running laser at K = 0. Here it is
important to note that we evaluate the adiabatic changes of the gain with the
injection strength, i.e., we evaluate it after all transients have decayed and the
laser has reached its new steady-state. When we perform this procedure using
∆K = 10−4, we obtain αinj = 1.19, which is exactly the value received from the fit
to the bifurcation diagram. We will thus evaluate Eq. (3.81) in order to extract an
α-factor that describes the locking behavior of the quantum-dot laser in the best
way possible.

3.6.5 Comparison with α-Factor-Based Models

Shallow-Dots

We now create bifurcation diagrams for the different cases we have studied before,
but using an α-factor approach to model the amplitude-phase coupling. We thus
apply Eq. (3.81) and determine an effective α-factor to describe the response of the
quantum-dot laser to the optical injection. In the simulations we then implement
Eq. (3.75) instead of calculating the index-changes from the off-resonant optical
transitions.

For the shallow-dot case at twice the threshold current, we will at first compare
the bifurcations delimiting the phase-locking region. The comparison between the
modeling approaches is shown in Fig. 3.28. Here we can see a very good agreement
between the two cases for the SNIPER bifurcation lines, which show only slight
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Figure 3.28.: Comparison of the injection-locking range for the shallow-dot laser under
optical injection. Shown are the SNIPER (solid) and Hopf (dashed) bifurcation lines
for the full model (red) and the α-factor approach (blue). The shaded regions show
frequency-locked oscillations. J = 2Jth.

differences at higher injection strength. The Hopf bifurcation lines on the other
hand show a shift along the detuning axis, with the full model predicting a slightly
smaller locking range at the positive detuning side. Along with the Hopf lines
also the regions of frequency-locked oscillation are shifted. This good agreement
shows us that our choice of αinj does indeed reproduce the locking dynamics of the
quantum-dot laser rather well.

We thus proceed to create the complete bifurcation diagram using the α-factor
model. The comparison between the two approaches is shown in Fig. 3.29. We
can see that the α-factor reproduces the same general shape of dynamics outside
of the locking range, with a bubble of more complex dynamics outside of the lower
locking boundary. However, the period-doubling ellipse is shifted towards higher
K, and the bifurcation structure inside of this region can be seen to differ from
the full model. Using an α-factor, the chaotic region at smaller K vanishes, and
the other chaotic region differs in shape and size, with a rather pronounced region
of period-3 oscillation appearing. Apart from this, the period-doubling region at
positive detunings near the saddle-node-Hopf point, that was previously only seen
in the deep-dot case, is now also visible for the shallow-dot laser. The bifurcation
diagrams for J = 5Jth, Fig. 3.30, reproduce this behavior, showing similar difference
between the two models.

104
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Figure 3.29.: Comparison of the bifurcation diagram for the shallow-dot laser under
optical injection. (a) shows the bifurcation diagram obtained using the full model,
Eq. (3.71), (b) α-factor approach, Eq. (3.75). J = 2Jth, cf. Fig. 3.19. After [LIN13].
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Figure 3.30.: Comparison of the bifurcation diagram for the shallow-dot laser under
optical injection. (a) shows the bifurcation diagram obtained using the full model,
Eq. (3.71), (b) α-factor approach, Eq. (3.75). J = 5Jth, cf. Fig. 3.19. After [LIN13].
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Figure 3.31.: Transients of the complex gain in the optically injected shallow-dot laser.
The detuning ∆νinj is switched from 0 GHz (filled circle in the section of the bifurcation
diagram in (a)) to 1 GHz, 2 GHz, or 3 GHz, respectively (crosses in (a)). (b) shows the
corresponding transients g(t) in the complex plane of the optical gain. The transients
when switching to another phase-locked state are shown in blue, the green dashed line
shows the periodic orbit outside of the locking range. The black line shows the steady-
state gain values gs inside of the locking range for K = 0.25. J = 2Jth, cf. Fig. 3.19.
After [LIN13].

The bifurcation diagrams show that the α-factor approach reproduces the bifur-
cations of the steady-state solutions – the phase-locked states – rather well. The
dynamic solutions, on the other hand, exhibit differences. We will try to under-
stand this behavior by investigating the dynamics of the complex optical gain of
the injected quantum-dot laser.

We thus look at the response of the quantum-dot laser to an instantaneous
switching of the injection frequency. This is depicted in Fig. 3.31, where we have
simulated the quantum-dot laser with injection at K = 0.25 and ∆νinj = 0 GHz,
such that the laser is in a phase-locked steady-state. From there, we have changed
∆νinj to 1, 2, and 3 GHz, with ∆νinj = 3 GHz lying outside the phase-locking region,
the other two values within (see Fig. 3.31 a).

When switching to values of the detuning that lie within the locking range, the
laser will reach a phase-locked steady-state after the transients have decayed (blue
curves in Fig. 3.31 b). The gain gs that is assumed in the steady-states for different
∆νinj inside the phase-locked region are shown by the black line. As we can see, this
curve is nearly linear, which would be in agreement with a constant α-factor, giving
a constant slope in the (Re g, Im g)-phase-space. The transients when switching to
a different ∆νinj, however, reveal a deviation from this linear relationship. The
periodic orbit outside of the locking-range for ∆νinj = 3 GHz (green dashed) as
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3 Quantum-Dot Laser Dynamics

well as the transients can clearly not be described by a linear relationship between
the real and imaginary parts of the optical gain.

We can understand this behavior by discussing the charge-carrier dynamics in-
duced by the change of injection parameters. As long as we only look at the steady-
state solutions, we can easily define a functional dependence of the charge-carrier
distribution ρ, including all quantum-dot and reservoir states, on the injection pa-
rameters: ρ ≡ ρ(K, ∆νinj). As the gain gs in the steady-state is a function of
the carrier distribution, the derivative ∂gs/∂∆νinj exists, and we can define an
α-factor in terms of the derivatives of the real and imaginary parts of gs with re-
spect to ∆νinj, similar to Eq. (3.81). As we have stressed before, this is no longer
possible when looking at dynamic solutions, as the time-evolution of the gain can
exhibit complicated dynamics itself, without the possibility to describe it by an
α-factor. This will become especially pronounced when discussing dynamically
complex solutions where the electric field exhibits dynamics on the timescale of the
charge-carrier lifetimes, where the carrier distribution is no longer able to adiabat-
ically follow the electric field dynamics. Here, using an α-factor would artificially
constrain the dynamics of the gain in the phase-space to the black line in Fig. 3.31,
which, as we have seen, will lead to inaccurate predictions of the dynamics.

The above discussion explains the differences between the full-modeling approach
and the α-factor model. The bifurcations of the steady-state solutions delimiting
the locking region can be very well describe with an α-factor, since the steady-state
solutions adiabatically follow a nearly linear relationship in the complex gain. The
dynamical solutions, on the other hand, cannot be described by an α-factor, and
their bifurcations thus differ between the two approaches.

It has become clear that the difference between quantum-dot laser dynamics and
conventional lasers is strongly influenced by the amplitude-phase coupling. We
will therefore take another look at the quantum-dot laser dynamics in terms of
the amplitude-phase coupling by evaluating its gain and index dynamics. We thus
extend the definition of αinj, Eq. (3.81), to the whole parameter space:

αinj(K, ∆νinj) := −∂ Im gs(K, ∆νinj) / ∂K

∂ Re gs(K, ∆νinj) / ∂K
. (3.82)

We must again note that this definition is only well-defined within the phase-locking
region, where the laser reaches a steady-state. The definition for αinj(K, ∆νinj)

therefore is based on the derivatives of the steady-state value of the complex gain,
gs(K, ∆νinj). When the laser is not phase-locked, a different definition has to be
used. As we have seen in Fig. 3.31, the real and imaginary parts of g(t) are desyn-
chronized for oscillatory solutions, and the derivative ∂Re g(t)/∂Im g(t) cannot be
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3.6 Dynamics under Optical Injection

Figure 3.32.: Evaluation of the amplitude-phase coupling in the optically injected shallow-
dot laser. Within the phase-locked parameter region, we plot αinj, Eq. (3.82), for dy-
namic solutions αdyn

inj , Eq. (3.84), is shown, with their values denoted by the color code.
J = 2Jth, cf. Fig. 3.19.

defined. Instead, we will evaluate the modulation amplitudes of these quantities,
i.e., we define

∆Re g(K, ∆νinj) :=
[

max[Re g(t)] − min[Re g(t)]
]

K,∆νinj

(3.83a)

∆Im g(K, ∆νinj) :=
[

max[Im g(t)] − min[Im g(t)]
]

K,∆νinj

(3.83b)

with their minimum and maximum values evaluated for the corresponding dynamic
solution obtained at the parameter combination (K, ∆νinj). We then evaluate their
ratio,

αdyn
inj (K, ∆νinj) :=

∆Im g(K, ∆νinj)

∆Re g(K, ∆νinj)
. (3.84)

in order to quantify the amplitude-phase coupling outside of the locking range.

We evaluate Eqs. (3.82), (3.84) for the shallow-dot laser under optical injec-
tion. The resulting values in dependence of the injection parameters are shown
in Fig. 3.32. The value of αinj within the locking region exhibits a decrease to-
wards higher K, which coincides with an increase of the optical power. This can
be understood in terms of the quantum-dot ground-state occupation. At higher in-
tensity, the stimulated recombination rate becomes larger, forcing the quantum-dot
occupation towards zero inversion. With reduced occupation, the gain saturation
due to Pauli-blocking becomes less pronounced in the ground-state, such that a
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3 Quantum-Dot Laser Dynamics

variation of the charge-carrier distribution leads to a higher relative change of the
optical gain and thus to a smaller value of αinj.

At the locking boundaries, the value of αinj is nearly constant, and approximately
equal to the value evaluated at K = ∆νinj = 0. This explains the good agreement
between the full gain dynamics and the description with an α-factor, as here the
full gain dynamics can be very well described with this constant αinj.

Outside of the locking region, however, the discrepancies become evident. While
for small values of K and ∆νinj the values inside and outside of the locking re-
gion match rather well, there is a substantial decrease of αdyn

inj towards greater
detuning frequencies |∆νinj|. Furthermore, the laser dynamics itself can be seen to
influence the value of αdyn

inj . The signatures of the different qualitative dynamics
and their bifurcations within the elliptic region of higher periodicity at the lower
injection-locking boundary are clearly visible also in the amplitude-phase coupling.
This again shows that no single value of α can be defined for quantum-dot lasers
that would be valid for all types of solutions, but a consistent and independent
description of the optical gain and frequency-shift is required.

Deep-Dot Laser

We now also simulate the quantum-dot laser with deeply confined localized states
and compare its dynamics with the results from the α-factor description. The
evaluation of αinj yields a lower value of 0.55 at J = 5Jth in this case. Compared
to the shallow-dot laser, this reduced value can be explained by the larger energy
spacing of the reservoir states from the quantum-dot ground-state, reducing their
effect on the frequency shift at the ground-state energy.

Fig. 3.33 reveals the same general trend that we have already seen for the shallow-
dot laser. The simulations using an α-factor can reproduce the bifurcations of
the static phase-locked solution very well, while the bifurcations of the dynamic
solutions are shifted in parameter space. Furthermore, the detailed bifurcation
structure enclosed within the period-2 region at negative ∆νinj exhibits quite sub-
stantial differences. It becomes again evident that when using an α-factor for the
simulation of quantum-dot laser dynamics, the amplitude-phase coupling cannot
be accurately described. This holds especially for the complex bifurcation structure
of the periodic solutions. As we will see later on in Sec. 3.9, this abrupt change
of the amplitude-phase coupling between the locked and unlocked regions is due
to a frequency-dependent modulation response of the carrier-induced frequency-
shift. The amplitude-phase-coupling thus becomes subsequently smaller the faster
the dynamics of the electric field becomes. This is also demonstrated in Fig. 3.34,
which shows the amplitude-phase coupling in the injection parameter plane, as
done before for the shallow-dot (cf. Fig. 3.32). Here we can clearly observe the
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3.6 Dynamics under Optical Injection

Figure 3.33.: Comparison of the bifurcation diagram for the deep-dot laser under optical
injection. (a) shows the bifurcation diagram obtained using the full model, Eq. (3.71),
(b) α-factor approach, Eq. (3.75). J = 5Jth, cf. Fig. 3.19. After [LIN13].

reduction in amplitude-phase coupling as soon as we leave the phase-locked region,
which then leads to the differences in the dynamics between the two modeling
approaches.

Our numerical results by direct integration of our quantum-dot laser model
shows that the unique dynamics of quantum-dot lasers lead to important modi-
fications to the bifurcation structure. While the numerical bifurcation diagrams of
the quantum-dot laser in the parameter plane gives an overview of the qualitative
dynamics, a more general investigation of the dynamics would be favorable. A
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3 Quantum-Dot Laser Dynamics

Figure 3.34.: Evaluation of the amplitude-phase coupling in the optically injected deep-
dot laser. J = 5Jth, cf. Fig. 3.32.

detailed investigation of the bifurcations, however, requires a treatment that goes
beyond the simple integration of the quantum-dot laser model. In the following
section we will therefore present a simplification of our full model that is suitable
for implementation in numerical path-continuation tools.
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3.7 Optical Injection - Numerical Path Continuation

3.7 Optical Injection - Numerical Path Continuation

While the numerical evaluation of bifurcation diagrams, as shown in the previous
sections, can give an overview of the possible dynamics in the system, it has several
drawbacks. The bifurcation diagrams were created by direct integration of the
quantum-dot laser equations. Together with the high number of sampling points
in the parameter space required for a sufficiently high resolution, this can lead to
significant computational demands. Furthermore only stable solutions can be found
by this approach. And in the case of multi-stability only one particular solution
will be reached, with the remaining going potentially unnoticed.

A more elegant way of characterization of the occurring dynamics is offered by
path-continuation programs. These makes it possible to trace points of interest,
e.g., bifurcation points, in parameter space [KRA07]. The advantage of this approach
is that bifurcations of both stable and unstable solutions can be found, and often
more efficiently and accurate than a sampling of the parameter space. A thorough
description of the bifurcations then gives a complete and consistent picture of the
qualitative dynamics that can occur when the control parameters are varied.

For the optically injected quantum-dot laser, the path-continuation along with
an asymptotic analysis of the saddle-node and Hopf bifurcation lines has been
performed for a model that incorporates the complex charge-carrier dynamics con-
sidered here, but which uses an α-factor [OTT14]. Here, we will apply the path
continuation on our model that dynamically calculates the carrier-induced index
changes.

For the application of the path continuation tools it is advantageous to use a
model that is as simple as possible in order to reduce the computational effort. A
Thorough investigation of quantum-dot laser dynamics has been prevented by the
high complexity of realistic models. In the following, we will therefore present a
simplification of our full quantum-dot model, which we will then implement in the
path continuation tools.

3.7.1 Quantum-Dot Laser Model Simplification

We will now reduce our quantum-dot laser model to a simpler form, which is
easier to handle both numerically and analytically. In the process we have to take
care not to neglect any of the important effects that define the unique features of
quantum-dot laser dynamics.

Parts of this section have been published in [LIN14].
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In Eq. (3.9) we had written the dynamics of the individual quantum-dot sub-
groups as

d

dt
ρj

b,m = − Re(gj
m)

(
ρj

e,m + ρj
h,m − 1

)
|E|2 − Wmρj

e,mρj
h,m + Scap

b,m ± Srel
b

νm
, (3.85)

with the sign +, − accounting for the ground and excited-state dynamics, respec-
tively. The dynamic equations for the charge-carrier occupations of different sub-
groups thus differ in the strength of the light-matter interaction with the laser
field, given by the gain coefficient gj

m. As we have seen before, the real part of the
gain coefficient describes a Lorentzian lineshape around the resonance frequency
ω. The quantum-dots subgroups close to the resonance thus mostly dominate the
light-matter interaction, whereas for sufficiently off-resonant subgroups the corre-
sponding term can be neglected. A common approach [LUE10a, GIO12] is thus to
separate the quantum-dots into two groups – active and inactive dots – and re-
placing the former smooth dependence of Re(gj

m) on the quantum-dot frequencies
with a discrete dependence: The complete stimulated emission takes place in the
active dots, and vanishes in the inactive dots. In the following, we will describe the
fraction of active dots with respect to the total quantum-dot number as fact, and
the corresponding fraction of inactive dots as f inact.

We can write the dynamic equation for the two new subgroups, which we label
with the indices “act” and “inact” for the active and inactive fractions of dots,
respectively, as

d

dt
ρact

b,GS =
∂ρact

b,GS

∂t

∣∣∣
stim

− Ract
sp,GS + Scap,act

b,GS + Srel,act
b (3.86a)

d

dt
ρinact

b,GS = −Rinact
sp,GS + Scap,inact

b,GS + Srel,inact
b . (3.86b)

Assuming now that the contribution of the quantum-dot excited states to the opti-
cal gain can be neglected, we can lump all excited states into one dynamic variable:

d

dt
ρb,ES = −Rsp,ES + Scap

b,ES − 1

2

[
factSrel,act

b + f inactSrel,inact
b

]
. (3.87)

In above equations, the spontaneous recombination contribution is given by

R
(in)act
sp,GS = WGSρ

(in)act
GS,e ρ

(in)act
GS,h , Rsp,ES = WESρES,eρES,h , (3.88)

and the charge-carrier scattering contributions

S
cap,(in)act
b,m = Scap,in

b,m [1 − ρ
(in)act
b,m ] − Scap,out

b,m ρ
(in)act
b,m , (3.89a)

S
rel,(in)act
b = Srel,in

b [1 − ρ
(in)act
b,GS ]ρb,ES − Srel,out

b ρ
(in)act
b,GS [1 − ρj

b,ES] . (3.89b)
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Next we will rescale the electric field such that

|Ê|2 := Nph , (3.90)

where Nph is the 2D photon density inside the laser cavity. The new electric field
variable is thus related to the original field strength via

Ê =

√
εbgε0

2�ω

aLhQW

Γ
E , (3.91)

where aLhQW/Γ is the effective mode height. The dynamic equation of the new
electric field variable (without spontaneous emission) is thus given by

d

dt
Ê(t) =

(
g(t) − κ

)
Ê . (3.92)

We will now have to derive expressions for the complex optical gain g(t). In
Eq. (3.13) we had written

g(t) =
�ωΓ

ε0εbghQW
2NQD

∑

j,m

νmf(j)gj
m

(
ρj

e,m + ρj
h,m − 1

)
− iδωQW . (3.93)

We now rewrite the contribution of the quantum-dot states in terms of the active
and inactive quantum-dot fractions as

g(t)
∣∣
QD

=
�ωΓ

ε0εbghQW
2NQD

[
factgact

GS

(
ρact

e,GS+ρact
h,GS−1

)
+ gES

(
ρact

e,ES+ρact
h,ES−1

)]
,

(3.94)

where the gain coefficients of the lumped states are calculated by averaging over
the individual subgroups:

gact
GS = Re

⎡
⎣∑

j

f(j)gj
GS

⎤
⎦ =

∑

j

f(j)
T2|μGS|2

2�2

(
1

1 + [T2(ωj
GS − ω)]2

)
(3.95a)

gES = i Im

⎡
⎣∑

j

2f(j)gj
ES

⎤
⎦ = −i

∑

j

2f(j)
T2|μES|2

2�2

(
T2(ωj

ES − ω)

1 + [T2(ωj
ES − ω)]2

)
.

(3.95b)

In the above, we take into account only the real part of the ground-state contribu-
tion to the gain into account, as the imaginary parts of the gain coefficient cancel
each other out for excitation resonant to the maximum of the inhomogeneously
broadened ground-state distribution. In principle the asymmetric occupation of
the ground-states leads to a stronger gain at the lower-energy side of the distri-
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bution and thus to an asymmetric gain spectrum with non-vanishing index-shift.
However, we found the carrier-induced frequency shift by this asymmetry to be
negligible in comparison with the contributions of the other transitions. For the
excited-state transitions, we only take the imaginary part of their gain coefficients
into account, assuming that their contribution to the amplitude gain is negligible.

The contributions from the charge-carrier-reservoir transitions are written as

δωQW =
�ωΓ

ε0εbghQW

2

Aact

∑

k2D

Im g2D
k

(
f(ε2D

e,k, Eeq
F,e, T eq) + f(ε2D

h,k, Eeq
F,h, T eq) − 1

)

≈ δωe
QWwe + δωh

QWwh + δω0
QW , (3.96)

with

δω0
QW = − �ωΓ

ε0εbghQW

2

Aact

∑

k2D

Im g2D
k . (3.97)

In the above, we have approximated the sum over all individual k-states by a
linear dependence on the summed up reservoir densities wb. For the densities
typically encountered during the laser operation we have verified this to be a good
approximation. The term δω0

QW describes the constant frequency shift due to the
absorption by the empty reservoir states. As a constant, we can compensate its
effect by a proper choice of a rotating frame. In the following, we will therefore
neglect this contribution.

We define

gGS :=
�ωΓ

ε0εbghQW
2NQDgact

GS , (3.98a)

δωES := −Im

[
�ωΓ

ε0εbghQW
2NQDgES

]
, (3.98b)

which allows us to write the complex optical gain in a very simple form:

g(t) = gGS

(
ρact

e,GS+ρact
h,GS−1

)
− iδωES

(
ρact

e,ES+ρact
h,ES

)
− iδωe

QWwe − iδωh
QWwh .

(3.99)
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With this we can now write the resulting rate-equation-system as

d

dt
Ê(t) =

(
g(t) − κ

)
Ê (3.100a)

d

dt
ρact

b,GS = −
gGS

(
ρact

e,GS+ρact
h,GS−1

)

factaLNQD
|Ê|2 − Ract

sp,GS + Scap,act
b,GS + Srel,act

b (3.100b)

d

dt
ρinact

b,GS = −Rinact
sp,GS + Scap,inact

b,GS + Srel,inact
b (3.100c)

d

dt
ρb,ES = −Rsp,ES + Scap

b,ES − 1

2

[
factSrel,act

b + f inactSrel,inact
b

]
(3.100d)

d

dt
wb =

J

e0
− BSwewh − 2NQD

[
factScap,act

b,GS +f inactScap,inact
b,GS +2Scap

b,ES

]
. (3.100e)

Fit Functions for Scattering Rates

The above equation system has reduced the quantum-dot model to a 10-variable
rate-equation system. The charge-carrier occupations are, however, still coupled
by the scattering rates, with complex dependencies on the reservoir charge-carrier
densities. In the following, we therefore approximate these terms by easier fit
functions, with only a few parameters to describe their dynamic dependencies.

A first look at the scattering rates in dependence of the reservoir densities wb

reveals for the capture rates a quadratic increase at low densities, and a transition
to nearly linear increase at higher values of wb. The relaxation rates, on the other
hand, show a linear increase at first and a subsequent saturation. This is depicted
in Fig. 3.35 (solid lines). Taking these characteristics into account, we fit the
scattering rates using the following functions

Scap,in
b,m (wb) =

Awb
2

B + wb
(3.101a)

Srel,in
b,m (wb) =

Cwb

D + wb
. (3.101b)

Table 3.3.: Fitting parameters for the shallow-dot scattering rates.

electrons holes

GS ES GS ES

A (10−11cm2ns−1) 18.5 48.3 10.5 21.4

B (1011cm−2) 1.9 0.48 5.3 1.8

C (ns−1) 1014 2272

D (1011cm−2) 1.4 2.3
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Figure 3.35.: Fits of the scattering rates for the shallow-dot device. Shown are (a)

the direct-capture and (b) the intra-dot relaxation rate for electrons (red) and holes
(blue), in dependence of the electron reservoir density we (with wh = we, T = 300 K).
The microscopically calculated rates (solid lines) are shown together with the simple fit
functions (dashed lines). The dotted gray vertical lines show the value of we at J = 2Jth.
Fit parameters are given in Table 3.3.

As we have seen before, the detailed balance relationship between the in and out-
scattering rates plays an important role for a correct description of the quantum-
dot laser dynamics. The corresponding out-scattering rates are therefore calculated
from this condition, using Eqs. (2.22). The fitting parameters extracted from the
microscopically calculated rates are given in Table 3.3.

The comparison shown in Fig. 3.35 shows a good agreement between the micro-
scopically calculated rates and the fit functions. For reservoir carrier densities above
the typically encountered values (gray dotted vertical line for twice the threshold
current) the fits show a slight deviation, especially pronounced in the electron re-
laxation rate. For not too high pump currents, however, the laser should be well
in the region with good agreement. We will verify this by comparing the turn-on
dynamics of the two approaches in the following.

Comparison of the Full and Simplified Models

We now verify the accuracy of our simplified 10-variable rate-equation model by
comparing its results with the full quantum-dot model. The turn-on dynamics
simulated with the two models is shown in Fig. 3.36. As we can see, our simplified
approach reproduces the results of the full quantum-dot laser model excellently,
with only slight differences in the reservoir carrier densities. In the following, we
will therefore employ the simplified model to investigate the quantum-dot laser
dynamics under optical injection.

118



3.7 Optical Injection - Numerical Path Continuation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time / ns

0.0

0.5

1.0

1.5

2.0

n
o
rm

a
li
z
e
d
 o

u
tp

u
t 

p
o
w

e
r

(a)

full model

simplified model

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time / ns

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

c
a
rr

ie
r 

d
e
n
s
it

ie
s
 
/ 
1
0
1
1
c
m

2 (b)

n
QD,GS
e

n
QD,ES
e

w
e

Figure 3.36.: Comparison of the full model (red lines) and the simplified 10-variable rate
equation system (blue lines). Shown are the time-series of (a) the output power and
(b) the electron densities during the turn-on of the shallow-dot laser. J = 2Jth.

3.7.2 Path Continuation Results

We will now revisit the optically injected quantum-dot laser, using the simplified
10-variable rate-equation model, Eqs. (3.100). The optical injection is implemented
in the electric field equation in the same way as in Eq. (3.71), by moving into the
rotating frame of the master laser:

d

dt
Ê(t) =

(
g(t) − κ + iδω0)Ê + i2π∆νinjÊ + KκE0 , (3.102)

where δω0 = −Im g0 is the frequency shift in the steady-state of the free-running
laser, and ∆νinj is the detuning of the master laser from the free-running laser
frequency.

We use the path-continuation program AUTO07p [DOE91, DOE09] to create bifurca-
tion diagrams of the optically injected quantum-dot laser. The numerical parame-
ters used in the simulations are given in Table 3.4. Starting with the shallow-dot
laser, we show the bifurcation diagram in Fig. 3.37 a, depicting the results from
the direct integration method combined with the bifurcations obtained from the
path-continuation. Both approaches agree perfectly with each other, the numeri-
cally found boundaries of the phase-locked solutions match the bifurcations found
by path-continuation. Additionally, we are now able to track the saddle-node and
Hopf bifurcations beyond the phase-locked solution.

This reveals the underlying structure of the bifurcations of the phase-locked
solution, as depicted in Fig. 3.37 b for a larger parameter region. The bifurcations
to either side of the locking range can be seen to be connected. The parts of
these bifurcations that apparently go through the locking region are bifurcations of
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Table 3.4.: Parameters used in the simplified 10-variable rate-equation model for the
shallow-dot laser.

Symbol Value Meaning

NQD 1011 cm−2 QD density per layer

aL 15 number of layers

BS 540 nm2 ns−1 QW bimolecular recombination rate

WGS 0.44 ns−1 GS spontaneous recombination rate

WES 0.55 ns−1 ES spontaneous recombination rate

κ 50 ns−1 optical loss rate

fact 0.5 fraction of optically active quantum-dots

gGS 230 ns−1 ground-state gain coefficient

δωES 125 ns−1 excited-state frequency-shift coefficient

δωe
QW 11.3 × 10−11 cm2 ns−1 reservoir electron frequency-shift coefficient

δωh
QW 5.5 × 10−11 cm2 ns−1 reservoir hole frequency-shift coefficient

unstable fixed points, shown in light gray. By direct integration – or in experiments
– these bifurcation could therefore not be found.

The period-doubling bifurcations of the oscillatory solutions outside of the lock-
ing range (up to period-4 oscillations) are shown in blue in Fig. 3.37 a. These also
reveal a highly complex structure, reaching well inside the locking region. As we
have discussed earlier, the two slim regions outside of the locking region around
K ≈ 0.1 with higher number of local extrema are not a consequence of period-
doubling bifurcations, but due to deformation of the periodic orbit.

While there is a multitude of additional bifurcations present, especially near the
period-doubling regions, we will only calculate the bifurcations of the fixed points
and period-doubling bifurcations up to period-4 oscillations. A complete discussion
of all the bifurcations occurring in the system would be a task that far exceeds the
scope of this work. In the following, we will therefore create bifurcation diagrams
for different parameter sets. Furthermore, we will apply the path-continuation
approach to our simplified quantum-dot model taking into account the carrier-
induced frequency-shift from the off-resonant carriers. We will then compare these
results to those obtained when using an α-factor to describe the amplitude-phase
coupling.

Comparison with α-Factor Approaches

In order to discuss the impact of using a constant α-factor, we additionally simulate
the shallow-dot laser using the simplified model with the amplitude-phase coupling
expressed by an α-factor. We thus implement Eq. (3.75) to model the electric
field dynamics. The simplified model yields αinj = 1.42, which differs slightly
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Figure 3.37.: Path-continuation results for the optically injected shallow-dot laser using
the simplified quantum-dot laser model, Eqs. (3.100). (a) Shown are the laser dynam-
ics obtained from direct integration, cf. Fig. 3.19, together with the bifurcation lines
obtained using path continuation. Shown are SNIPER (black solid lines), Hopf (dashed
lines) and period doubling (blue solid lines) bifurcations. (b) Bifurcation lines of the
steady-state solution for a larger parameter area. Bifurcations of stable solutions are
shown in black, those of unstable solutions in light gray. J = 2Jth. Modified from
[LIN14].

from the value obtained for the shallow-dot laser using the full model, due to the
loss of spectrally resolved quantum-dot subgroups. The comparison between the
bifurcation diagrams of the two approaches is shown in Fig. 3.38. As we had
already seen using the full quantum-dot model, the two approaches yield very
similar bifurcation lines for the phase-locked solution, but a shift of the bifurcations
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3 Quantum-Dot Laser Dynamics

Figure 3.38.: Path-continuation results for the optically injected shallow-dot laser using
the simplified quantum-dot laser model with (a) full gain-dynamics, Eqs. (3.100), and
(b) using αinj = 1.42. J = 2Jth, cf. Fig. 3.37. Modified from [LIN14].

of the periodic orbits. The simplified model thus reproduces the results obtained
with the full model very well.

3.7.3 Dependencies on Scattering and Reservoir Loss Rates

The simplified quantum-dot laser model is now applied to investigate the influence
of the scattering rates and charge-carrier loss rates in the reservoir. The carrier-loss
rates in the reservoir states are composed of non-radiative losses, e.g., recombina-
tion via lattice defects or Auger-recombination, and radiative recombination by
spontaneous emission. Low reservoir losses are generally preferred, increasing the
overall efficiency of the device. We will therefore exemplarily investigate the laser
dynamics for reduced carrier loss rates. As we have written earlier, the scattering
rates crucially depend on the quantum-dot material composition and size, as well as
external parameters such as the temperature. As we have shown in Sec. 3.2.3, the
quantum-dot laser operates in different dynamic regimes depending on the effective
carrier scattering rate. The shallow-dot and deep-dot lasers we have discussed so
far operate above the overdamped regime, within the synchronized regime. In the
following we will therefore look at the case of reduced scattering rates, such that
the laser is within the constant-reservoir regime.

Fig. 3.39 shows the dynamics of the optically injected shallow-dot laser device
with its scattering rates reduced by a factor of 50. This reduction makes the laser
operate at the upper end of the constant-reservoir dynamic regime, with a strong
desynchronization between the quantum-dot states and the reservoir. Immediately
visible is the more symmetric shape of the locking region and the bifurcations of
periodic solutions. Regions of period doubling bifurcations now exist at either side
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3.7 Optical Injection - Numerical Path Continuation

Figure 3.39.: Path-continuation results for the optically injected shallow-dot laser with
scattering rates reduced by a factor 50. Shown are results for the simplified quantum-
dot laser model with (a) full gain-dynamics and (b) using αinj = 0.29. J = 2Jth, cf.
Fig. 3.37. Modified from [LIN14].

of the locking region. This increased symmetry can be explained by a smaller
amplitude-phase coupling due to the less effective coupling between resonant and
off-resonant states, which also leads to a rather low value of αinj = 0.29. Using
this value in the model with a constant α-factor leads to the bifurcation diagram
shown in Fig. 3.39 b. Interestingly, the α-factor approach leads to a much more
asymmetric bifurcation structure. The bifurcations of the phase-locked region, on
the other hand, again reveal a very good agreement.

The changes of the bifurcation structure introduced by the variation of the
charge-carrier scattering rates again emphasizes the strong dependence of the ampli-
tude-phase coupling on the internal charge-carrier dynamics. Even though the gain
spectra of the lasers with full and reduced rates would be nearly identical, the re-
sponse of the two lasers to the optical injection is very different.

We now take a look at the effects of reduced reservoir loss rates. When we de-
crease the loss rate to BS = 54 nm2 ns−1, in addition to the reduced scattering
rates, we obtain the bifurcation diagram shown in Fig. 3.40. Here, the modifica-
tions to the bifurcation diagram become much more pronounced. The bifurcations
delimiting the phase-locking region become very asymmetric, whereas the dynam-
ics in the unlocked region have a high degree of symmetry. When we simulate the
quantum-dot laser using an α-factor, the resulting bifurcation structure outside of
the locking region shows a high degree of asymmetry. Here, the α-factor approach
clearly fails, as it can not reproduce the dynamics of the full modeling approach.
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3 Quantum-Dot Laser Dynamics

Figure 3.40.: Path-continuation results for the optically injected shallow-dot laser with
scattering rates reduced by a factor 50, and reservoir losses reduced by a factor 10..
Shown are results for the simplified quantum-dot laser model with (a) full gain-dynamics
and (b) using αinj = 0.77. J = 2Jth, cf. Fig. 3.37. Modified from [LIN14].

3.7.4 Summary

To summarize the previous sections, we have found the optically injected quantum-
dot laser to exhibit dynamics that are qualitatively similar to conventional lasers,
with a region of phase-locking to the master signal and regions of complex dynamics
in the unlocked region. In general, the dynamics cannot be described by the use of
an α-factor, which is due to the desynchronized dynamics of the real and imaginary
parts of the gain (and thus the optical susceptibility). While the bifurcations of the
phase-locked solution with respect to the injection strength and detuning are well
described by an α-factor, the qualitative dynamics differ in the unlocked parameter
range. This becomes especially pronounced for quantum-dot lasers that operate
in the constant-reservoir regime, i.e., for slow scattering, and when reservoir-losses
are low.

We have derived a simplified quantum-dot laser rate-equation model based on
our microscopic modeling. The simplified model reproduces the dynamics of the full
model very well, while being simple enough to be implemented in path-continuation
packages. This opens up the possibility to perform further investigations of the
quantum-dot laser dynamics by continuation of the occurring bifurcations, taking
into account the unique features of quantum-dot lasers.
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3.8 Dynamics under Optical Feedback

3.8 Dynamics under Optical Feedback

In this section we will investigate the dynamics of quantum-dot lasers under the
effect of time-delayed optical feedback. In contrast to the optical injection setup
discussed in the previous sections, which required an external master signal, the
perturbation of the laser under optical feedback is induced by its own light. The
easiest way to realize optical feedback is to place a mirror in front of the laser
diode in a distance ℓ. The light coupled out of the laser cavity then reaches the
cavity facet again after a time τ = ℓ/vg, with the light group velocity vg. The
basic time-delayed optical feedback scheme is depicted in Fig. 3.41. The phase-
sensitive interference of the light inside the cavity with its time-delayed field can
then lead to a variety of different dynamics [BES93, HEI01a, KAN05, SOR13, OTT14, KIM14].
Often, feedback effects are undesirable in applications where stable laser output
is required, as feedback-induced periodic or even chaotic dynamics could appear
[CHO84, HEN86, SCH88l, TAR98a, OHT99]. On the other hand, optical feedback has
been shown to improve device performance. For example, time-delayed feedback
control has been implemented in laser devices to stabilize specific target states
[AHL06a, SCH06a, DAH08b, SCH09a]. Furthermore, frequency stabilization [DAH87], noise
suppression [SPA84, FLU07, MER09, LIN10e], and modulation bandwidth improvements
[RAD07] by optical feedback has been shown. Deterministic chaos in semiconductor
lasers has been utilized, e.g., for chaos communication [GOE98a, ABA01, TRO08, LUE11b,

UCH12], or random-number generation [REI09a, OLI11]. In mode-locked lasers, optical
feedback has been shown to substantially improve the phase-noise and timing-jitter
[FIO11, OTT12a, ARS13, OTT14b].

The introduction of time-delay into the laser equation system mathematically
increases the system’s dimensionality to infinity. The state of the system at a
given time t is then given by the current values of the dynamical variables as well
as by the values of the time-delayed variable over the whole interval [t − τ, t]. The
high dimension of the phase space then leads to the multitude of different dynamics
that is observed in experiments and theory.

Parts of this section have been published in [LIN13].

Figure 3.41: Sketch of the optical time-
delayed feedback scheme. The out-
coupled optical signal E(t) is reflected
off a mirror and reaches the cavity facet
again after a time τ , with a possible
phase-shift C. The optical interaction
within the laser cavity can lead to dy-
namic solutions.
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3 Quantum-Dot Laser Dynamics

Recently, this high dimensionality of lasers with delayed optical feedback has
been exploited for the implementation of optical neural networks [HIL02] and reser-
voir computing [PAQ12, DUP12, NGU14]. Here, the increase of dimensionality by the
feedback leads to the formation of many “virtual network nodes”, while only one
physical laser node has to be employed, leading to an increase in computational
power.

3.8.1 Quantum-Dot Laser Model with Optical Feedback

The theoretical implementation of the time-delayed optical feedback in the laser
equations has been first realized in [ROZ75]. Lang and Kobayashi independently
derived the corresponding theoretical formulation [LAN80b] in their seminal paper
on feedback-induced effects in semiconductor lasers. The implementation of the
feedback signal in the electric field equation is realized by a feedback term,

∂

∂t
E(t)

∣∣∣
fb

= kfb e−iCE(t − τ) , (3.103)

with a feedback rate kfb and the feedback phase C. The appearance of the time-
delayed variable E(t−τ) transforms the dynamic equations into a delay-differential-
equation (DDE) system [ERN09]. In the above equation the phase shift C enters due
to the possibility of a phase difference between the laser field and the light reentering
the laser cavity. This phase difference arises whenever the feedback length is not
an integer multiple of the corresponding laser wavelength: C = 2πℓ/λ0 = τ/ω0,
with λ0 and ω0 the wavelength and optical frequency of the free-running laser.

The above shows that delay time τ and feedback phase C are coupled quanti-
ties, as both depend on ℓ. However, a change of the feedback length by one laser
wavelength leads to a rotation of the phase by 2π, while barely changing the delay
time. The parameters τ and C can therefore be seen as independent, and a char-
acterization of the laser behavior under optical feedback needs to take into account
the dependencies on both these parameters [HEI03a, ERZ07a]. This is in line with
experimental difficulties of fine-adjusting and stabilizing the delay length on the
resolution of a single laser wavelength, making the exact control of the feedback
phase difficult.

We now transform our electric field into the rotating frame of the free-running
laser, and rewrite the feedback rate as kfb ≡ Kfbκ, with the new feedback strength
Kfb, similar to Eq. (3.71). Here, we will employ the full quantum-dot laser model,
including microscopically calculated scattering rates, dynamic temperature and the
multi-subgroup description. The electric field equations then become

d

dt
Ẽ(t) =

(
g(t) − κ + iω0

)
Ẽ(t) + Kfbκe−iCẼ(t − τ) . (3.104)
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It must be noted that the parameter C can only be interpreted as the phase dif-
ference between the cavity and the time-delayed field in the case of Im g(t) = −ω0,
i.e., in the free-running case. As soon as the feedback induces a frequency-shift
away from the free-running laser frequency, the phase of the cavity field performs
a rotation in the complex plane of e[i(Im g(t)+ω0)τ ] during one delay time. The total
phase-difference is then given by C + (Im g(t) + ω0)τ .

3.8.2 Quantum-Dot Laser Dynamics under Optical Feedback

In the following, we will discuss the bifurcations of the quantum-dot laser subject
to time-delayed optical feedback. Quantum-dot lasers are known for their lower
sensitivity to optical feedback when compared to conventional semiconductor laser
devices [HUY04, OBR04, OTT10, GLO12]. This decreased sensitivity is commonly at-
tributed to the higher relaxation-oscillation damping of quantum-dot lasers. This
is supported by analytic calculations, showing that the critical feedback strength, at
which the first bifurcations of cw-solutions appear, depends approximately linearly
on the relaxation-oscillation damping [OTT12].

The dynamics of semiconductor lasers under time-delayed optical feedback can be
understood in terms of external-cavity modes (ECMs). These refer to cw-solutions
with constant frequency:

Ẽ(t) = Ẽse−iδωst , (3.105)

with a constant amplitude Ẽs. The frequency deviation from the free-running
laser is the given by δωs. The external-cavity modes can be seen as standing-
wave solutions in the coupled laser-cavity and external-cavity system [LAN73, SHA85,

ROS92c].

Inserting the ansatz Eq. (3.105) into Eq. (3.104) yields for the ECM frequency

−δωs = (Im gs + iω0) + Kfbκ sin(δωsτ − C) , (3.106)

which is a transcendental equation in δωs, that also depends on the carrier-induced
frequency-shift, −Im gs, which in turn depend on the charge-carrier dynamics of
the quantum-dot system. From above equation it is possible to deduce that the
number of δωs that fulfill the equation, i.e., the number of ECMs, increases with the
feedback strength Kfb. The ECMs always appear in pairs in saddle-node bifurca-
tions, with one of them being always unstable [TAR95]. For high feedback strengths,
a high number of ECMs coexist, which makes multi-stability a commonly encoun-
tered phenomenon [LEN91, HEI03a, FLU09, KIM14].
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Figure 3.42: Numerically simulated bi-
furcation diagram in the feedback
strength Kfb of the shallow-dot laser.
Shown are the output power ex-
trema in dependence of the feedback
strength. The diagram was obtained
by stepwise increase of kfb.

The stability of the quantum-dot laser can therefore be understood in terms
of external-cavity modes. The occurring bifurcations characterize how the laser
switches between different ECMs under changes of the feedback parameters [HOH99].

For the simulation of the quantum-dot laser with time-delayed optical feedback
we choose a short delay time of τ = 100 ps, corresponding to an external cavity
length of 15 mm. A numerical bifurcation diagram for a steady increase of the
feedback strength is depicted in Fig. 3.42. At Kfb ≈ 0.16 the stability of the first
ECM is lost in a Hopf bifurcation. The periodic orbit undergoes several bifurcations
that lead up to a region of chaotic dynamics around Kfb ≈ 0.23, before the laser
reaches the second stable ECM. This ECM remains stable for all higher feedback
strengths. The bifurcation structure is qualitative similar to previous theoretical
investigations of quantum-dot laser dynamics under feedback [OTT10, GLO12].

The chosen feedback length of 100 ps lies within the short-cavity regime, where
the laser response is known to sensitively depend on the feedback phase C [HEI01a].
In order to get a complete picture of the dynamics, we numerically calculate bifur-
cation diagrams of the laser dynamics spanning the (Kfb, C)-plane.

Fig. 3.43 shows the resulting bifurcation diagrams. In the regions denoted by the
continuous color-code (dark blue to light blue) the laser is on a stable cw-solution,
i.e., ECM. Fig. 3.43 a,b show different sweep directions of the feedback phase C. In
these, the phase was either increased (panel (a)) or decreased (panel (b)), using
the old system state as the initial state of the simulation with the new parameter
value. Together with sufficiently small parameter changes, this assures that one
stays on a given solution as long as it remains stable. In the previous discussion of
the quantum-dot laser dynamics under optical injection we had limited ourselves to
one sweep direction, as there the regions of multi-stability are much smaller than
with optical feedback.

The two sweep directions reveal a bistability between two ECMs around Kfb ≈
0.12, C ≈ 1.25π. Here, two saddle-node bifurcation lines collide at a cusp point.

128



3.8 Dynamics under Optical Feedback

phase sweep

direction

0

1 maximum

2 maxima

3 maxima

4 maxima

>4 maxima

shallow-dot =100ps

J=2J
th

1

2

3

2

2

intensity (cw)

fe
e
d
b
a
c
k
 p

h
a
s
e
 C

(a)

0.0 0.1 0.2 0.3 0.4 0.5

feedback strength K
fb

0

1 maximum

2 maxima

3 maxima

4 maxima

>4 maxima

J=2J
th

intensity (cw)

fe
e
d
b
a
c
k
 p

h
a
s
e
 C

(b)

1

2

3

2

2

phase sweep

direction
SN (approx.)

SN (approx.)

full model

full model

Figure 3.43.: Numerically simulated bifurcation diagram of the shallow-dot laser under
optical feedback. Shown are the dynamics depending on the feedback strength Kfb

and phase C. The continuous color code (dark blue to light blue) shows cw-solutions
and their relative laser intensity. The discrete color code denotes oscillatory solutions.
Shown are period-1 oscillations with one local maximum (white), two (orange), three
(yellow) and four (red) maxima per oscillation period. Oscillations with higher number
of maxima, an indication for chaotic and irregular oscillations, are shown by the dark
gray color code. The dashed thin line denotes the numerically retrieved location of the
saddle-node (SN) bifurcation. The arrow denotes the direction of the phase-sweep in
(a) and (b). J = 2Jth, cf. Fig. 3.19. The green dotted line in (a) shows the parameter
range covered in Fig. 3.42. After [LIN13].
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Figure 3.44.: Numerically simulated bifurcation diagram of the deep-dot laser under
optical feedback. J = 2Jth, cf. Fig. 3.43. The dotted green line shows the parameter
range covered in Fig. 3.45. After [LIN13].

This cusp marks the creation of the first additional ECM. Between the two saddle-
node lines originating in this cusp point, the two ECMs coexist. We can distinguish
the two solutions by their different intensities. The higher-intensity solution is
followed in the parameter space for a downward sweep of the feedback phase (panel
(b)), until it is destroyed in the saddle-node bifurcation.

The lower-intensity ECM, on the other hand, exhibits a variety of bifurcations,
visible in Fig. 3.43 a. Slightly above the cusp point, in terms of Kfb, this ECM
undergoes a Hopf bifurcation, in which the ECM loses its stability and the laser
dynamics is forced onto a stable periodic orbit. This is denoted by the white area in
Fig. 3.43. This periodic solution undergoes additional bifurcations. Especially close
to the cusp point, period-doubling bifurcations are visible, leading to periodic orbits
of higher periodicity. This is shown by the increasing number of maxima, denoted
by the color code in the bifurcation diagram. For K � 0.2, the upper boundary of
the periodic region is lined with a quasi-periodic region, born in a torus bifurcation
of the periodic orbit. The torus becomes unstable when increasing C even higher,
and the laser reaches the higher-intensity ECM.

Next, we simulate the deep-dot laser with optical feedback. The resulting bi-
furcation diagram is shown in Fig. 3.44. Compared to the shallow-dot laser, the
dynamics are now much more stable. While the first additional ECM is born
at approximately the same Kfb, the region of accompanying bifurcations is much
smaller. Only a slim region of periodic oscillation is visible. Furthermore, this
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3.8 Dynamics under Optical Feedback

Figure 3.45: Numerically simulated bi-
furcation diagram in the feedback
strength Kfb of the deep-dot laser.
Shown are the output power ex-
trema in dependence of the feedback
strength. The diagram was obtained
by stepwise increase of kfb.

region is delimited in large parts on both sides of the feedback phase by Hopf bi-
furcations. Note, that the position of the saddle-node bifurcations in parameter
space does not change under a variation of the effective charge-carrier scattering
rates [GLO12]. Nevertheless, the different amplitude-phase coupling in the deep-dot
structure leads to a shift of the saddle-node lines compared to the shallow-dot. The
closeness of the saddle-node and Hopf bifurcations at the edges of the dynamic re-
gion, however, makes a numeric identification of the bifurcation lines difficult, and
would require additional investigations. While possible [GLO12], the path continu-
ation of bifurcations in delay-differential equation systems is much more complex,
and will thus not be part of this work.

Nevertheless, we can identify a qualitative difference in the way the ECMs are
organized due to the changes in bifurcation structure. The two ECMs are now
connected by a periodic orbit born in the Hopf bifurcations, leading to a bridge
of periodic dynamics between the steady-state ECM solutions [PIE01]. This is illus-
trated in Fig. 3.45.

Comparison with α-Factor-Based Models

We now proceed in terms of a comparison of the quantum-dot laser dynamics under
optical feedback with the conventional approach of using an α-factor for describing
the amplitude-phase coupling, analogous to the case under optical injection in the
previous sections. We thus rewrite the electric field equation in terms of an αfb:

d

dt
Ẽ(t) =

(
Re g(t) − κ

)(
1 − iαfb

)
Ẽ(t) + Kfbκe−iCẼ(t − τ) . (3.107)

The value of αfb is evaluated from the laser response to an infinitesimal feedback
rate.

αfb := −∂ Im gs / ∂Kfb

∂ Re gs / ∂Kfb
= − Im gs|Kfb=∆K − Im gs|Kfb=0

Re gs|Kfb=∆K − Re gs|Kfb=0
. (3.108)
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Figure 3.46.: Comparison of (a) the full model, Eq. (3.104), and (b) the α-factor ap-
proach, Eq. (3.107) of the shallow-dot laser dynamics under optical feedback. J = 2Jth,
cf. Fig. 3.43. After [LIN13].

As in the case of optical injection, we again evaluate the adiabatic change of the
steady-state value of the complex gain, gs, under a change of the perturbation
parameter. Comparing Eqs. (3.108) and (3.81) it becomes clear that in fact αinj =

αfb holds, as long as the laser reaches a steady-state. This can be understood
intuitively by the origin of the perturbation that induces the gain and frequency-
shift variations. In both cases an increased optical field leads to a higher stimulated
recombination rate that, in turn, induces a variation of the carrier distribution,
which then changes the complex optical gain gs. We can thus use the values
obtained for αinj in the simulations of the optical injection in the optical feedback
simulations.

For the shallow-dot laser at twice the threshold current the bifurcation dia-
grams under optical feedback are shown in Fig. 3.46 for the full modeling approach,
Eq. (3.104), and using an α-factor, Eq. (3.107). The comparison between the two
diagrams reveals a similar location of the saddle-node bifurcation lines of the first
ECM between the two approaches. When describing the amplitude-phase coupling
with αfb, however, the extent of the periodic regions in parameter space is greatly
exaggerated. The Hopf bifurcation on the lower boundary of the oscillatory region
is shifted towards lower values of the feedback phase C, resulting in a broader re-
gion of stable periodic oscillations. Furthermore, the regions of complex dynamics
near its upper boundary is enlarged as well.

This behavior is similar to what we had observed in the case of optical injection.
The saddle-node lines, which are bifurcations involving exclusively fixed points, are
well described in both approaches. As soon as dynamic solutions play a role, e.g.,
Hopf or period doubling bifurcations, the α-factor approach becomes inaccurate.
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Figure 3.47.: Comparison of (a) the full model, Eq. (3.104) and (b) the α-factor ap-
proach, Eq. (3.107) of the deep-dot laser dynamics under optical feedback. J = 2Jth,
cf. Fig. 3.43. After [LIN13].

In the optical feedback setup this leads to a prediction of lower stability towards
optical feedback, due to larger areas of periodic and irregular dynamics.

The bifurcation diagrams for the deep-dot laser show the same trend, as de-
picted in Fig. 3.47. The α-factor approach again predicts a larger area of complex
dynamics than the full model. Due to the smaller periodic region in the deep
quantum-dot laser this effect is less pronounced than previously, but nevertheless
a clear destabilization of the laser dynamics can be observed.

The results presented here lead to an important conclusion about quantum-dot
laser stability. The strong damping of the relaxation oscillations in quantum-dot
lasers does explain their higher stability to optical perturbations only in part. The
dynamics of the amplitude-phase coupling also lead to a higher dynamical stability
by reducing the extent of complex dynamics in parameter space. This again shows
that the α-factor should not be used when an accurate prediction of the quantum-
dot laser dynamics is required.
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3.9 Small-Signal Frequency Response of Quantum-Dot
Lasers

In the previous sections we have shown that the amplitude-phase coupling in
quantum-dot lasers can be quite different than in conventional quantum-well or
bulk laser diodes. The modeling of the dynamical response to optical perturba-
tions therefore requires an approach that goes beyond a simple α-factor to describe
the carrier-induced index changes and thus the frequency modulation. The fre-
quency modulation also plays an important role in modulated lasers. For example
under direct pump current modulation, the variation of the pump current will not
only induce a gain change and thus an amplitude modulation, but also a change
in the optical frequency. This induces a so-called frequency chirp, which leads to
sidebands in the optical spectrum. A low frequency chirp is thus generally preferred
in amplitude-modulated signals.

3.9.1 Evaluation of the Frequency and Amplitude Modulation Indices

In the following we will apply the simplified quantum-dot laser model for the
shallow-dots derived in Sec. 3.7.1. Under small-signal modulation of the laser
device with a modulation frequency f , we can assume a harmonic response of the
complex optical gain g(t) around its steady-state value gs. We can thus write

g(t) = gs + ∆g′ cos(2πft + φ′) + i∆g′′ cos(2πft + φ′′) , (3.109)

where ∆g′, ∆g′′ are the corresponding modulation amplitudes of the real and imag-
inary parts of the gain. We allow a phase shift in each of the individual parts of
the response, given by φ′, φ′′. Inserting this into the electric field equation yields

d

dt
Ê(t) =

[
∆g′ cos(2πft + φ′) + i∆g′′ cos(2πft + φ′′)

]
Ê(t) , (3.110)

where we have exploited the gain clamping condition, i.e., gs exactly balances out
the optical losses in the steady-state.

The instantaneous frequency of the electric field is given by Im dÊ(t)/dt

Ê(t)
, which

allows us to identify the frequency chirp, i.e., the modulation amplitude of the
instantaneous frequency, as

∆ω = ∆g′′ , (3.111)

Parts of this section have been published in [LIN14].
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and the so-called frequency modulation index, β, defined as

β :=
∆ω

2πf
=

∆g′′

2πf
. (3.112)

The amplitude modulation can be calculated from the real part of the gain modu-
lation. The electric field amplitude can thus be calculated from

d

dt
|Ê(t)| = ∆g′ cos(2πft + φ′)|Ê(t)| , (3.113)

which can be readily solved:

|Ê(t)| = Ê0 exp

[
∆g′

2πf
cos(2πft + φ′)

]
, (3.114)

with the steady-state amplitude Ê0. Under small-signal modulation we can assume
the gain modulation to be small, i.e., exp(ε) ≈ 1+ε (for ε ≪ 1). The above equation
can then be used to calculate the so-called amplitude modulation index m, defined
as

m :=
∆P

P 0
=

max P (t) − min P (t)

2P 0
=

∆g′

πf
. (3.115)

The ratio of the frequency and amplitude modulation indices, 2β/m, then yields an
experimentally accessible way of determining the relative gain modulation [HAR83]:

2β

m
=

∆g′′

∆g′
. (3.116)

Such FM/AM measurements are an established procedure to determine the amplitude-
phase coupling of semiconductor laser devices. This becomes immediately clear if
we express the complex gain by an α-factor. Then, the simple relation

∆g′′ = −α∆g′ (3.117)

holds, and we immediately see that

2β

m
≡ α . (3.118)

3.9.2 Numerical Evaluation of FM/AM Measurements

We will now employ the FM/AM technique to determine the frequency-resolved
amplitude-phase coupling in quantum-dot lasers. As we have seen in Eq. (3.118), if
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Figure 3.48.: Small-signal modulation response of the quantum-dot laser under current
and electric field modulation. (a) Small-signal transfer function H(f) (cf. Eq. (3.43)) for
pump current (blue) and electric field modulation (red). (b) FM/AM response αX(f),
for X = J (blue), X = E (red) for current and electric field modulation, respectively.
The dashed lines show min(αJ) = 1.91 (blue) and max(αE) = 1.42 (red), respectively.
Modified from [LIN14].

the amplitude-phase coupling could be described by an α-factor, we would expect
a flat dependence of 2β/m on the modulation frequency.

In the following, we will consider two different modulation techniques. The most
simple is the direct modulation of the pump current, i.e., we set

J(t) = J0 + ∆J cos 2πft , (3.119)

with the small pump-current modulation amplitude ∆J . Additionally, we also
consider a modulation of the cavity field, realized by a small harmonic source term
in the electric field:

d

dt
Ê(t) =

(
g(t) − κ

)
Ê(t) + ∆Ê cos 2πft , (3.120)

with the modulation amplitude ∆Ê. Following the argumentation leading to
Eq. (3.118), we denote the FM/AM ratio in the two cases as αJ(f) and αE(f)

for the pump current and electric field modulation, respectively.

Fig. 3.48 a shows the small-signal response of the quantum-dot laser under the
different types of modulation. The small-signal transfer function shows the damped
peak and subsequent decay that we had already seen in Sec. 3.4. The corresponding
frequency response, shown in Fig. 3.48 b, reveals a very high value of αJ for small
modulation frequencies, that decreases towards a plateau around f = 10 GHz.
This high value at low modulation frequencies is also known from conventional
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laser devices, and attributed to gain compression effects [COL12a]. This can be
understood intuitively by the gain-clamping condition. The slower the modulation
the closer the laser can follow this parameter change. In the limit of f → 0 the
laser would adiabatically follow the modulation and always assume a state where
the gain-clamping condition is fulfilled, i.e. g(t) ≡ gs, such that the real part of the
gain modulation ∆g′ would vanish. Unless ∆g′′ = 0, the FM/AM ratio will thus
tend to infinity for f → 0. In order to extract a value for the α-factor from the
FM/AM measurement, one therefore evaluates the value of 2β/m for high enough
modulation frequency, where the dependence of αJ(f) on f is nearly flat, i.e., its
minimum value. In our case this yields min(αJ) = 1.91, denoted by the dashed
blue line in Fig. 3.48.

In contrast to conventional lasers, where the FM/AM response remains flat for
high enough modulation frequency, we can observe a rise of αJ for high frequencies
around f � 20 GHz. This rise has been attributed to the charge-carrier scattering
processes [MEL06], which influence the modulation response, when f comes close to
the involved scattering rates [WAN12a]. Then, the finite scattering rate restricts the
transfer of the charge-carrier modulation to the ground-state occupation, reduc-
ing ∆g′ and thus increasing the relative frequency chirp. For conventional lasers,
this effect would be visible only for frequencies close to the intra-band relaxation
rates, which are much faster than the charge-carrier scattering rates in quantum-
dot lasers. This signature of the scattering processes in the frequency response of
quantum-dot lasers has been experimentally observed [GER08]. In [MEL06] it has been
proposed to use the minimal value of αE(f) as the “result” of the FM/AM measure-
ments, αFM/AM, which is a reasonable choice for directly modulated quantum-dot
lasers.

We now also take a look on the modulation behavior under electric-field vari-
ation. The source term in Eq. (3.120) induces a modulation of the electric field
that is transferred to the charge-carriers by a modulated stimulated recombina-
tion rate. The resulting amplitude modulation exhibits a strongly pronounced
resonance peak at around 2.5 GHz. The corresponding FM/AM response shows
a much different picture than under current modulation. For small modulation
frequencies, the response αE(f) is flat. With increasing f � 2 GHz, it then starts
to quickly decrease. The plateau at low frequencies lies at αE = 1.42, which corre-
sponds exactly to the value of αinj and αfb which we had evaluated in the optical
injection and feedback setups. There, we also characterized the adiabatic response
of the quantum-dot laser to a perturbation of the electric field, such that indeed
αinj = αfb = αE(f = 0) holds.

The decrease at higher modulation frequencies can again be understood by the
charge-carrier scattering processes. Here, however, the transfer of the modulation
of the ground-state occupation to the off-resonant states becomes less effective for
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Figure 3.49.: Small-signal modulation response of the quantum-dot laser under current
and electric field modulation for scattering rates reduced by a factor 50, cf. Fig. 3.48.
The solid curves show the response of the laser with reference reservoir losses (BS =

540 nm2 ns−1), the dotted curves those with lower losses (BS = 54 nm2 ns−1). Modified
from [LIN14].

higher frequencies, such that the refractive-index variation becomes smaller. This
results in the decrease of αE that we can observe in Fig. 3.48 b. With this we can
also understand the different dynamics predicted by our full modeling approach
and when using a constant α-factor to describe the amplitude-phase coupling. In
Fig. 3.32 we had seen that the amplitude-phase coupling is reduced when the laser
operates on oscillatory solutions. This is reproduced in the FM/AM response,
where for oscillatory solutions, i.e., f > 0, αE is indeed smaller than in the limit
f → 0.

Another important result that we can extract from the FM/AM response is the
sensitivity of the amplitude-phase coupling to the explicit measurement used for
its evaluation. There is experimental evidence that in quantum-dot lasers different
measurement techniques will yield different values for the linewidth-enhancement
factor [MAR05c], whereas in quantum-well lasers many different techniques will yield
comparable results [FOR07].

3.9.3 Influence of Scattering Rates and Reservoir Losses

We now take another look on the frequency-response of the quantum-dot laser
device in dependence on the scattering rates and charge-carrier reservoir losses. In
Sec. 3.7.3 we had seen that the dynamics of the optically injected quantum-dot laser
depends crucially on these charge-carrier lifetimes. We will therefore simulate the
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response of the quantum-dot laser to pump-current and electric-field modulation
with reduced scattering rates. The resulting response curves are shown in Fig. 3.49.

The decrease of the scattering rates moves the quantum-dot laser into the syn-
chronized-reservoir regime, slightly below the overdamped regime. As we had seen
earlier, the modulation bandwidth suffers in this regime, as evident from the strong
decay of the small-signal modulation transfer function in Fig. 3.49. The frequency
chirp under pump current modulation is greatly enhanced, reaching a minimal
value of min(αJ) = 4.0, and a subsequent strong increase for f � 3 GHz.

The response to the electric field modulation stays comparable to the earlier case
(Fig. 3.48). However, the value of αE at low modulation frequency is reduced to
0.29. The reduction of αE is due to the reduced modulation of the off-resonant
states when we modulate the resonant charge-carriers directly via the electric field.
Since a low value of the amplitude-phase coupling leads to a reduction of the
dynamical complexity under optical perturbations [GLO12, PAU12], we can thus ex-
pect a slow scattering rate to increase the resistance to unwanted instabilities in
quantum-dot lasers.

When additionally decreasing the reservoir losses, the unique quantum-dot fea-
tures in the modulation response curve become even more pronounced. This is
shown by the dotted lines in Fig. 3.49. The resulting high carrier lifetime in
the reservoir worsens the modulation response curve for pump current modula-
tion. The frequency response towards optical perturbations is also increased, with
αE(f = 0) = 0.77. The chosen very low scattering rates and reservoir losses are
extreme values that will probably not be found in realistic devices. So far, however,
we can predict that a reduction of the carrier-losses, while improving the device
efficiency, can be detrimental to the dynamic device performance.

To obtain a complete picture of the dependence of the frequency response on
the scattering rates, we now perform simulations for varying values of the effective
scattering rate Seff . We thus evaluate αE(f = 0), which we have seen to represent
the adiabatic laser response under optical perturbations very well. We also calculate
αFM/AM = min(αJ), which should approximate the frequency response under pump
current modulation in an interval of relevant modulation frequencies.

The resulting FM/AM response curves are shown in Fig. 3.50. When decreasing
the scattering rates from the microscopically calculated values (denoted by the
vertical dashed line), the separation between the frequency response towards pump
current and optical modulation becomes larger, as we have observed in Fig. 3.49.
The value of αE in the constant-reservoir regime is thus reduced to values well below
1, while the frequency response under pump-current modulation shows a steady
increase towards lower scattering rates. The figure shows that only in the limit
of instantaneous scattering, Seff → ∞, the two measures converge. The frequency
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Figure 3.50.: Dependence of the frequency-modulation response on the effective scattering
rate Seff . Shown are the minimum of αJ(f) under pump current modulation (blue) and
αE(f = 0) for a static variation of the electric field (red). The resulting values are shown
for reference reservoir losses (BS = 540 nm2 ns−1, solid lines) as well as for reduced losses
(BS = 54 nm2 ns−1, dotted lines). The pump current was set to twice the respective
threshold current at each data point. The shaded gray area denotes the overdamped
laser regime, the microscopic rates are denoted by the vertical dashed line. After [LIN14].

response towards different types of perturbation can therefore be expected to differ
in quantum-dot lasers.

A reduction of the reservoir losses can be seen to improve the agreement between
αE and αJ . As discussed before, this counteracts the decrease of the amplitude-
phase coupling under optical perturbations for low scattering rates, and this might
increase the sensitivity towards optical instabilities of the quantum-dot laser. On
the other hand, for directly modulated quantum-dot lasers the reduction in αJ

would be beneficial.
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3.10 Conclusion

In this chapter we have investigated the dynamics of quantum-dot lasers under
external perturbations and highlighted the unique features brought about by the
charge-carrier scattering dynamics. We have discussed the relaxation oscillations
in quantum-dot lasers as an indicator of the laser stability and its internal time
scales. Depending on the effective charge-carrier scattering rate, we have identified
three dynamic regimes of laser operation:

(i) For slow charge-carrier scattering, the reservoir states provide a nearly con-
stant carrier-influx into the quantum-dots, leading to pronounced relaxation
oscillations. We thus call this regime the “constant-reservoir regime”.

(ii) For intermediate scattering rates in the order of the relaxation oscillation
angular frequency, the relaxation oscillation damping is strongly increased,
leading to overdamped oscillations. This regime is thus called the “over-
damped regime”.

(iii) For fast scattering rates, the coupling between quantum-dot and reservoir
states is strong enough to influence the reservoir carrier density. In this “syn-
chronized regime”, the reservoir carriers thus contribute to the light-matter
interaction, leading to the reappearance of pronounced relaxation oscillations.

We have subsequently proposed a minimal three-variable rate-equation model in
order to explain this behavior. We have found the detailed balance of in and out-
scattering rates to be a necessary condition for describing the transition between the
three dynamic regimes as described above. Analytic expressions for the relaxation
oscillation damping and frequency have been derived in the limit of very slow
and very fast scattering rates, i.e., for the “constant-reservoir” and “synchronized”
regimes.

The small-signal modulation response of the quantum-dot laser has been ana-
lyzed in dependence on the scattering rates. A general trend towards higher mod-
ulation bandwidths with increasing scattering rates has been found, albeit with a
nonlinear dependence of the bandwidth on the scattering rate. The conventional
analytic formula used to calculate the intrinsic modulation bandwidth of the laser
by evaluating its relaxation oscillation parameters was found to yield inaccurate
results in quantum-dot lasers. It greatly exaggerates the expected bandwidth in
the constant-reservoir regime while slightly underestimating the bandwidth in the
synchronized regime.

We investigated the amplitude-phase coupling in quantum-dot lasers. The com-
plex charge-carrier dynamics lead to a response of the carrier-induced refractive-
index shift that goes beyond the traditional description by an α-factor. We have
thus simulated the quantum-dot laser dynamics under optical injection and time-
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delayed optical feedback, and compared the results with the predicted dynamics
when using an α-factor to describe the amplitude-phase coupling. In both cases we
have found that the bifurcations of fixed-point solutions are well described by the
α-factor. Bifurcations of periodic and dynamic solutions, on the other hand, show
appreciable differences between the two approaches. The α-factor approach was
found to be unable to correctly describe the dynamics of the quantum-dot laser in
this scenarios, due to the desynchronized dynamics of the real and imaginary part
of the optical susceptibility.

Subsequently, we have simplified our full quantum-dot laser model to a much less
complex 10-variable rate equation system, that still retains all important features
of the quantum-dot laser dynamics. We have shown this model to be suitable
for implementation in numeric path-continuation programs, thus opening up the
possibility to study the detailed bifurcation structure of quantum-dot lasers in
various applications. We have applied the numeric path-continuation to the optical
injection setup, again revealing differences in the full description of the carrier-
induced susceptibility and the simple α-factor approach. Especially in the constant-
reservoir regime, i.e., for slow scattering, as well as for low non-radiative carrier
losses, the differences become pronounced, and here the α-factor clearly cannot be
used.

In order to explain these observed differences we have investigated the frequency
response of the quantum-dot laser subject to modulations of the pump current and
the electric field. We have thus simulated FM/AM measurements to determine
the frequency-dependence of the amplitude-phase coupling in quantum-dot lasers.
Under pump current modulation a high value of the amplitude-phase coupling was
found for low modulation frequencies with a plateau at higher frequency, compara-
ble to results for conventional lasers. Unique to quantum-dot lasers is an additional
increase for even higher modulation frequencies. We have found this increase to
be related to the charge-carrier scattering, making it more pronounced with slower
scattering. Under modulation of the electric field, a very different frequency re-
sponse was found, with a plateau for low modulation frequencies, and a subsequent
steep decrease. This phenomenon explains the observed differences in the laser
response to optical injection and feedback. Due to the finite scattering time, the
amplitude-phase coupling is much lower for a fast modulation of the electric field.
The difference between the frequency responses to either pump current or optical
modulations was found to be even more pronounced for slower scattering. This
explains experimental results which found different values of the amplitude-phase
coupling, i.e., the α-factor, for different measurement techniques.

Our results thus show that in order to correctly model and describe the quantum-
dot laser dynamics, an accurate description of the complex charge-carrier dynamics
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is required. We have developed three quantum-dot laser models on different levels
of sophistication which fulfill this requirement.
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4.1 Introduction

Semiconductor optical amplifiers (SOAs) are optoelectronic devices commonly used
in optical data communication networks and signal processing. Semiconductor
amplifiers are structurally similar to laser devices, with the difference lying in the
absence of an optical cavity. To this end, the waveguide facets of optical amplifiers
are commonly treated with an anti-reflection coating in order to increase the optical
transmission through the facets and minimize losses. The optical amplifier devices
we consider in this work are therefore single-pass devices, where the optical signal
coupled into one side of the waveguide structure is ideally passing exactly once
across the device and is out-coupled without losses at the back facet. This, however,
means that optical amplifiers generally have to be longer than laser devices, in
order to provide a long enough interaction time between optical signal and the
active medium.

Optical amplifiers are used in optical networks in order to raise the signal power
level, e.g., to compensate the inevitable optical losses in long glass-fiber connec-
tions. Here, a linear amplification with a low noise figure is required, to ensure
low distortion of the input signal [AKI03, BER04, USK05]. On the other hand, nonlin-
ear optical applications, such as four-wave-mixing [AKI02, QAS04, MAJ11a, SCH12e] and
cross-gain modulation [KIM09a, MEU10, CON10] for wavelength conversion, as well as
regenerative amplification, require a nonlinear response of the optical amplifier. In
the nonlinear amplification regime the amplifier response is input-power dependent
and will thus lead to signal distortions, which can be utilized, e.g., for pulse shaping
[ICS69, SCH88j, AGH09].

Quantum-dot semiconductor optical amplifiers (QDSOAs) show great potential
for the use in these applications. They have generally a higher gain bandwidth
than conventional devices based on semiconductor quantum-wells due to the inho-
mogeneous broadening of the localized quantum-dot states, allowing for a broad-
band amplification. Additionally, due to the coupling to a charge-carrier reservoir
by charge-carrier scattering rates in the picosecond range, ultrafast gain recovery
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[BOR00, POE05, LAE06, DOM07, MAJ10, MAJ11] and nonlinear signal processing is possible
[CON10, MEU11, SCH12e].

Furthermore, the comparably slow dephasing time of the microscopic inter-band
polarization in the localized quantum-dot states [BOR01a, BOR02, KOP11] allows the
possibility to directly observe quantum-mechanical effects, such as Rabi-oscillations
[STI01b, KAM02, BOR02a, KOL13, CAP14] or self-induced transparency [ICS69, SCH03g]. This
could potentially open up new applications in the signal processing of ultra-short,
ultra-strong optical pulses.

In this chapter, we will at first derive a delay-differential equation model for the
description of the electric field propagation through a quantum-dot semiconductor
optical amplifier device, presented in Section 4.2.1. The charge-carrier dynamics
will be described in the framework of microscopically calculated scattering rates
that we have already successfully employed in the previous chapter. We will then
derive a description of the amplified spontaneous emission in the amplifier, and
proceed by comparing our theoretical results with experimental measurements of
pump-current dependent amplified-spontaneous-emission spectra.

Then, in Section 4.3, we will investigate the possibility of large-signal amplifi-
cation of optical data signals on optical frequencies corresponding to either the
quantum-dot ground-state or excited-state. Subsequently, we will look at the am-
plifier performance under simultaneous amplification of two optical signals in Sec-
tion 4.4.

Lastly, Section 4.5 presents simulation results on coherent pulse-shaping induced
by the amplification of ultra-short optical pulses. We will compare the results with
experimental measurements, demonstrating the possibility to induce and measure
coherent effects in quantum-dot semiconductor optical amplifiers even at room
temperature.

In the last Section 4.6, a conclusion of the results presented in this chapter will
be given.
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4.2 Quantum-Dot Semiconductor Optical Amplifier Model

A model of the quantum-dot semiconductor amplifier must accurately describe
the light-matter interaction during the propagation of the optical signal along the
device. In contrast to the quantum-dot laser model we had derived in the previous
chapter, we can not work with a spatially averaged electric field due to the absence
of standing waves. Instead, we must explicitly take the electric field propagation
into account, and thus require a spatially resolved description of our dynamical
variables.

In the past, models without spatial resolution have been employed for the de-
scription of semiconductor amplifiers [BER03b, KUN08, ERN09a, KIM09a]. As soon as
strong spatial inhomogeneities arise, such models are, however, bound to fail. We
will therefore in the following derive amplifier model equations which include the
electric field propagation along the waveguide axis.

0
z

Figure 4.1: Sketch of the quantum-
dot semiconductor optical amplifier.
An optical pulse enters the amplifier
waveguide through the input facet at
z = 0, is amplified, and leaves through
the output facet at z = ℓ.

4.2.1 Electric Field Propagation

We will now derive the equations governing the propagation of the electric field
along the amplifier device. We denote the propagation axis as z, as sketched in
Fig. 4.1. The real electric field amplitude is then written as

E(z, t) =
1

2

[
E+(z, t)eikz + E−(z, t)e−ikz

]
e−iωt + c.c. , (4.1)

where we have introduced the slowly varying field amplitudes E±, describing the
forward (+) and backward (−) propagating electric field. The wave number is
given by k, and ω is the optical frequency of the reference frame. From Maxwell’s
equations we can derive the propagation equations for the electric field amplitudes
within the slowly varying envelope approximation:

(∂t ± vg∂z)E±(z, t) =
iωΓ

2εbgε0
P±(z, t) =: S±(z, t) , (4.2)
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with the group velocity vg ≡ c0

nbg
and the macroscopic slowly varying polarization

amplitude P±(z, t). We summarize the right hand side in a general source term
S±(z, t).

The numerical solution of the above partial differential equation requires a spatial
discretization into very fine sections of length hvg, where h is the numerical time-
step, in order to ensure numerical stability [PRE07]. For a device length in the
order of mm, this results in a high number of spatial discretization points and thus
presents an inefficient way of modeling the electric field propagation [RAD06, ROS11c].
A more elegant approach is the formulation of the problem as a delay-differential
equation system [ROS11d, JAV12], which we will do in the following.

Delay-Differential-Equation Model

The partial differential equation Eq. (4.2) can be transformed into a co-moving
frame, by defining a new time variable

t′ := t ± z

vg
. (4.3)

By expanding the total derivative d
dz , we can thus write

d

dz
E±(z, t′) =

[
± 1

vg

∂

∂t′
+

∂

∂z

]
E±(z, t′) = ± 1

vg
S±(z, t′) . (4.4)

Now we describe the optical amplifier by a number of Z sections along the prop-
agation axis, such that the distance between two discretization points is given by
∆z := ℓ/Z. Integrating Eq. (4.4) over the length of ∆z thus yields:

E±(z, t) = E±(z ∓ ∆z, t − ∆t) +
1

vg

∫ ∆z

0
S±

(
z ∓ z′, t − z′

vg

)
dz′

≈ E±(z ∓ ∆z, t − ∆t) +
∆t

2

[
S±(z, t) + S±(z ∓ ∆z, t − ∆t)

]
(4.5)

Here we have introduced ∆t := ∆z
vg

. The integral over the source term was approxi-
mated by its values at the end points of the integration interval. This approximation
is valid for negligible change of S± along the integration path, i.e., for a sufficiently
small space discretization step. The electric field at time t now depends on the
values of E±,S± at time t − ∆t, which introduces a time-delay into the equations.

The electric field in each of the spatial sections along the amplifier device thus
couples to the time-delayed electric field in the neighboring sections, with the time
∆t describing the time needed for the electric field propagation along the length
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Figure 4.2.: Space discretization scheme of the QDSOA device with length ℓ used in the
DDE model. The forward and backward propagating electric field, E±, is described at
points n · ∆z, n ∈ {0, . . . , Z} with ∆z = ℓ/Z. The corresponding material quantities
and source terms, S±, are treated as constant within each of the Z sections given by
the intervals z ∈

[
n∆z − ∆z

2
, n∆z + ∆z

2

]
, which are centered around the discretization

points of the electric field. Cf. [SCH88i, SCH88j, SCH90b, JAV12].

of one section [ROS11d, JAV12]. The resulting discretization scheme is illustrated in
Fig. 4.2.

4.2.2 Quantum-Dot Material Equations

The material dynamics within each amplifier section are described within the
Maxwell-Bloch approach, as derived in Sec. 2.3. We extend these equations by
taking into account the microscopic polarization pj

m,± corresponding to the forward
and backward propagating parts of the electric field. Within the slowly varying
envelope approximation, we can take these into account separately by neglecting
the fast oscillating terms ∝ e±2iωt and ∝ e±2ikz. The material equations then read

d

dt
pj

m,±(z, t) = −
[
i(ωj

m − ω) +
1

T2

]
pj

m,±(z, t)

− i
μm

2�

(
ρj

e,m(z, t) + ρj
h,m(z, t) − 1

)
E±(z, t), (4.6a)

d

dt
ρj

b,m(z, t) = − 1

�
Im

[
pj

m,+(z, t)μ∗
mE∗

+(z, t)
]

− 1

�
Im

[
pj

m,−(z, t)μ∗
mE∗

−(z, t)
]

− Wmρj
e,m(z, t)ρj

h,m(z, t) +
∂

∂t
ρj

b,m(z, t)
∣∣∣
sc

. (4.6b)
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Here, we again denote the localized quantum-dot states by m ∈ {GS, ES} and
their subgroup index by j. The macroscopic slowly varying polarization amplitude
is calculated from the microscopic contributions:

P±(z, t) =
2NQD

hQW
2
∑

j,m

νmf(j)μ∗
mpj

m,±(z, t) . (4.7)

The reservoir charge-carrier density follows the dynamic equation

d

dt
wb(z, t) =

J

e0
− rw

loss(z, t) − 2NQD
∑

j,m

νmf(j)Sj,cap
b,m (z, t) , (4.8)

with the scattering contributions between the reservoir and quantum-dot states
given by Eqs. (2.66). The above equations are defined for each space discretization
point along the amplifier device, allowing for a spatially inhomogeneous distribution
of the charge-carrier distribution, as encountered in long amplifier devices [FAN95,

FEH02].

4.2.3 Modeling of Spontaneous Emission

In comparably long amplifier devices the radiation spontaneously emitted along
the propagation axis will be subject to stimulated amplification. This amplified
stimulated emission (ASE) is important for the device characteristics and perfor-
mance, as it can become strong enough to influence the charge-carrier dynamics
[BER04a, MEL08, BAV10]. Furthermore, it will create an – in most cases unwanted –
noise background that will deteriorate the signal quality of the optical input signal.

The correct description of the amplified spontaneous emission is therefore impor-
tant. In general there exist two appropriate modeling approaches: the deterministic
description of the ASE power spectral density in frequency space [MEU08a, KIM09a]

and the stochastic description in time-domain [MEL08, ROS11c]. Here, we will em-
ploy the stochastic description, which simplifies the inclusion of time-varying input
signals.

We therefore phenomenologically add an additional source term on the right-
hand side of Eq. (4.4), modeling the stochastic spontaneous emission added to the
propagating electric field:

d

dz
E±(z, t′) =

1

vg

[
S±(z, t′) + Ssp

± (z, t′)
]

. (4.9)
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The electric field propagation along one space-discretization section is again deter-
mined by integration of Eq. (4.9) over the interval ∆z:

E±(z, t) ≈ E±(z ∓ ∆z, t − ∆t) +
∆t

2

[
S±(z, t) + S±(z ∓ ∆z, t − ∆t)

]

+
1

vg

∫ ∆z

0
Ssp

±

(
z ∓ z′, t − z′

vg

)
dz′ . (4.10)

The spontaneous emission source term must account for all optical transitions in the
inhomogeneously broadened QD ensemble. Let ηj

m(z, t) describe the spontaneous
emission contribution of the jth subgroup of the mth localized state. We write for
the electric field spontaneously added to the propagating field along ∆z:

1

vg

∫ ∆z

0
Ssp

±

(
z ∓ z′, t − z′

vg

)
dz′ ≡

∑

m,j

ηj
m(z, t) . (4.11)

The spontaneous emission of an optical transition has a finite linewidth given by its
homogeneous broadening. In order to correctly implement the spectral properties of
the amplified spontaneous emission, the spontaneously emitted field ηj

m(z, t) must
therefore have the correct lineshape and center frequency. It is thus not possible
to describe the spontaneous emission by white noise, which would produce a flat
noise spectrum, but must be rather modeled using colored noise. We implement
this colored noise by two-dimensional Ornstein-Uhlenbeck processes. The time
evolution of each of the respective noise signals is thus given by the following
stochastic differential equation:

d

dt
ηj

m(z, t) = −γηj
m(z, t) +

√
Dj

sp,m(z, t) ξ̃j
m(z, t) , (4.12)

where ξ̃(z, t) is a complex Gaussian white noise process, which is δ-correlated both
in z and t. The correlation time of ηj

m is given by γ−1. The noise signal then fulfills
the following properties [GAR85]:

〈Re ηj
m(z, t)〉 = 〈Im ηj

m(z, t)〉 = 0 (4.13)

〈|ηj
m(z, t)|2〉 =

Dj
sp,m(z, t)

γ
(4.14)

〈ηj
m(z, t)ηj

m
∗
(z′, t + τ)〉 ≈ Dj

sp,m(z, t)

γ
e−γ|τ |δz,z′ . (4.15)

Eq. (4.15) is valid only under the assumption of a slowly varying noise amplitude
∂tDsp(z, t) ≪ γ, such that within one correlation time γ−1 the spontaneous emis-
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sion amplitude can be assumed as constant. Using the Wiener-Khinchin-theorem,
this relation can be used to calculate the power spectrum S

ηj
m

(z, ω) of ηj
m(z, t):

S
ηj

m
(z, ω) =

1

2π

∫ ∞

−∞
〈ηj

m(z, t)ηj
m

∗
(z, t + τ)〉e−iωτ dτ (4.16)

=
Dj

sp,m(z)

π

1

ω2 + γ2
, (4.17)

which yields a Lorentzian line shape with a width (FWHM) of 2γ. We thus identify
γ = (T2)−1, such that the noise linewidth equals the homogeneous linewidth of the
QD transitions.

Using the noise correlation properties, the average power that is added to the
electric field by the noise can be calculated. Combining Eqs. (4.10) and (4.11) and
summarizing the deterministic source terms in a combined variable, S̃ stim

± , yields
for the electric field:

E±(z, t) = E±(z ∓ ∆z, t − ∆t) + S̃ stim
± (z, t) +

∑

m,j

ηj
m(z, t) (4.18)

〈∣∣∣E±(z, t)
∣∣∣
2〉

=
∣∣∣E±(z ∓ ∆z, t − ∆t) + S̃ stim

± (z, t)
∣∣∣
2

+
∑

m,j

〈∣∣∣ηj
m(z, t)

∣∣∣
2〉

=
∣∣∣E±(z ∓ ∆z, t − ∆t) + S̃ stim

± (z, t)
∣∣∣
2

+
∑

m,j

T2Dj
sp,m(z, t) , (4.19)

where we have used the zero mean property, 〈ηj
m〉 = 0. On average, the spontaneous

emission thus increases the squared modulus of the electric field along one space
discretization step during the propagation time ∆t by

∑
m,j T2Dj

sp,m(z, t). Or,
written in terms of a time derivative:

∂

∂t
|E±(z, t)|2

∣∣∣
sp

=
T2

∆t

∑

m,j

Dj
sp,m(z, t) . (4.20)

In the photon picture, the average change of the electric field energy density due
to the spontaneous emission can be calculated:

∂

∂t
u(z, t)

∣∣∣
sp

=
εbgε0

2

∂

∂t
|E±(z, t)|2

∣∣∣
sp

= β
2NQDΓ

hQW

∑

m,j

νmf(j)�ωj
mWm̺j

e,m(z, t)̺j
h,m(z, t) , (4.21)
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with the notation as introduced in Sec. 2.4. The individual noise strengths are thus
given by

Dj
sp,m(z, t) =

∆t

T2

2βΓ�ωj
m2NQD

εbgε0hQW
νmf(j)

1

2

[
Rj

sp,m(z, t) + Rj
sp,m(z ∓ ∆z, t − ∆t)

]
,

(4.22)

where the average of the spontaneous emission rate at the endpoints of the inte-
gration interval [z, z ∓ ∆z] was taken, defined by

Rj
sp,m(z, t) := Wm̺j

e,m(z, t)̺j
h,m(z, t) . (4.23)

The spontaneous emission noise thus depends on the optical frequency and on the
occupation of the individual quantum-dot subgroups.
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4.3 Large-Signal Amplification in Quantum-Dot Amplifiers

The device performance of semiconductor optical amplifiers is generally limited by
two competing effects. On the one hand, the maximum achievable optical output
power is limited by the charge-carriers available for stimulated emission. The gain
of the amplifier will therefore decrease when the optical power becomes too large.
This effect is known as gain saturation.

On the other hand, a too small optical signal will significantly reduce the signal-
to-noise ratio, as the spontaneous emission background will dominate the output.
Noise effects thus play an important role in the amplification of optical data sig-
nals [BON11, WIL12c]. A strong noise background will negatively impact the signal
quality by distorting the corresponding optical output, and potentially corrupting
the transmitted data stream.

In this section we will investigate the amplifier performance in terms of gain and
signal quality under large-signal amplification conditions. In order to accurately
model the spontaneous emission noise we will perform pump-current dependent
simulations of the amplified spontaneous emission spectra and compare them with
experimental results1. Then, we calculate the amplifier performance for different
large-signal input powers, with data signals centered on either the ground-state or
excited-state energies.

4.3.1 Calculation of Amplified Spontaneous Emission Spectra

We will employ the previously derived delay-differential equation model to simulate
the amplified spontaneous emission of real quantum-dot amplifier devices. The
modeled device is a 3 mm long dot-in-a-well structure, consisting of ten 5 nm thick
InGaAs quantum-wells, each embedding a density of 3 × 1010 cm−2 InAs quantum-
dots, with a shallow-etched, 4µm wide ridge waveguide.

The pump-current dependent optical power spectra of the amplified spontaneous
emission have been measured, as shown in Fig. 4.3 b. The experimental results re-
veal a strong peak around λ = 1300 nm, corresponding to the quantum-dot ground-
state emission. With increasing pump current j, the ground-state peak increases
until it saturates around j = 300 mA, after which it decreases again. Around
λ = 1200 nm a second peak arises with increasing pump current, corresponding to
the quantum-dot excited state. This peak saturates around j = 800 mA, with a
slight decrease at higher pump currents. the whole spectrum exhibits a red-shift
towards higher wavelengths with increasing pump current.

Parts of this section have been published in [WIL12c, LIN14a].
1The experimental data was kindly provided by Holger Schmeckebier, Inst. f. Festkörperphysik,

TU Berlin.
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Figure 4.3.: Comparison the simulated and measured ASE spectra. (a) shows the sim-
ulated ASE spectra for currents between 50 mA (dark blue) and 1000 mA (dark red),
increased in steps of 50 mA. The vertical dashed gray lines denote the center wave-
lengths of the considered optical data signals at λ = 1305 nm (GS) and λ = 1215 nm

(ES). (b) Corresponding experimentally measured spectra, kindly provided by Holger
Schmeckebier, TU Berlin.

We proceed by fitting the experimental spectral data with the results from our
simulations. The resulting model parameters are given in Table 4.1. Here, we
have treated the quantum-dot density NQD, the reservoir loss rates AS , BS , the
quantum-dot dipole moments μm, their inhomogeneous broadening ∆Em

inh, and
their dephasing times T m

2 , as well as the geometric confinement factor Γ and the
spontaneous emission ratio β as fitting parameters. In order to reproduce the
measured spectra, we must include a pump-current efficiency, η = 0.4, describing
the ratio of injected charge-carriers that reach the optically active region. This
reduced efficiency models the losses during carrier transport from the contacts and
in the separate confinement heterostructure that are not explicitly included in the
model. The relation between the experimental pump current j and the effective
pump current density that enters in our model is given by

J =
η

aLAact
j , (4.24)

where Aact = 3 mm × 4µm is the waveguide area.

155



4 Quantum-Dot Optical Amplifiers

Table 4.1.: Model parameters used in sections 4.3 and 4.4, unless stated otherwise.

Symbol Value Meaning

NQD 3 × 1010 cm−2 QD density per layer
aL 10 number of layers
hQW 5 nm QW layer height
nbg 3.77 background index
∆EGS

inh 30 meV QD GS inhomogeneous broadening FWHM
∆EES

inh 55 meV QD ES inhomogeneous broadening FWHM
AS 0.7 ns−1 QW linear recombination rate
BS 50 nm2 ns−1 QW bimolecular recombination rate
WGS 0.44 ns−1 GS spontaneous recombination rate
WES 0.55 ns−1 ES spontaneous recombination rate
β 3.5 × 10−4 spontaneous emission ratio
μGS 0.62 nm e0 × (1 + j

2.5 A
)−

1

2 QD GS transition dipole moment

μES 0.85 nm e0 × (1 + j
2.5 A

)−
1

2 QD ES transition dipole moment

T GS
2 200 fs × (1 + j

300 mA
)−1 QD GS polarization dephasing time

T ES
2 300 fs × (1 + j

300 mA
)−1 QD ES polarization dephasing time

Γ 0.045 Geometric confinement factor
∆Ee(∆Eh) 95 meV (50 meV) electron (hole) QD GS localization energy
∆e(∆h) 60 meV (25 meV) electron (hole) QD GS-ES energy spacing
η 0.4 pump current efficiency
Z 30 number of space discretization steps

In order to correctly describe the pump-current dependence of the amplified
spontaneous emission spectra, we introduce a pump-current dependence of the
gain, which is modeled as a dependence of the transition dipole moments,

|μm(j)|2 =
|μ0

m|2
1 + j

2.5 A

, (4.25)

with μ0
m the corresponding dipole moments at j = 0. At the maximum current

of j = 1000 mA that we will use here, the square of the dipole moment, and
thus the gain, is reduced to 71% of its original value. This phenomenological
change of the resulting gain is used to explain effects that are not intrinsically
included in the quantum-dot amplifier model, e.g., the quantum-confined stark
effect at higher bias voltages that leads to a decrease of the dipole moment [SCH99,

JIN04]. Furthermore, the dephasing time T2 of the quantum-dot transitions is known
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Figure 4.4: Fitted pump-current

dependence of the model param-
eters used in Secs. 4.3 and 4.4.
Shown are the quantum-dot de-
phasing time (green) and dipole
moment (blue), both for ground
state (solid) and excited state
(dashed), as well as the lattice
temperature (red) in dependence
of the pump current j.

to depend on charge-carrier density and temperature [BOR02, NIL05, LOR06, KOP11,

GOL14]. We thus introduce a current-dependent dephasing time,

T m
2 (j) =

T m,0
2

1 + j
300 mA

, (4.26)

where T m,0
2 denotes the corresponding dephasing times at j = 0. We assume a

longer dephasing time for the quantum-dot excited state compared to the ground-
state [LOR06a].

Across the pump-current range from 50 mA to 1000 mA a red-shift of the gain-
spectrum by about 30 nm can be observed. We attribute this shift to band-gap
renormalization due to many-body interactions [HAU89, CHO99, SCH01d, CHO05, LIN10]

as well as a Varshni-shift induced by an increase of the active-medium lattice tem-
perature. Experimental and theoretical works predict a band-gap renormalization
in the order of below 10 nm due to many-body effects [ODR10a, SHA11b]. In order
to explain the observed red-shift of ≈ 30 nm, we therefore need to additionally
implement a pump-current dependent lattice temperature

Tℓ(j) = 295 K +
1 K

14 mA
× j , (4.27)

which leads to a red-shift of 0.4 meV K−1 of the band-gap energy [GUE13, FRA13], and
reproduces the observed shift in the measured spectra. The resulting pump-current
dependent parameter fits are shown in Fig. 4.4.

For the correct description of the reservoir losses we furthermore include linear
and bimolecular loss rates, AS and BS , in the dynamic equations of the reservoir
carriers:

rw
loss = AS√

wewh + BSwewh . (4.28)

157



4 Quantum-Dot Optical Amplifiers

Figure 4.5: Pump-current dependence
of the optical small-signal gain at the
ground-state (λ = 1305 nm, red) and
the excited-state (λ = 1215 nm, blue).
Shown are the simulated curves (solid
lines) together with the experimental
data (filled circles), kindly provided by
Holger Schmeckebier, TU Berlin.

The dependence of the linear loss term on the geometric mean
√

wewh is chosen
such that the same value of rw

loss can be used in both the electron and hole reservoir
equations, ensuring charge conservation. In the earlier discussion of quantum-dot
laser dynamics we had neglected the linear loss term, due to the comparably high
reservoir carrier densities above the laser threshold, for which the higher-order loss
term dominates. Here, on the other hand, we have a large variation in the pump
current, such that the linear loss rate AS becomes important to correctly reproduce
the carrier-dependent dynamics also for low currents.

Using these model parameters we now simulate the amplified spontaneous emis-
sion spectra at the pump currents corresponding to the experimental values. The
resulting spectra are shown in Fig. 4.3 a. We can reproduce the pump-current de-
pendence of the amplified spontaneous emission very well both qualitatively and
quantitatively. The experimental spectra reveal a shoulder around λ = 1150 nm at
higher pump currents. We identify this as the reservoir band edge. Since we do not
explicitly take into account the spontaneous emission of the reservoir states, the
simulations cannot reproduce this part of the spectrum. In the following, we will
however limit ourselves to the amplification of signals centered at the quantum-
dot ground and excited state energies. We can therefore neglect the discrepancy
between the spectra at this wavelength.

Apart from the amplified spontaneous emission, we additionally calculate the
small-signal gain for different pump currents, as shown in Fig. 4.5. Here we choose
λ = 1305 nm at the ground-state center frequency and λ = 1215 nm for the excited
state. The simulated results match the experimentally obtained data excellently.
The corresponding gain curves match the qualitative behavior of the amplified
spontaneous emission spectra, with a saturation and subsequent decrease of the
gain.

We can conclude that our simulations quantitatively reproduce the experimental
results very well. In the next section, we will therefore employ the quantum-
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dot-semiconductor-amplifier model with the obtained parameters to simulate the
performance under amplification of optical large-signal data streams.

4.3.2 Gain Saturation

Large-signal amplification refers to the use of optical signals that can be large
enough to influence the charge-carrier occupation along the amplifier device, and
thus introduce nonlinearities. The charge-carrier distribution in the quantum-dot
amplifier can then be substantially perturbed, leading to an input-power dependent
response of the device. In order to quantify this response, we simulate the amplifier
under the injection of a constant optical input signal. As we have seen in the
previous section, the quantum-dot amplifier is capable of amplifying optical signals
on the ground-state and excited-state energies. We will therefore investigate the
device performance under amplification of signals at either of the two corresponding
wavelengths.

We thus model the electric field at the input facet as

E+(0, t) = Am
ine−iωmt , (4.29)

where the input amplitude is related to the optical power by

P m
in = Abeam

nbgε0c0

2
|Am

in |2 , (4.30)

with the effective transversal mode area Abeam. In Eq. (4.29) the frequency de-
tuning ωm (m ∈ {GS, ES}) of the input signal relative to the carrier frequency is
chosen to yield λ = 1305 nm for signals centered on the ground-state energy, and
λ = 1215 nm for the excited-state. We can then evaluate the device gain in the
steady-state by

G(Pin) =
|E+(ℓ, t)|2
|E+(0, t)|2 . (4.31)

The power-dependent gain for both wavelengths is plotted in Fig. 4.6.

Figure 4.6 a shows the ground-state gain in dependence on the optical input
power for different pump currents. The small-signal gain, i.e., at low input powers,
shows the behavior that we have seen before in Fig. 4.5, with an increase up to
a pump current of j = 400 mA and a subsequent decrease for higher j. The gain
curves are flat for low input powers (linear regime), but start decreasing once Pin

becomes large enough (nonlinear regime). This effect is known as gain saturation
[BER04, USK05, MEU08a]. In order to characterize the onset of the nonlinear regime,
the saturation input power P sat

in is defined as the input power at which the gain
is reduced to half the small-signal gain. Depending on the application, different
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Figure 4.6.: Optical gain G of the quantum-dot amplifier in dependence of the optical
input power P m

in for different pump currents j. Shown is the response to optical signals
centered on (a) the ground-state, and (b) the excited-state frequency. The areas marked
by the light red arrows denote the approximate extents of the linear and nonlinear
amplification regimes for j = 400 mA.

demands on the amplifier device are made. When a linear amplification of the
input signal is required, the flat section of the gain characteristics should extend
towards as high input power as possible, leading to a distortion-free amplification
of arbitrarily strong optical signals [LAE06a]. On the other hand, optical signals
with powers in the nonlinear regime induce a nonlinear response of the amplifier,
which can be used, e.g., for wavelength conversion via four-wave-mixing [AKI02,

QAS04, MAJ11a, SCH12e] or cross-gain-modulation [KIM09a, MEU10].

A general trend in the onset of the nonlinear regime towards higher optical power
can be observed with increasing pump current in the ground-state. This effect can
be explained by the increase of the in-scattering rates and the reservoir charge-
carrier density [BER04]. The faster and more efficient refilling of the quantum-dot
states after depletion by the optical signal shifts the saturation regime towards
higher power. The gain at the excited-state wavelength, shown in Fig. 4.6 b, also
shows the much higher gain compared to the ground-state. However, the onset of
the nonlinear regime is located at much lower optical input power. This can be un-
derstood by the weaker confinement of the quantum-dot excited states compared to
the ground state. This increases the sensitivity of the excited-state occupation to
changes in the reservoir charge-carrier density. Together with the strongly increas-
ing gain at the excited-state frequencies the saturation input power thus decreases
with increasing pump current.
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Figure 4.7.: Pump-current dependence of (a) the saturation input power and (b) the
saturation output power of ground (red) and excited state (blue).

The pump-current dependence of the saturation input power is summarized in
Fig. 4.7. Panel (a) quantifies the general trend that we have observed in Fig. 4.6.
The ground-state saturation input power is minimal at j = 300 mA and then in-
creases steadily, while for the excited state the minimum is reached at j = 800 mA,
and only then starts to increase again. This behavior shows the correlation with
the optical gain, as a high gain will increase the internal optical power and thus
decrease the input power required to induce a nonlinear response. Looking at the
saturation output power P sat

out, on the other hand, i.e., the output power for which
the gain is reduced to −3 dB relative to the small-signal gain, a steady increase with
the pump current at both wavelengths can be seen. This is depicted in Fig. 4.7 b.
An increase in pump current therefore always increases the maximum output power
for which near-linear amplification is possible [BER04, SCH05d, KIM08].

0 1 0 1 1 1 1 10 0 0 0
Pon

Poff

NRZ OOK
Figure 4.8: Illustration of the non-return-to-

zero pulse amplitude modulation scheme.
The data stream is encoded by the power
level, with Pon/off corresponding to one and
zero-bits, respectively.

4.3.3 Amplification of Optical Data Streams

We will now investigate the performance of the quantum-dot semiconductor optical
amplifier under amplification of optical data signals. Optical data streams that
are encoded via pulse-amplitude-modulation (PAM) use the signal power level to
represent the data. For example, a bit-stream (zeroes and ones) can be encoded
in a simple on-off scheme – “ones” are encoded as high power, “zeroes” as low
power – referred to as on-off-keying (OOK) or PAM-2. In the following we will
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Figure 4.9.: Sketch of the evaluation of the quality factor from optical eye diagrams.
Shown is an eye-diagram of the output optical data stream on the ground-state, for
an optical input power of Pavg = −20 dBm at j = 400 mA. The quantities used in
the evaluation of the Q-factor (Eq. (4.34)) are the standard deviations of the on and
off-power-level, ∆Pon and ∆Poff , respectively, and the eye-opening amplitude Pon −Poff .

consider non-return-to-zero (NRZ) OOK signals, as illustrated in Fig. 4.8. In the
simulations, we will use optical data signals with a repetition rate of 40 Gb s−1.
The input electric field is rewritten as

E+(0, t) =

[
P m

avg

2

Abeamnbgε0c0

∑

non

Abit

(
t − tnon

)
] 1

2

e−iωmt , (4.32)

where the index non runs over the one-bits and tnon is the arrival time of the non
th

bit. The pulse amplitude shape is modeled as

Abit(τ) =

⎧
⎪⎨
⎪⎩

2 cos(π
2 frepτ)2 |τ | ≤ 1

frep

0 |τ | > 1
frep

, (4.33)

with the bit repetition rate frep. The above definition ensures that, for a data signal
consisting of only one-bits, a constant optical power level is used as input. For a
data signal with uniform distribution of zero and one-bits, the average optical input
power is given by P m

avg. Here, we will employ bit-patterns with a random uniform
distribution of zeroes and ones.

The results of the simulations for the amplification of an exemplarily chosen op-
tical data stream in the quantum-dot semiconductor optical amplifier are presented
in Fig. 4.9. It shows the resulting optical eye-diagram of the output signal, i.e.,
a histogram of the output power in time, created by overlaying the output of 240
bits. The eye diagram clearly shows the distinct zero and one power levels, i.e., a
clear opening of the “eyes”. Nevertheless, the power level of the one-bits, Pon, is
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Figure 4.10.: Input-power dependence of the quality-factor for optical bit patterns at
different pump currents. Shown is the quality factor of (a) signals centered at the
ground-state (λ = 1305 nm) and (b) at the excited-state (λ = 1215 nm), for pump
currents of j = 400 mA (red), 700 mA (green), and 1000 mA (blue). The gray shaded
area denotes the values of the Q-factor for which the BER is below 10−9. The input
signals were non-return-to-zero on-off-keyed pseudo-random bit sequences with a 40 GHz

repetition rate.

rather noisy. In order to quantify the signal quality of the amplified data stream,
we define the quality (or Q-) factor

Q :=
Pon − Poff

∆Pon + ∆Poff
, (4.34)

with the variance ∆P of the corresponding on or off power level. The Q-factor
thus describes the possibility to distinguish between the zero and one-levels in the
optical data signal. For a low Q-factor the variance of the power would become
larger, so a misinterpretation of the amplified data stream becomes more probable.
This increases the bit-error-rate (BER), i.e., the ratio of wrongly decoded bits in
the data stream. For a Gaussian distribution of the variation of the power levels
from their mean, the bit-error-rate can be calculated from the Q-factor via [OLS89]

BER =
1√

2πQ
exp

(
−Q2

2

)
. (4.35)

We employ the above definitions and calculate the quality factor for different
pump currents in dependence on the average input power Pavg. The resulting
curves are shown in Fig. 4.10 for signals on the ground and excited-state energies,
respectively. The ground-state quality factor shows a clear maximum in the optical
input power, for which the signal quality thus becomes optimal [WIL12c]. Towards
lower input power the signal quality is limited by the spontaneous emission back-
ground noise, which becomes increasingly dominant for decreasing signal power.
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Figure 4.11.: Eye diagrams of the optical data signals on the ground-state after ampli-
fication for average input powers of (a) P GS

avg = −25 dBm, (b) P GS
avg = −15 dBm, and

(c) P GS
avg = −5 dBm. j = 400 mA, cf. Fig. 4.9.

At high powers, on the other hand, the signal quality is limited by the onset of
the nonlinear amplification regime, which introduces patterning effects in the out-
put signal [BON11, WEG10]. This is depicted in Fig. 4.11, showing the transition
from a noise-dominated signal at P GS

avg = −25 dBm, over a near-optical signal at
P GS

avg = −15 dBm, to the appearance of patterning effects at P GS
avg = −5 dBm.

Consequently, we can observe an increase in the optimal input power with in-
creasing pump current, correlated with the increasing saturation input power P sat

in .
For the excited-state, on the other hand, only for j = 400 mA a maximum in the
quality-factor can be observed, whereas for higher currents the Q-factor steadily
decreases with the input power and a general decrease of the quality is visible,
due to the reduction of P sat

in we had seen in Fig. 4.7. Furthermore, the Q-factor
is generally smaller than on the ground-state. This suggests that for signals on
the excited-state frequencies, the signal quality is primarily limited by the onset of
patterning effects, whereas spontaneous emission noise plays a smaller role.

Different demands on the bit-error-rate exist depending on the application and
the use of error-correction techniques. Generally, a BER of 10−9 is favorable,
corresponding to Q ≈ 6. This requirement is met for all considered currents and
input powers on the ground-state, and for Pavg < −15 dBm on the excited-state at
j = 1000 mA. Our results thus show that the given quantum-dot semiconductor
amplifier can be effectively used to amplify data signals over a broad range of
wavelengths.

While so far we have only considered the amplification of optical data streams
centered on either of the quantum-dot state energies, a simultaneous amplifica-
tion of two independent data signals might also be possible. We investigate this
application in the next section.
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4.4 Multi-State Operation of Quantum-Dot Amplifiers

In the previous section, we have shown that the quantum-dot semiconductor op-
tical amplifier can be used to amplify optical data streams corresponding to its
ground-state and excited-state energies with good resulting signal quality. Subse-
quently, in this section we will investigate the possibility of a dual-state operation
of the quantum-dot amplifier device, by simultaneous amplification of data signals
on the ground and excited-state gain peaks. This would correspond, e.g., to the
application of a single amplifier device for a dual-band amplification of counter-
propagating upstream and downstream data signals on different wavelength bands.
We will in the following perform simulations of the signal quality in dependence on
the corresponding input power and the pump current.

We consider the simultaneous input of optical data signals centered on the ground
and excited-state energies at opposing facets of the quantum-dot amplifier, as
sketched in Fig. 4.12. We thus write, similar to Eq. (4.32), the boundary values of
the electric field as

E+(0, t) =

⎡
⎣P GS

avg

2

Abeamnbgε0c0

∑

nGS
on

Abit

(
t − tnGS

on

)
⎤
⎦

1
2

e−iωGSt , (4.36a)

E−(ℓ, t) =

⎡
⎣P ES

avg

2

Abeamnbgε0c0

∑

nES
on

Abit

(
t − tnES

on

)
⎤
⎦

1
2

e−iωESt . (4.36b)

We thus look at the case that the ground-state signal is injected at the front facet
(z = 0), and the excited-state signal at the back facet (z = ℓ). This counter-
propagating setup reflects the application of a single optical amplifier device for
the simultaneous amplification of an up and down-stream, from and to a telecom-
munication network node. Furthermore, the counter-propagation should minimize
cross-talk between the two signals, whereas the individual bits in co-propagating
signals could interact along the whole device length. Similar to the analysis done

Parts of this section have been published in [SCH15].
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Figure 4.12: Sketch of the multi-state
operation of the quantum-dot semi-
conductor optical amplifier. Optical
signals centered on the ground (red)
and excited-state (blue) frequencies are
simultaneously injected into the am-
plifier through the front and back
facets,respectively.
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ground-state gain

excited-state gain

Figure 4.13.: Dependence of the ground-state (top row) and excited-state (bottom row)
gain (color-coded) in dependence on the ground-state and excited-state average input
powers for dual-state operation. Both for ground-state and excited-state a non-return-
to-zero pseudo-random bit-sequence was used as input signal. Shown are the resulting
values at (a) j = 400 mA, (b) j = 700 mA, and (c) j = 1000 mA. The hatched area
denotes the range of operation for which we expect good performance.

in the previous section we now analyze the dependence of the large-signal gain on
the optical input power.

The top row in Fig. 4.13 shows the resulting large-signal gain for optical signals on
the ground-state energy. For increasing pump current we can observe the decrease
in gain that we have already seen previously. Also, the gain can be seen to decrease
with increasing ground-state input power, once it reaches the saturation input
power. Additionally, a steady decrease of the ground-state gain with increasing
optical power on the excited state can be observed, which amounts to a ≈ 5 dB

smaller gain when increasing the excited state input power from −25 dBm to 0 dBm

at the investigated current range. We can thus conclude that the excited-state
amplification has only minuscule effect on the ground-state performance.
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ground-state quality factor

excited-state quality factor

Figure 4.14.: Dependence of the ground-state (top row) and excited-state (bottom

row) quality-factor (color-coded) in dependence on the ground-state and excited-state
average input powers for dual-state operation. Both for ground-state and excited-state
a non-return-to-zero pseudo-random bit-sequence was used as input signal. Shown are
the resulting values at (a) j = 400 mA, (b) j = 700 mA, and (c) j = 1000 mA. The
hatched area denotes the range of operation for which we expect good performance.
The labeled markers denote the operation parameters used in the respective panels in
Fig. 4.15 (ground state) and Fig. 4.16 (excited state).

For the excited-state gain, shown in the bottom row in Fig. 4.13, on the other
hand, a stronger influence of the ground-state signal can be seen at j = 400 mA.
Here, the excited-state gain decreases by 20 dB upon increasing the ground-state
input power to 0 dBm. This can be understood by the intra-dot relaxation scatter-
ing driving the quantum-dot states towards quasi-equilibrium. As the quantum-dot
ground-state is located at lower energy than the excited state, a variation of the
excited-state occupation results in only little change of the quasi-equilibrium occu-
pation at the ground-state. On the other hand, when the ground-state occupation
is depleted by the optical signal, already a small change in its occupation will con-
siderably impact the excited state population by the increased out-scattering into
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Figure 4.15.: Eye diagrams of the optical data signals on the ground-state under simul-
taneous amplification of an excited-state signal with (a) P ES

avg = −25 dBm, and (b)

P ES
avg = −5 dBm. The ground-state optical input power in both cases is P GS

avg = −5 dBm.
j = 700 mA.

the now empty quantum-dot states. This explains the observed stronger impact of
a ground-state signal on the excited state gain, as compared to the converse case.

For higher currents, however, not only the excited state gain is increased consid-
erably, but also the perturbation by a ground-state signal is much less pronounced.
This is a consequence of the increased reservoir carrier density, refilling the excited
state more efficiently, and the decreasing gain of the ground-state, reducing the
stimulated recombination rate on the ground-state. This shows that, in terms of
the optical gain, the dual-state operation of the quantum-dot amplifier is in gen-
eral possible. The pump-current must however be chosen adequately, to ensure low
enough perturbation of the excited-state gain due to the presence of a signal on the
ground state, while still providing strong enough ground-state gain. In our case,
we therefore identify j = 700 mA as the optimal choice.

So far, we have only looked at the optical gain of the quantum-dot amplifier
device under dual-state operation, showing promising results. The perturbation
of the gain medium by the respective other data signal could however negatively
impact the quality of the optical data streams. Analogously to the investigation
of the optical gain in dependence of the optical input powers, we will therefore
calculate the quality factor of the two simultaneously amplified signals. The re-
sulting diagrams are shown in Fig. 4.14. The ground-state quality factor shows a
clear maximum with respect to the ground-state input power, which is shifted to-
wards higher ground-state power, when we additionally increase the optical power
of the excited-state signal. This can be understood by the reduced optical gain
on the ground-state that we had observed in Fig. 4.13. The increasing optical
power on the excited state reduces the ground-state gain, which in turn reduces
the signal-to-noise ratio of the ground-state signal for low input power. Further-
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Figure 4.16.: Eye diagrams of the optical data signals on the excited-state under si-
multaneous amplification of a ground-state signal with (a) P GS

avg = −20 dBm, and (b)

P GS
avg = 0 dBm. The ground-state optical input power in both cases is P ES

avg = −20 dBm.
j = 700 mA.

more, a general decrease of the signal quality with increasing excited-state power
can be observed. This is exemplarily shown in Fig. 4.15 for a ground-state input
power of P GS

avg = −5 dBm, where for increasing power on the excited state a distor-
tion of the ground-state eyes can be seen. The overall quality-factor, however, is
well above 10 for most of the considered values, ensuring very good signal quality
over a large parameter range.

With increasing pump current, the parameter range with a high Q-factor is
extended towards higher ground-state input powers, leading to very little signal
distortion at these currents. As we had seen before, this is however accompanied
by a drastic reduction in the ground-state gain, which limits the applicability at
high pump currents.

In the single-state operation on the excited-state, we had already observed a
decrease of the overall signal quality on the excited state with increasing pump
current. At the low current of j = 400 mA, however, a severe deterioration of the
excited-state signal quality with increasing ground-state power can be observed.
This again shows the stronger perturbation of the excited-state gain caused by
variations of the ground-state occupation, exemplarily illustrated in Fig. 4.16. Here,
the increasing ground-state intensity leads to a strong distortion of the one-level.
Nevertheless, it can still be clearly distinguished from the zero-level. A higher
pump current can partly alleviate this distortion and reduce the reduction in the
Q-factor due to the presence of a ground-state signal.

Taking into account the signal quality as well as the optical gain, we predict
best performance under dual-state operation for a pump current around 700 mA

and input powers of up to P GS
in ≤ −7 dBm and P ES

in ≤ −13 dBm. This parameter
region is denoted in Figs. 4.13 and 4.14.
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To conclude, we investigated the possibility of a dual-state operation of a quantum-
dot semiconductor optical amplifier for amplification of optical data signals. We
have considered the simultaneous amplification of counter-propagating optical non-
return-to-zero on-off-keyed data signals, in frequency bands centered on the ground-
state and excited-state gain peaks, respectively. We have adjusted our model pa-
rameters by comparison with experimental data and achieved good quantitative
agreement. Our results predict the possibility to use the same quantum-dot am-
plifier device for simultaneous amplification of counter-propagating optical data
streams while providing sufficient gain and a high enough signal quality on both
frequency bands. In general the excited-state signal quality was found to be more
prone to the perturbation by the presence of a ground-state signal, as compared to
the converse case. A proper choice of the pump current, in our case j = 700 mA,
yields strong enough gain in the ground state and good signal quality for signals
on the excited state to make the dual-state operation possible.
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4.5 Coherent Transients in Quantum-Dot Amplifiers

Coherence in light-matter interaction refers to physical phenomena in which the
phase between the active medium polarization and the incident light field is main-
tained. A precondition for such effects is thus a sufficiently long lifetime of the
microscopic polarization, i.e., a slow dephasing. Investigations of this topic are
therefore often limited to systems at low temperature and with only few emit-
ters [FRY93, SCU97, PHI01, BRI10], in order to keep the number of possible dephasing
processes small [CHO03].

Semiconductors were consequently initially disregarded as potential candidates
for the observation of coherent transients and quantum-coherent interaction, due
to the high density of charge-carriers [HAU89, SAY94] and the dephasing due to scat-
tering with lattice phonons [SCH86h, FAN98]. Furthermore, the superposition of an
ensemble of optical transitions with different energies leads to an additional decay
of the polarization [SHA96]. On the other hand, with the advent of semiconduc-
tor quantum dots, atom-like transitions within the semiconductor material could
be realized. Semiconductor quantum-dot transitions were shown to exhibit much
longer dephasing times [GAM96, BOR01a], making localized quantum-dots an attrac-
tive choice for applications in quantum-optics [BRA05].

Recently, however, coherent pulse propagation in macroscopic semiconductor de-
vices have been observed in quantum-cascade lasers [CHO10], quantum-dash [CAP14]

and quantum-dot semiconductor amplifiers [KOL13], relying on ultra-short, strong
optical pulses. It is important to note that in the experiments using optical ampli-
fiers, the measurements were performed at room temperature, opening up possible
future quantum-coherent applications using uncooled devices.

In this section, we will present experimental measurements and a theoretical
description of Rabi oscillations induced by ultra-short pulses in a quantum-dot
semiconductor optical amplifier at room temperature [KOL13]. Rabi oscillations
denote a periodic exchange of energy between the optical field and the active

Parts of this section have been published in [KOL13].

0
z

Figure 4.17: Sketch of the Rabi-
oscillation induced pulse shaping in
quantum-dot semiconductor optical
amplifiers. The strong and ultra-short
input pulse excited Rabi oscillations
in the active medium, which lead to
the formation of characteristic dips
and peaks in the optical pulse.
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medium, which leads to characteristic modifications of the optical pulse traveling
through the amplifier device, as sketched in Fig. 4.17. Apart from the appearance
of Rabi oscillations, the long dephasing in semiconductor quantum-dots can en-
able quantum-coherent effects such as lasing without inversion [SCU89, HAR89] and
electromagnetically-induced transparency [MCC69, BOL91, HAR97c]. The observation
of quantum-coherence in semiconductor devices might therefore open the possibil-
ity of new applications utilizing the coherent interaction between active medium
and light [CHO13a].

In this section we will present simulations of the propagation of ultra-short pulses
through a quantum-dot semiconductor optical amplifier. We investigate the pulse-
amplitude dependent pulse shaping by Rabi oscillations and show that the coherent
signature can in principle be observed by measurements of the small-signal gain.
Then, we compare our theoretical results with electric-field cross-correlation mea-
surements in a pulse-propagation setup, and we will show that the experimentally
observed pulse shaping is indeed the result of Rabi oscillations.

4.5.1 Rabi-Oscillations in Quantum-Dot Semiconductor Amplifiers

The quantum-dot semiconductor optical amplifier device we are modeling in this
section consists of a 2µm wide and 1.5 mm long shallow-etched waveguide. The
active medium is a DWELL structure composed of 15 layers of InGaAs quantum-
wells with embedded InAs quantum-dots. The model parameters used to describe
the device are given in Table 4.2. In order to describe the dynamic dependence of
the dephasing time on the pump current, we implement the following fit function:

T2(we, wh) =

[
3 ps−1 +

(
we + wh

4.4 · 1011 cm−2

)0.92

ps−1

]−1

. (4.37)

The first term accounts for dephasing processes, e.g., due to phonon-carrier scat-
tering, which we assume to be independent of the surrounding charge-carrier den-
sity. Here we take a dephasing rate of 3 ps−1 to account for these effects. It
has been shown theoretically [BIN92, KOC00, VU06, LOR06, KOP11, GOL14] and experi-
mentally [BOR02] that the dephasing time in a DWELL structure depends on the
charge-carrier density in the carrier reservoir. We thus implement a numeric fit to
the carrier-density dependence of the dephasing time presented in [KOP11], leading
to the second term in Eq. (4.37).

Compared to the quantum-dot amplifier device investigated in the previous sec-
tions, a shallower quantum-dot confinement is assumed here. The dependence of
the dephasing time on the reservoir charge-carrier density of both devices is plotted
in Fig. 4.18. While the qualitative dependence is the same, the shallower quantum-
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Table 4.2.: Parameters used in the simulations in section 4.5, unless stated otherwise.

Symbol Value Meaning

NQD 3 × 1010 cm−2 QD density per layer

aL 15 number of layers

hQW 4 nm QW layer height

nbg 3.77 background index

∆Einh 30 meV QD inhomogeneous broadening FWHM

AS 0 ns−1 QW linear recombination rate

BS 540 nm2 ns−1 QW bimolecular recombination rate

WGS 0.44 ns−1 GS spontaneous recombination rate

WES 0.55 ns−1 ES spontaneous recombination rate

μ 0.6 nm e0 QD transition dipole moment

T2 see Eq. (4.37) QD polarization dephasing time

Γ 0.1 + J
600J0

Geometric confinement factor

∆Ee(∆Eh) 74 meV (50 meV) electron (hole) QD GS localization energy

∆e(∆h) 40 meV (20 meV) electron (hole) QD GS-ES energy spacing

Z 30 number of space discretization steps

dot confinement leads to a longer dephasing time, in agreement with microscopic
calculations [LOR06b].

In this section we limit ourselves to a single forward-propagating electric field
pulse, and neglect spontaneous emission noise for simplicity. We therefore need to
describe only one electric field variable, which we label E(z, t). The input pulse
is assumed to enter the amplifier device at z = 0, with the back facet at z = ℓ.
Furthermore, noise effects are neglected, as the shorter length of the amplifier
device leads to a lower noise intensity. Additionally, optical signals with much
higher peak power compared to the previous sections are considered here, which
makes amplified spontaneous emission noise negligible.

Figure 4.18: Fitted dephasing times for the
quantum-dot semiconductor optical am-
plifier devices in Sec. 4.3 (deep confine-
ment, dashed) and here (Sec. 4.5, shallow
confinement, solid). Shown is the ground-
state dephasing time in dependence of
the total reservoir charge-carrier density
we + wh,
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In order to understand the emergence of Rabi oscillations, we take a look at the
dynamic equation for a single quantum-dot subgroup:

∂

∂t
pj

m(z, t) = −
[
i(ωj

m − ω) +
1

T2

]
pj

m − i
μm

2�

(
ρj

e,m+ρj
h,m−1

)
E(z, t) , (4.38a)

∂

∂t
ρj

b,m(z, t) = − 1

�
Im

[
pj

mμ∗
mE∗(z, t)

]
− Wmρj

e,mρj
h,m +

∂

∂t
ρj

b,m

∣∣∣
sc

. (4.38b)

We reduce the above equations by introducing the inversion d := (ρj
e,m+ρj

h,m−1)

and neglecting losses. Furthermore, we limit ourselves to a resonant excitation,
i.e., ω = ωj

m:

∂

∂t
pj

m(z, t) = −i
μm

2�
d(z, t)E(z, t) , (4.39a)

∂

∂t
d(z, t) = − 2

�
Im

[
μ∗

mE∗(z, t)pj
m(z, t)

]
. (4.39b)

For an initial inversion of d0 and vanishing polarization amplitude, the above equa-
tions have the solution

pj
m(z, t) = − i

2
sin Θ(z, t) , (4.40a)

d(z, t) = d0 cos Θ(z, t) , (4.40b)

with the pulse area defined as

Θ(z, t) =

t∫

−∞

μGS

2�

∣∣∣E(z, t′)
∣∣∣ dt′ . (4.41)

Equation (4.40b) shows that, with a proper choice of the pulse area, it is possible,
e.g., to invert the charge-carrier distribution by choosing Θ = π. When choosing
Θ = n2π, n ∈ N, i.e., integer multiples of 2π, the system returns to its initial
state after the exciting pulse has passed through. This important property shows
that the coherent interaction between the optical field and the active material is
a reversible process, as long as the polarization dephasing time is larger than the
pulse width. The ≈ ps long pulses that we have investigated in Sec. 4.3, on the
other hand, were significantly longer than the dephasing time. Their interaction
with the active medium was thus irreversible.

We now use our quantum-dot semiconductor optical amplifier model to simulate
the amplification of ultra-short optical pulses. Here, we consider Gaussian pulses
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Figure 4.19.: Rabi-oscillations in the quantum-dot semiconductor optical amplifier.
(a) Input electric field amplitudes for different input pulse areas Θ. (b) Corresponding
time-traces of the quantum-dot ground-state inversion of the resonant subgroup at the
input facet for different input pulse areas. (c) Electric field amplitudes at the output-
facet for different input pulse areas Θ. (d) Corresponding time-trace of the integrated
small-signal gain, Eq. (4.43), for different input pulse areas. The curves in (a),(c) are
shifted along the vertical axis for better readability. The time delay is given with respect
to the arrival time of the pulse at the corresponding device facet. J = 20J0.

with a width of δt = 235 fs (FWHM) in amplitude. Taking the optical pulse area
Θ as an input parameter, the input electric field is thus given by

E(0, t) = Θ
2�

μGS

√
4 log 2

δt
√

π
exp

[
−4 log 2

(
t − t0

δt

)2
]

e−i∆ωt , (4.42)

where t0 is the pulse arrival time at the front facet. The detuning from the optical
carrier frequency ∆ω is chosen to yield a center frequency of the optical pulse
corresponding to a blue-shift of 6 meV from the quantum-dot ground-state gain
maximum, in accordance with the experimental setup discussed in Sec. 4.5.2.

Fig. 4.19 a shows the electric field amplitude of the pulse that enters the input
facet of the amplifier for different values of the input pulse area Θ. The amplifier
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is biased at twenty times the transparency current density J0. The transparency
current density is defined as the current density at which the ground-state gain is
0 dB, i.e., no net amplification (or loss) along the device is observed. At J = 20J0

the initial ground-state inversion is approximately 0.45, as can be seen in Fig. 4.19 b
prior to the pulse arrival. For Θ = 0.1 the inversion can be seen to be nearly
unaffected by the input pulse, as the input power and the corresponding stimulated
emission rate is too low to disturb the inversion appreciably. With increasing pulse
area, a clear reduction in the ground-state inversion is visible, with a subsequent
refilling by the charge-carrier scattering processes.

For an input pulse area of Θ = 2π, shown by the green line, the ground-state
inversion reaches a minimum value well below zero. This is a clear indication of
Rabi-oscillations and thus evidence of coherent interaction within the device. From
Eq. (4.40b), we would expect a complete Rabi oscillation for the input pulse area
of 2π, i.e., the inversion should reach its original value after the pulse has passed.
This expectation is not fulfilled, due to the presence of dephasing processes and
a finite charge-carrier lifetime, which lead to a damping of the Rabi oscillations
[SCU97]. This is especially visible for Θ = 5π, which clearly show two and a half
damped Rabi cycles.

The corresponding output pulses, shown in Fig. 4.19 c, exhibit the appearance
of characteristic modifications of the pulse shape with increasing pulse area. While
the input area of 0.1π is too low to induce Rabi oscillations, resulting in a nearly
Gaussian-shaped output pulse, the higher pulse areas lead to the formation of
additional peaks in the output field amplitude.

The signature of the Rabi oscillations is also visible in the small-signal device
gain, shown in Fig. 4.19 d, which is calculated via

G(τ) = exp

⎡
⎣2

ℓ∫

0

dz
1

vg
Re g

(
z, t0 +

z

vg
+ τ

)⎤
⎦ , (4.43)

where g(z, t) is the complex gain as defined in Eq. (2.75). Equation (4.43) describes
the intensity gain that a small pulse traveling along the amplifier waveguide would
experience, with τ denoting the time-difference between this virtual pulse and the
probe pulse. G(τ) thus describes the gain measured in pump-probe experiments
[DOM07, GOM09, MAJ11]. Thus, with a sufficiently narrow probe pulse and high time
resolution, the signature of Rabi oscillations should be possible to detect in a pump-
probe setup.

The theoretical results clearly show the possibility of coherent interaction in the
form of Rabi oscillations in quantum-dot semiconductor optical amplifiers. In the
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AOM
QDSOA

detector

probe

reference

Figure 4.20.: Simplified sketch of the heterodyne measurement technique. The incoming
optical pulse is split into two beam paths in an acousto-optic modulator (AOM). The
probe pulse (red) passes through the quantum-dot semiconductor amplifier (QDSOA),
while the reference pulse (blue) goes through a variable delay-stage. The two pulses are
then lead to the detector (lock-in-amplifier), where the cross-correlation between the
delayed input pulse and the amplified pulse is measured.

next section, we will thus compare our model with experimental cross-correlation
measurements of ultra-short pulses in a quantum-dot amplifier.

4.5.2 Comparison with Experimental Measurements

We now apply the quantum-dot amplifier model to recreate the results from an
cross-correlation experimental setup. Since the electric field amplitude is easily
accessible in our model, but is not immediately accessible by experimental detection
schemes, different measurement techniques must be employed. Here, we compare
our theoretical results with heterodyne cross-correlation measurements1 (FROSCH:
frequency-resolved optical short-pulse characterization by heterodyning [KOL13]).

A simplified sketch of the heterodyning setup is shown in Fig. 4.20. An incoming
short optical pulse is first split into two separate beam paths by an acousto-optic
modulator, which also induces a frequency shift in the extraordinary (reference)
beam. The ordinary (probe) beam is coupled into the quantum-dot amplifier, while
the reference pulse goes through a variable delay stage. The delayed reference beam
and the probe beam are recombined onto a lock-in amplifier, detecting the beat
note between the pulses. The measured signal S(τ) is thus proportional to the
cross-correlation of the reference and probe pulses:

S(τ) ∝
∣∣∣∣∣∣

∞∫

−∞

dt Ep(t) E∗
r (t + τ)

∣∣∣∣∣∣
, (4.44)

where Er and Ep are the reference and probe pulse electric fields, respectively. The
advantage of this technique is the high temporal resolution of below 1 fs, since the

1The measurements were performed by Mirco Kolarczik, Nina Owschimikow, and Yücel Kaptan,

Inst. f. Optik u. Atomare Physik, TU Berlin.
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Figure 4.21.: Comparison of the Rabi-oscillations in the amplified ultra-short pulses be-
tween experiment and theory. Shown is the normalized cross-correlation amplitude,
Eq. (4.44), (top panel) and its phase (bottom panel), both for the experimental results
(black) and theoretical predictions (red), as a function of the delay τ between probe and
reference pulses. (a) Low input power of 1mW (Θ = 0.33π) and J = 0. (b)-(e) High
input power of 12mW (Θ = 1.15π) for current densities of J = 0, J = 3J0, J = 20J0,
and J = 30J0, respectively. Modified from [KOL13].

time-delay τ can be precisely adjusted. Furthermore, the measured signal is linear
in the probe amplitude Ep, providing high sensitivity even at low light intensities.
On the other hand, a drawback of the cross-correlation is that the electric field
itself cannot be measured independently. Only the convolution of the probe and
reference pulses is accessible. Thus, while the signal S(τ) has a high resolution
in τ , the achievable resolution in t of the actual electric field amplitude Ep(t) is
limited by the width of the reference pulse.

While Eq. (4.44) does not allow for a direct access to the electric field amplitude,
it is still closely related to the electric field pulse shape. For example, the cross-
correlation of two Gaussian pulses will again yield a Gaussian pulse in τ , albeit
with a larger width. In addition to the cross-correlation amplitude, also the phase
of the correlation integral in Eq. (4.44) can be experimentally determined. This
allows the evaluation of time-resolved phase dynamics of the amplified pulse, and
can be used, e.g., to determine charge-carrier induced frequency chirp [VAL08].

We proceed by comparing the measured pump-current dependent pulse amplifica-
tion in the quantum-dot amplifier with our theoretical results. In the experiments,
input pulses with widths of δt = 235 fs with variable pulse area are produced by an
optical parametric oscillator with a repetition rate of 75.4 MHz. The measurements
presented here were obtained at room-temperature. The resulting cross-correlation
curves are shown in Fig. 4.21, where we compare both the cross-correlation ampli-
tude and phase with the experimental results. Fig. 4.21 a shows the resulting curves
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for an input pulse area of Θ = 0.33π and an unpumped, i.e., absorbing, device. The
output pulse shape is nearly Gaussian, which is to be expected from a low input
pulse area, as we have already seen in the previous section. Upon increasing the
input pulse area to Θ = 1.15π, shown in Fig. 4.21 b-e, modifications to the pulse
shape become visible. These are most pronounced at J = 0 and J = 20J0, i.e. for
empty and moderately filled quantum-dots, where a pronounced dip and additional
peak in the amplitude for positive time delays can be observed. At J = 3J0, only
minor pulse shape modifications are visible, due to operating near transparency.
For even higher pump currents, J = 30J0, while the initial quantum-dot inversion
is increased, the dephasing time of the optical transitions is much lower due to the
high number of injected charge carriers. This leads to a less pronounced coher-
ent interaction, and the amplitude dip is much smaller. The investigation of the
cross-correlation phase reveals that the appearance of the minima in the amplitude
is accompanied by a phase jump, due to the change of sign of the electric field
induced by the Rabi oscillations [SCU97].

The theoretical results reproduce the experimental findings very well. We can
therefore conclude that our model is well suited for the description of the quantum-
dot amplifier device. However, we can also use the model to investigate the dy-
namics of the amplifier during the coherent interaction, which cannot be resolved
experimentally.

Figure 4.22 shows the quantum-dot ground-state dynamics at the input and
output facets for the amplification of a pulse with Θ = 1.15π at J = 20J0, as
already shown in Fig. 4.21 d. In Fig. 4.22 a,b the corresponding cross correlation
amplitudes, along with the solitary electric field amplitude, are shown. Here, the
slight loss of detail due to the evaluation of the cross-correlation can be observed,
as the electric field amplitude at the output facet shows a more complex shape than
the resulting cross-correlation signal. The cross-correlation translates this complex
shape into a smooth envelope with a single amplitude dip.

The color-coded density plots shown in Fig. 4.22 c,d depict the time-evolution of
the polarization amplitude of the different quantum-dot subgroups, characterized
by their detuning with respect to the pulse center frequency. Here it can be seen how
the incoming pulse at first builds up a polarization in all quantum-dot subgroups,
albeit with a much stronger response at the resonant subgroup. The dynamics
at the front facet, panel c, already exhibits a difference in the dynamics of the
different quantum-dot subgroups, with a more persistent polarization for subgroups
slightly detuned from the pulse. This becomes even more pronounced at the output
facet, where the pulse shape is more complex and the pulse area higher due to the
amplification along the amplifier. Here, the dynamics of the individual quantum-
dot subgroups is much more complex, and the Rabi oscillations faster due to the
increased field amplitude. The polarization dynamics is not symmetric around
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Figure 4.22.: Quantum-dot dynamics under the amplification of an ultra-short pulse.
Shown is the dynamics at the input facet (left column) and at the output facet (right
column). (a),(b) Electric field amplitude (red line) and corresponding cross-correlation
signal (black line). The lower panels show the time-trace of (c),(d) the normalized
quantum-dot ground-state polarization amplitude and (e),(f) their inversion in de-
pendence of the detuning of the individual quantum-dot subgroups from the signal.
Θ = 1.15π, J = 20J0. Modified from [KOL13].

the resonant subgroup, as could have been expected, but instead shows rather
strong asymmetry due to the asymmetric quantum-dot carrier distribution and the
additional frequency components added to the optical pulse along its path.

Figure 4.22 e,f depict the corresponding inversion of the individual subgroups. As
we have seen before, the optical pulse drives the population inversion below trans-
parency for near-resonant subgroups, again confirming the occurrence of (partial)
Rabi oscillations within the device.

In order to support our interpretation of Rabi-oscillation induced pulse-shaping
in the device, we now simulate the quantum-dot semiconductor optical amplifier
within the rate-equation approach, i.e., with adiabatically eliminated polarization.

180



4.5 Coherent Transients in Quantum-Dot Amplifiers

Figure 4.23.: Quantum-dot dynamics under the amplification of an ultra-short pulse using
adiabatically eliminated microscopic polarization, cf. Fig. 4.22.

As we had derived earlier in Eq. (2.70), we can write for the polarization amplitudes
in the limit of fast polarization decay

pj
m(t) = − iT2

μmE(t)

2�

(
ρj

e,m(t) + ρj
h,m(t) − 1

)(
1 − iT2(ωj

m − ω)

1 + [T2(ωj
m − ω)]2

)
. (4.45)

We thus assume a quasi-static relation between the polarization and the incom-
ing electric field. This, however, means that the dephasing process is treated as
instantaneous, such that the polarization is assigned the value it would assume
after complete dephasing. Subsequently, the rate-equation model cannot repro-
duce the pulse-shape modifications observed in the experiments, as demonstrated
in Fig. 4.23.

Similar to the plots shown before in Fig. 4.22 we evaluate the inversion and
polarization of each subgroup. The differences between the two approaches become
immediately visible in the output pulse shape, which lacks the complex pulse shape
we had seen before. While the front of the pulse shows a slight deformation,
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the cross-correlation amplitude reproduces a near-Gaussian shaped output pulse.
This is due to the lack of autonomous polarization dynamics that was observed
in Fig. 4.22 c,d. Here a quick buildup of the polarization amplitude can be seen,
with a subsequent fast decay in the resonant subgroups. This decay is due to the
“bleaching” of the corresponding subgroups (Fig. 4.22 e,f). The inversion is depleted
to near zero, rendering these subgroups transparent to the pulse. The rate-equation
approach thus quite obviously cannot reproduce the observed dynamics.

In conclusion, we have demonstrated coherent interactions between ultra-short
optical pulses and the quantum-dot active medium in quantum-dot semiconductor
optical amplifiers. Provided strong enough input pulses and high enough time reso-
lution, we predict the possibility to directly observe Rabi oscillations in pump-probe
experiments. While the pronounced modifications to the electric field amplitudes
due to the Rabi oscillations cannot be measured directly, we found that cross-
correlation measurements provide a reliable tool to identify Rabi oscillations by
characteristic modifications of the cross-correlation envelope. By comparing cor-
responding experimental results with the predictions of our simulations, we have
confirmed the occurrence of Rabi-oscillations in the quantum-dot active medium
even at room temperature. This opens up the possibility for further quantum-
theoretical research on the basis of macroscopic quantum-dot optical devices.
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4.6 Conclusion

In this chapter, we have studied the performance of semiconductor quantum-dot
based optical amplifiers. A delay-differential equation model that incorporates
microscopically calculated nonlinear charge-carrier scattering rates was presented,
which can efficiently and accurately model the electric-field propagation through
the amplifier device. The light-matter interaction is modeled on the basis of
Maxwell-Bloch equations, taking the microscopic polarization of the quantum-dot
medium into account. This approach yields the possibility to correctly describe
the spectral properties of the spontaneous emission noise, as demonstrated by a
comparison with experimentally obtained amplified spontaneous emission spectra.

We have performed studies of the large-signal amplification capabilities of the
quantum-dot amplifier for optical signals that are resonant to the ground-state
or excited-state transitions. A characterization of the device in terms of ampli-
fied spontaneous emission noise spectra has been presented, which shows very
good agreement with experimental measurements on a corresponding quantum-
dot amplifier device. We have calculated its response to large-signal amplification
in terms of gain-saturation characteristics and quality factor for the amplification
of non-return-to-zero on-off-keyed pseudo-random bit sequences. Our results pre-
dict error-free (bit-error rate < 10−9) amplification of optical signals centered on
the ground-state for input power ranges of −25 dBm < P GS

in < 0 dBm. The signal
quality was found to be limited by amplified spontaneous emission noise at lower
input powers, and the onset of patterning effects due to the nonlinear amplification
at higher powers.

The response of the quantum-dot amplifier on the excited state was found to be
characterized by a higher gain but a stronger sensitivity to patterning effects, due
to the onset of the nonlinear amplification regime for much lower input powers than
on the ground state. This can be understood by the close coupling of the excited
state to the charge-carrier reservoir, which leads to a stronger perturbation of the
excited-state gain by variations of the total charge-carrier density. This results in
a lower output saturation power of the excited state, and error-free amplification
only for signals with input powers below −15 dBm at high pump currents.

We have subsequently investigated the possibility of a multi-state operation of
the quantum-dot semiconductor optical amplifier. Here, two signals centered on
the ground and excited state are being simultaneously amplified in a counter-
propagating setup. We have performed similar studies of the large-signal gain
and signal quality as before, now in dependence on the optical input powers on
the ground and excited state and for different pump currents. Our model predicts
a minor impact of an additional excited-state signal on the performance of the
ground-state. For an input power of 0 dBm on the excited state, we found a de-
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crease of the ground-state gain of only 5 dB compared to the solitary ground-state
signal amplification. The signal quality on the ground state was found to decrease
with increasing excited-state power, nevertheless staying well above a bit-error-rate
of 10−9 for the considered input powers on the excited state below 0 dBm.

As before, the excited-state response has been demonstrated to be more sensitive
to the presence of a signal on the ground-state. A strong decrease of both the large-
signal gain and the quality-factor can be observed at low pump currents. Increasing
the pump current can partly improve the excited-state performance, albeit under a
decrease of the ground-state gain. Taking these results into account, we predict that
the dual-state operation of the quantum-dot amplifier is possible for a intermediate
pump current of 700 mA for input powers below −7 dBm on the ground-state and
below −13 dBm on the excited-state, thus ensuring error-free amplification of the
input signals and providing reasonable gain.

Furthermore, we have investigated the possibility of coherent pulse-shaping appli-
cations in quantum-dot semiconductor optical amplifiers. We have thus performed
simulations of the propagation of ultra-short (≈ 200 fs) optical pulses along the
amplifier structure. Our model predicts the appearance of Rabi oscillations in the
optical pulse and the quantum-dot active medium, which leads to a characteris-
tic pulse shape modification of the output pulse. Depending on the input pulse
area, a varying number of Rabi cycles is excited which becomes visible also in the
integrated small-signal gain of the device.

Our theoretical results were applied in a comparison with experimental measure-
ments performed in a cross-correlation setup. In the experiment, ultra-short optical
pulses were amplified in a quantum-dot semiconductor optical amplifier. For differ-
ent pump currents the cross-correlation between the amplified probe pulse and the
reference input pulse was measured, showing clear pulse shape modifications for
sufficiently high input powers. By calculating the corresponding signals from the
theoretically obtained output pulses, we were able to directly compare the experi-
ments with our predictions. The model results were found to match the experimen-
tal measurements very well. We could thus confirm that the changes in pulse shape
are caused by Rabi oscillations, whereas an adiabatically eliminated microscopic
polarization, i.e., an incoherent interaction, cannot reproduce the observed dynam-
ics. Our results thus clearly show that macroscopic quantum-dot semiconductor
optical devices are promising candidates for the applications of quantum-coherent
effects.
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In this thesis, the dynamics of semiconductor quantum-dot optoelectronic devices
has been investigated. The complex charge-carrier dynamics due to the coupling of
localized electronic quantum-dot states and the surrounding continuum reservoir
states has been found to crucially influence the dynamic response of the quantum-
dot devices to external perturbations.

A microscopically based balance equation model for semiconductor quantum-
dot lasers has been derived, which explicitly takes into account the microscopic
Auger-scattering processes between the localized quantum-dot states and the sur-
rounding charge-carrier reservoir. The resulting Boltzmann-like scattering terms
ensure a realistic description of the quantum-dot charge-carrier dynamics and en-
ables the possibility to describe intra-band nonequilibrium situations. Energy
balance equations have been derived which allow the dynamic calculation of the
charge-carrier quasi-equilibrium temperature, taking into account carrier-heating
due to Auger-scattering. Together with a spectrally resolved inhomogeneously
broadened quantum-dot ensemble, as well as a consistent description of the charge-
carrier-induced gain and refractive index, the model is an adequate tool to describe
quantum-dot laser dynamics.

The quantum-dot laser model was used to investigate its relaxation oscillations,
which describe the intrinsic response of the laser device to perturbations from its
steady-state. In dependence of the charge-carrier scattering rates, three qualitative
different dynamic regimes have been found:

(i) For slow charge-carrier scattering, the reservoir states provide a nearly con-
stant carrier-influx into the quantum-dots, leading to pronounced relaxation
oscillations. This regime is called the “constant-reservoir regime”, which
is characterized by a strong nonequilibrium between the quantum-dot and
reservoir states.

(ii) For intermediate scattering rates, in the “overdamped regime”, the relaxation
oscillation damping is strongly increased, leading to overdamped oscillations.

(iii) For fast scattering rates, the coupling between quantum-dot and reservoir
states is strong enough to influence the reservoir carrier density. In this “syn-
chronized regime”, the reservoir carriers are thus closely coupled to the light-
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matter interaction in the quantum-dot states, leading to the reappearance of
pronounced relaxation oscillations.

The reappearance of pronounced relaxation oscillations for high scattering was
found to be caused by the detailed balance between charge-carrier capture and
escape rates in the quantum-dot states. Quantum-dot laser models that do not
take into account a dependence of the escape rates on the reservoir carrier density
can therefore not describe the “synchronized regime”. A minimal three-variable
rate-equation model has been derived that takes this important effect into account.
Using effective parameters, this minimal model has been shown to qualitatively
reproduce the dynamics of the full balance equation model. This opens up the
possibility of further analytical studies on quantum-dot laser dynamics using this
simple, but sufficiently complex quantum-dot laser model.

The dynamic regimes were found to crucially influence the response of the quan-
tum-dot laser to external modulations and perturbations. While in the synchro-
nized regime the modulation bandwidth is well described by the conventional ana-
lytical expression that take the relaxation oscillation damping and frequency into
account, the actual modulation response differs from this prediction in the over-
damped and constant-reservoir regimes.

The amplitude-phase coupling in semiconductor lasers, commonly described by
an α-factor, was found to fail in describing the quantum-dot laser dynamics. This
has been demonstrated for quantum-dot lasers under optical injection and time-
delayed optical feedback. While fixed points and their bifurcations are well de-
scribed by an α-factor, it cannot be used to describe time-varying solutions. This
is due to a frequency-dependent amplitude-phase coupling, leading to different
frequency-responses at different perturbation frequencies. An α-factor cannot de-
scribe this behavior and generally overestimates the extent of complex laser dy-
namics. This discrepancy was found to be especially pronounced when the laser
operates within the constant-reservoir regime, due to the strong nonequilibrium
between the resonant and off-resonant electronic states.

The investigations in this work have thus shown that many conventional frame-
works for the description of semiconductor laser dynamics fail when applied to
quantum-dot lasers. This discrepancy is due to the possible intra-band nonequi-
librium situations between the charge-carrier states. In order to correctly model
and describe the quantum-dot laser dynamics, an accurate and consistent descrip-
tion of the complex charge-carrier dynamics and charge-carrier induced gain and
refractive index is required. Three quantum-dot laser models on different levels of
sophistication which fulfill this requirement have been derived and presented, which
can be used in future works for an accurate representation of quantum-dot lasers.
Specifically, a simple three-variable rate-equation model has been developed that
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correctly predicts the three dynamic regimes in dependence of the scattering rate.
This model could be used in future studies for a deeper analytical understanding
of quantum-dot lasers. A ten-variable rate-equation model has been successfully
implemented in path-continuation routines for the investigation of the occurring
bifurcations in an optical injection setup. This model could be extended, e.g., to
optical feedback, and can be used in further bifurcation studies.

In the second part of this thesis, two types of experimental applications unique
to quantum-dot semiconductor amplifiers have been investigated. To this end, the
quantum-dot laser balance equation model was extended to a delay-differential-
equation model, that explicitly takes into account the electric field propagation
along the device.

It was found that quantum-dot semiconductor optical amplifiers enable ultra-
broad-band amplification of optical data signals by utilizing the localized ground
and excited-state transitions. The performance of a quantum-dot amplifier under
large-signal amplification has been analyzed in terms of the gain and quality factor
of an optical data signal, centered on either of the first two localized quantum-
dot states. While the excited-state generally shows poorer performance than the
ground-state, the results indicate that an effective application of the amplifier on
both wavelength ranges is possible. Furthermore, the dual-state operation under
simultaneous amplification of data signals on the two wavelengths in a counter-
propagating setup was investigated. The theoretical results predict a parameter
range for which an effective amplification of both data streams, in terms of gain
and signal quality, is possible. The unique electronic density of states and the
efficient charge-carrier refilling by the reservoir could thus be used to simplify op-
tical data communication networks by using a single quantum-dot semiconductor
optical amplifier for the simultaneous amplification of different wavelength bands.

Furthermore, it was shown that quantum-dot semiconductor optical amplifiers
exhibit coherent effects on the macroscopic scale. Experimental results on the
pulse-shaping of ultra-short optical pulses propagating through a quantum-dot
amplifier at room temperature have been compared with the theoretical predic-
tions. The observed pulse-shape modifications have been unambiguously explained
by the occurrence of Rabi oscillations in the quantum-dot active medium. Macro-
scopic quantum-dot devices have thus been shown to exhibit coherent pulse-shaping
effects, owing to the long dephasing time of the localized quantum-dot states com-
pared to conventional semiconductor active materials. The application of semicon-
ductor quantum-dot active media might therefore open up the possibility of novel
quantum-optical devices.
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A Appendix

A.1 Evaluation of RO Parameters from Numerical Time-
Series

In the numerical evaluation of the relaxation oscillation parameters the time-series
of the output power is fitted in order to extract the corresponding eigenvalues.
We chose an exponentially damped harmonic oscillation with an underlying slow
exponential decay in order to fit the numerical results:

Sfit(t) = S0

[
1 + a cos (ωROt − ϕ0) e−ΓROt + b e−γt

]
. (A.1)

The fitting parameters are the steady-state power S0, the RO amplitude a, the
RO frequency ωRO, the phase shift ϕ0, the RO damping ΓRO, the amplitude of
the additional exponential decay b, and the corresponding decay rate γ. This
additional decay term describes the (often slow) relaxation of the reservoir charge-
carriers, and is related to the third eigenvalue λ3 found in the minimal QD laser
model (see Eq. (3.35)).

A.2 Analytic Approximation of RO Parameters in the
Synchronized Regime

The zeroth-order approximations in the limit R → ∞ of the three-variable minimal
quantum-dot laser model (Eqs. (3.27)) are given by

Γs,0
RO =

1

2(1 + d)

(
1

T1
+

d

Tsp
+ 2dgS∗

)
, (A.2a)

ωs,0
RO =

√
4dgκS∗ − Γs,0

RO

2
, (A.2b)

(see Eqs. (3.42)). The eigenvalue is expanded as

λ = λ0 + 1
Rλ1 + O( 1

R2 ) . (A.3)
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We insert the above equations into the characteristic equation Eq. (3.30) and take
into account only the terms of order O(1) with respect to R. As an additional
simplification, we take the limit T1, Tsp → ∞, i.e., neglect effects due to the charge-
carrier lifetimes in the first-order correction, as the scattering rate R is much greater
than the respective decay rates. The reduced characteristic equation is given by

0 = 2gS∗(2κλ0 + λ0
2 + dλ1) + λ0(λ0

2 + 2(1 + d)λ1) + O( 1
R) (A.4)

This yields for the first order correction in 1
R :

λ1 =
λ0

(
λ0

2 + 2gS∗(2κ + λ0)
)

2(1 + d)λ0 + 2dgS∗
. (A.5)

This expression can be expanded in terms of real and imaginary part, giving the
first-order corrections in the relaxation oscillation damping and frequency, respec-
tively:

Γs,1
RO =

1

2(1 + d)T1Tsp

[
1 + 3(Γs,0

RO)2T1Tsp + 2gS(1 + 2kT1)Tsp

− 2Γs,0
RO(T1 + Tsp + 2gST1Tsp) − T1Tsp(ωs,0

RO)2
]

, (A.6a)

ωs,1
RO = − 1

2(1 + d)T1Tspωs,0
RO

[
(Γs,0

RO)3T1Tsp − (Γs,0
RO)2(T1 + Tsp + 2gST1Tsp)

+ (T1 + Tsp)(ωs,0
RO)2 + 2gSTsp

(
− 2k + T1(ωs,0

RO)2
)

+ Γs,0
RO

(
1 + 2gS(1 + 2kT1)Tsp − 3T1Tsp(ωs,0

RO)2
)]

. (A.6b)
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Table of Symbols

Table A.1.: List of commonly used symbols.

Symbol Meaning

−e0 Electron charge.

c0 Vacuum speed of light.

ε0, εbg Vacuum and background dielectric constants.

NQD QD sheet density per QW layer.

aL Number of QW layers.

ρ
j

b,m QD occupation of the jth subgroup in the mth state (b ∈ {e, h}).

pj
m QD microscopic polarization of the jth subgroup in the mth state.

T m
2 Dephasing time of the microscopic polarization.

ωj
m QD subgroup transition frequencies.

µm Optical transition dipole moment in the mth QD state.

gj
m QD gain coefficients under adiabatically eliminated polarization.

νm Degree of degeneracy of the mth QD state, excluding spin.

f j Probability mass function of the jth QD subgroup.

Wm Spontaneous recombination rate in the mth QD state.

β Spontaneous emission ratio.

Γ Geometric confinement factor.

ω Frequency of the reference frame, ≈ electric field carrier-frequency.

wb QW charge-carrier density.

AS Linear recombination rate in the carrier-reservoir.

BS Bimolecular recombination rate in the carrier-reservoir.

Aact In-plane active-region area.

ΔEb Energy separation between QD GS and QW band edge.

Δb Energy separation between QD GS and QD ES.

ΔEinh QD inhomogeneous broadening width (FWHM).

S
cap,in

b,m , S
rel,in

b QD direct-capture and relaxation in-scattering rates.

Δνinj Frequency detuning of the optically injected master signal from the slave laser.

K Injection strength, relative to the optical loss rate κ.

τ Optical feedback time delay.

C Feedback phase shift.

Kfb Feedback strength, relative to the optical loss rate κ.

BER Optical data signal bit-error-rate.

Q Optical data signal quality factor.

Θ Optical input pulse area.

199



TABLE OF SYMBOLS

Table A.2.: List of commonly used acronyms.

Acronym Meaning

cw constant-wave
QD quantum-dot
QW quantum-well

DWELL dot-in-a-well
RO relaxation oscillation

SNIPER saddle-node-infinite-period (bifurcation)
QDSOA Quantum-dot semiconductor optical amplifier
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