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Nonlinear Approximation Rates and Besov Regularity

for Elliptic PDEs on Polyhedral Domains.

Markus Hansen ∗

Abstract

We investigate the Besov regularity for solutions of elliptic PDEs. This is based on regularity
results in Babuska-Kondratiev spaces. Following the argument of Dahlke and DeVore, we first
prove an embedding of these spaces into the scale B

r
τ,τ (D) of Besov spaces with 1

τ
= r

d
+ 1

p
.

This scale is known to be closely related to n-term approximation w.r.to wavelet systems,
and also adaptive Finite element approximation. Ultimately this yields the rate n

−r/d for
u ∈ Km

p,a(D) ∩H
s
p(D) for r < r

∗ ≤ m.

In order to improve this rate to n
−m/d we leave the scale B

r
τ,τ (D) and instead consider the

spacesBm
τ,∞(D). We determine conditions under which the spaceKm

p,a(D)∩Hs
p(D) is embedded

into some space B
m
τ,∞(D) for some m

d
+ 1

p
>

1

τ
≥ 1

p
, which in turn indeed yields the desired

n-term rate. As an intermediate step we also prove an extension theorem for Kondratiev
spaces.

Keywords: Regularity for elliptic PDEs, Kondratiev spaces, Besov regularity, wavelet decompo-
sition, n-term approximation, adaptive Finite element approximation.

AMS Subject Classification (2010): Primary 35B65; Secondary: 41A46, 46E35, 65N30.

1 Introduction

Ever since the emergence of (adaptive) wavelet algorithms for the numerical computation of solu-
tions to (elliptic) partial differential equations there was also the interest in corresponding rates for
n-term approximation rates, since these may be seen as the benchmark rates the optimal algorithm
(which at each step would calculate an optimal n-term approximation) would converge with.
Later on, this question was seen to be closely related to the membership in a certain scale of Besov
spaces. More precisely a famous result by DeVore, Jawerth and Popov [10] characterizes certain
Approximation classes for approximation with respect to Lp(D)-norms as Besov spaces Brτ,τ (D)

with 1
τ = r

d + 1
p , where r is the rate of the best n-term approximation.

In another famous article Dahlke and DeVore [3] later used this result to determine n-term approx-
imation rates for the solution of Poisson’s equation on general Lipschitz domains. This was done
by proving that the solution of −∆u = f belongs to Besov spaces Brτ,τ (D) for parameters r < r∗,

where r∗ depends on the Lipschitz-character of the bounded domain D ⊂ R
d, the dimension d

∗Markus Hansen, TU München, Boltzmannstrasse 3, 85747 Garching, Gemany; e-mail:
markus.hansen@sam.math.ethz.ch, Phone: +49 89 289 17488, Fax: +49 89 289 18435. Research supported in
part by the European Research Council (ERC) under the FP7 program AdG247277 and by the Eidgenössische
Technische Hochschule (ETH) Zürich under the ETH-Fellowship Grant FEL-33 11-1.
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and the regularity of the right-hand side f . In subsequent years this result was extended to more
general elliptic operators [4], and for special domains more precise values for r∗ were determined
[5], [6], [9].
Recently, Gaspoz and Morin [11] obtained a counterpart of the result of DeVore, Jawerth and Popov
for adaptive Finite element approximation. They proved a direct estimate for approximation of
functions from Besov classes Bsτ,τ (D) with 1

τ <
s
d + 1

p , and supplemented this by corresponding
Inverse Theorems. While not as sharp a characterization as for wavelet approximation, in this
way a link between Besov regularity and Approximation classes for this type of Finite element
approximation has been established.
The purpose of this paper now is two-fold. On the one hand, we shall use the ideas of these
precursors to re-prove the result for polyhedral domains in two and three space dimensions, this
time based on regularity in Babuska-Kondratiev spaces. Here we manage to give a unified treatment
to the different cases previously treated separately (polygonal domains in 2D, polyhedral and
smooth cones in 3D, edge singularities in 3D). The outcome corresponds to the previous results,
which roughly can be summarized as: If the function u admits m weak derivatives with controlled
blow-up towards the boundary, then u ∈ Brτ,τ (D) for every r < m. For the n-term approximation
this implies that every such function can be approximated at rate r

d <
m
d .

The second part of the paper then stems from investigating the limiting situation r = m. So
far, all the previous proofs (and our version as well) fail to cover this case. However, by slightly
shifting the point of view, we can close this gap: Instead, inspired by more recent results on n-term
approximation for Besov spaces [8], [12], we turn our attention to Besov spaces guaranteeing the
rate n−m/d. Thus in leaving the “adaptivity scale” Brτ,τ (D), we prove that u belongs to Besov
spaces Bmτ,∞(D) for certain parameters 0 < τ < τ0, and we determine a condition under which we

have 1
τ0
< m

d + 1
p (which in turn implies the mentioned rate n−m/d for approximation in Lp(D)).

2 Basic definitions and State of the art

In this section we will fix some notations corresponding to the used wavelet system, recall the
definition of Besov and Babuska-Kondratiev spaces, and formulate the regularity and n-term ap-
proximation results used later on.

2.1 Wavelets

We are not interested in utmost generality pertaining to the used wavelet system. Instead, for sim-
plicity we will stick to Daubechies’ Wavelets, the generalization to compactly supported biorthog-
onal wavelets constituting Riesz-bases being immediate.
Let φ be a univariate scaling function and η the associated wavelet corresponding to Daubechies’
construction, where the smoothness of φ and η and the number of vanishing moments for η are
assumed to be sufficiently large. Let E denote the nontrivial vertices of [0, 1]d, and put

ψe(x1, . . . , xd) =
d∏

j=1

ψej (xj) , e ∈ E ,

where ψ0 = φ and ψ1 = η. Then the set

Ψ′ = {ψe : e ∈ E}
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generates via shifts and dyadic dilates an orthonormal basis of L2(D). More precisely, denoting
by D = {I ⊂ R

d : I = 2−j([0, 1]d + k), j ∈ Z, k ∈ Z
d} the set of all dyadic cubes in R

d, then

{
ψI : I ∈ D, ψ ∈ Ψ′

}
=
{
ψI = 2jd/2ψ(2j · −k) : j ∈ Z , k ∈ Z

d , ψ ∈ Ψ′
}

forms an orthonormal basis in L2(R
d). Denote by Q(I) some dyadic cube (of minimal size) such

that suppψI ⊂ Q(I) for every ψ ∈ Ψ′. Then we clearly have Q(I) = 2−jk+2−jQ for some dyadic
cube Q.
As usual D+ denotes the dyadic cubes with measure at most 1, and we put Λ′ = D+ × Ψ′.
Additionally, we shall need the notation Dj = {I ∈ D : |I| = 2−jd}. Then we can write every
function f ∈ L2(R

d) as

f = P0f +
∑

(I,ψ)∈Λ′

〈f, ψI〉ψI .

Therein P0f denotes the orthogonal projector onto the closed subspace S0, which is the closure in
L2(R

d) of the span of the function Φ(x) = φ(x1) · · ·φ(xd) and its integer shifts Φ(· − k), k ∈ Z
d.

Later on it will be convenient to include Φ into the set of generators Ψ′ together with the notation
ΦI := 0 for |I| < 1, and ΦI = Φ(· − k) for I = k + [0, 1]d. Then we can simply write

f =
∑

(I,ψ)∈Λ

〈f, ψI〉ψI , Λ = D+ ×Ψ , Ψ = Ψ′ ∪ {Φ} .

Remark 1. If not explicitly stated otherwise convergence of wavelet expansions is always un-
derstood in S′(Rd), the space of tempered distributions, or in some Lp(R

d), 1 < p < ∞ (since all
relevant spaces will be embedded into Lp(R

d)).

2.2 Besov spaces

Besov space can be defined in a number of ways. Here we will need only their characterization in
terms of wavelet bases as presented e.g. in [17]. For more detailed information on Besov spaces
and related function spaces as well as equivalent definitions we refer to the literature, e.g. [24] and
the references given there.
Let 0 < p, q < ∞ and s > max(0, d( 1p − 1)). Then a function v ∈ Lp(R

d) belongs to the Besov

space Bsp,q(R
d) if, and only if

‖v|Bsp,q(R
d)‖ := ‖P0v|Lp(R

d)‖+

(
∞∑

j=0

2j(s+d(
1
2−

1
p
))q

( ∑

(I,ψ)∈Dj×Ψ

|〈v, ψI〉|
p

)q/p)1/q

<∞ .

For parameters q = ∞ we shall use the usual modification (replacing the outer sum by a supremum),
i.e.

‖v|Bsp,∞(Rd)‖ = ‖P0v|Lp(R
d)‖+ sup

j≥0
2j(s+d(

1
2−

1
p
))

( ∑

(I,ψ)∈Dj×Ψ

|〈v, ψI〉|
p

)1/p

.

Additionally, we will use spaces Bs,σp,q (R
d), characterized by the quasi-norm

‖v|Bs,σp,q (R
d)‖ = ‖P0v|Lp(R

d)‖+

(
∞∑

j=0

2j(r+
d
2−

d
p
)q(j + 1)σq

( ∑

(I,ψ)∈Dj×Ψ

|〈v, ψI〉|
p

) q
p

) 1
q

.
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Therein the additional term (j + 1)σ is of logarithmic order, hence the spaces are usually referred
to as Besov spaces of logarithmic smoothness. In turn, these spaces are special cases of so-called
function spaces of generalized smoothness; we refer e.g. to [18] or the survey [14].
Apart from these spaces on R

d, for our main interest in boundary value problems for elliptic PDEs
we also need to consider function spaces on domains. The easiest way to introduce these is via
restriction, i.e.

Bsp,q(D) :=
{
f ∈ D′(D) : ∃ g ∈ Bsp,q(R

d) , g
∣∣
D

= f
}
, ‖f |Bsp,q(D)‖ = inf

g|D=f
‖g|Bsp,q(R

d)‖ .

Alternative (different or equivalent) versions of this definition can be found, depending on possible
additional properties for the distributions g (most often referring to their support). We refer to
the monograph [25] for details and references.
The only aspect we need of these spaces is the existence of continuous linear extension operators, i.e.
mappings E : Bsp,q(D) −→ Bsp,q(R

d), possibly depending on the parameters s, p, q and, of course,
on the domain D. In this respect, Rychkov [21] gave a final answer for Lipschitz domains: There
exists a universal extension operator, i.e. an operator E : Bsp,q(D) −→ Bsp,q(R

d) simultaneously for
all parameter triples (s, p, q). In particular, due to Bs2,2(D) = Hs(D) this also covers extensions
of Sobolev spaces. In the sequel E will always denote such an extension operator (note that
particularly for the Hs-scale there are several more such extension operators, we only mention the
one due to Stein [22, Chap. 3]).

2.3 Babuska-Kondratiev spaces

As mentioned in the introduction our interest stems from elliptic boundary value problems such
as (2.1) below. It is nowadays classical knowledge that the regularity of the solution depends not
only on the one of the coefficient a and right-hand side f , but also on the regularity/roughness of
the boundary of the considered domain. While for smooth coefficients A and smooth boundary
we have u ∈ Hs+2(D) for f ∈ Hs(D), it is well-known that this becomes false for more general
domains. In particular, if we only assume D to be a Lipschitz domain, then it was shown in [13]
that in general we only have u ∈ Hs for all s < 3/2 for the solution of the Poisson equation, even
for smooth right-hand side f . This behaviour is caused by singularities near the boundary.
To obtain similar shift theorems as for smooth domains, a possible approach is to adapt the function
spaces. To compensate possible singularities one includes appropriate weights. For polyhedral
domains, this idea has lead to the following definition of the Babuska-Kondratiev spaces Kmp,a(D):
If the function u admits m weak derivatives, we consider the norm

‖u|Kmp,a(D)‖p =
∑

|α|≤m

∫

D

|ρ(x)|α|−a∂αu(x)|p dx ,

where a ∈ R is an additional parameter, and the weight function ρ : D −→ [0, 1] is the smooth
distance to the singular set of D. This means ρ is a smooth function, and in the vicinity of the
singular set it is equal to the distance to that set. In 2D this singular set consists exactly of the
vertices of the polygon, while in 3D it consists of the vertices and edges of the polyhedra. In case
p = 2 we simply write Kma (D).
Within this scale of function spaces, a regularity result for boundary value problems for elliptic
PDEs can be formulated as follows, see [2] and the references given there:
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Proposition 1. Let D be some bounded polyhedral domain without cracks in R
d, d = 2, 3.

Consider the problem

−∇
(
A(x) · ∇u(x)

)
= f in D , u|∂D = 0 , (2.1)

where A = (ai,j)
d
i,j=1 is symmetric and

ai,j ∈ Wm
∞ =

{
v : D −→ C : ρ|α|∂αv ∈ L∞(D) , |α| ≤ m

}
, 1 ≤ i, j ≤ d .

Let the bilinear form

B(v, w) =

∫

D

∑

i,j

ai,j(x)∂iv(x)∂jw(x)dx

satisfy
|B(v, w)| ≤ R‖v|H1(D)‖ · ‖w|H1(D)‖ and r‖v|H1(D)‖2 ≤ B(v, v)

for some constants 0 < r ≤ R < ∞. Then there exists some a > 0 such that for any m ∈ N0,
any |a| < a and any f ∈ Km−1

a−1 (D) the problem (2.1) admits a uniquely determined solution

u ∈ Km+1
a+1 (D), and it holds

‖u|Km+1
a+1 (D)‖ ≤ C ‖f |Km−1

a−1 (D)‖

for some constant C > 0 independent of f .

We restrict ourselves in this presentation to this simplified situation. In the literature there are
further results of this type, either treating different boundary conditions, or using slightly differ-
ent scales of function spaces. We particularly refer to [15], [16], where they showed that under
appropriate conditions on A the result in Proposition 1 holds for all a except for countably many
values.

Remark 2. We note that in the sequel we will always have the restriction a ≥ 0. This is a natural
one, since for a < 0 the space Kmp,a(D) contains functions not belonging to Lp(D), for example
functions which behave towards a vertex singularity like ρα for some −d+ a < α < −d. But this
kind of function is no longer locally integrable, and thus cannot be identified with a (tempered)
distribution, whereas Besov spaces are defined as spaces of (tempered) distributions.

We finally shall add a comment on the possible domains D: While before and also in the sequel
we will only refer to polyhedral domains, the analysis carries over without change to Lipschitz
domains with polyhedral structure. Domains with polyhedral structure were seen to be a natural
relaxation of polyhedra, for example replacing the flat faces of polyhedra by smooth surfaces. For
precise definitions we refer to [7], [20]. As we shall see in the proofs, the only fact needed about
the boundary ∂D are certain combinatorial aspects (counting the number of relevant wavelet
coefficients), and these remain unchanged so long as the boundary remains Lipschitz; moreover,
also Proposition 1 holds for this more general setting.

2.4 n-term approximation

The (error of the) best n-term approximation is defined as

σn
(
u;Lp(D)

)
= inf

Γ⊂Λ:#Γ≤n
inf
cγ

∥∥∥∥u−
∑

γ=(I,ψ)∈Γ

cγψI

∣∣∣∣Lp(D)

∥∥∥∥ ,

5



i.e. as the name suggests we consider the best approximation by linear combinations of the basis
functions consisting of at most n terms. As shown in [10] the decay of this quantity is closely
related to Besov spaces. To state their main result, we introduce Approximation classes Aα

q (X),
α > 0, 0 < q ≤ ∞ by requiring

‖u|Aα
q (Lp(D)) =

( ∞∑

n=0

(
(n+ 1)ασn

(
u;Lp(D)

))τ 1

n+ 1

)1/q

<∞ , 0 < q <∞ (2.2)

as well as
‖u|Aα

∞(Lp(D))‖ = sup
n≥0

nασn
(
u;Lp(D)

)
<∞ .

Then the result of DeVore, Jawerth and Popov may be formulated as

As/d
τ (Lp(R

d)) = Bsτ,τ (R
d) ,

1

τ
=
s

d
+

1

p
. (2.3)

However, when discussing the optimal convergence rate for adaptive algorithms this result is slightly
stronger than required. We are rather interested in conditions on u that simply guarantee a certain

decay rate, i.e. we are interested in the larger spaces A
s/d
∞ (Lp(R

d)).
This implies that the “adaptivity scale” Bsτ,τ (R

d) considered so far might not be the optimal choice.
Moreover, this result neglects the additional knowledge that the functions of interest belong to
function spaces related to the bounded domain D. In [8], [12] the rates for approximation of
functions from the full scale of Besov spaces Bsτ,q(D) and Bsτ,q(R

d) were calculated. For our

purposes, we only need the following result from [8, Theorem 7]: If s > d( 1τ − 1
p ) for 0 < τ ≤ p,

1 < p <∞, then
σn
(
u;Lp(D)

)
. n−s/d‖u|Bsτ,q(D)‖ , u ∈ Bsτ,q(D) , (2.4)

independent of the microscopic parameter q. A similar estimate is true for approximation in the
energy norm, i.e. in the norm of the space H1(D), and more generally in the norm of W 1

p (D),

σn
(
u;W 1

p (D)
)
. n−(s−1)/d‖u|Bsτ,q(D)‖ , u ∈ Bsτ,q(D) . (2.5)

2.5 Adaptive Finite element approximation

In a recent article Gaspoz and Morin [11] established a connection between Besov classes and
certain adaptive Finite element methods strikingly similar to the one above for n-term wavelet
approximation by DeVore, Jawerth and Popov. We shall briefly describe these results.
The starting point is an initial triangulation T0 of some polyhedral domain D, and T denotes the
family of all conforming, shape-regular partitions of D obtained from T0 by refinement using bisec-
tion rules (these in turn correspond to the newest-vertex bisection in two dimensions). Moreover,
VT denotes the finite element space of continuous piecewise polynomials of degree at most r, i.e.

VT =
{
v ∈ C(D) : v|T ∈ Pr for all T ∈ T

}
.

Then the counterpart to the quantity σn(u) is given by

σFEN
(
u;Lp(D)

)
= min

T ∈T:
#T −#T0≤N

inf
v∈VT

‖u− v‖Lp(D) , 0 < p <∞ .
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Then [11, Theorem 2.2] gives a direct estimate,

σFEN
(
u;Lp(D)

)
≤ C N−s/d‖f |B̃sτ,τ (D)‖ , (2.6)

where 0 < p < ∞, 0 < s ≤ r + 1
τ∗
, τ∗ = min(1, τ), 1

τ < s
d + 1

p . This can be formulated

as an embedding B̃sτ,τ (D) →֒ A
s/d
∞,FE(Lp(D)). Therein the Approximation class A

s/d
∞,FE(Lp(D)) is

defined as in (2.2) with σn being replaced by σFEn . Moreover, the Besov classes B̃αp,p are introduced
as subspaces of Lp(D) via finite differences, hence they differ from the previously defined spaces
Bαp,p for p ≤ 1 and α ≤ d( 1p − 1). We note that (2.6) is the immediate counterpart of (2.4).

Furthermore, there is also an inverse theorem, [11, Theorem 2.5], which can be stated as

A
s/d
τ,FE

(
Lp(D)

)
→֒ B̃sτ,τ (D) ,

1

τ
=
s

d
+

1

p
.

Corresponding results are available when the error is measured in some space B̃αp,p(D) instead of

Lp(D), in particular again for H1(D) = B̃1
2,2(D).

3 Regularity in the adaptivity scale B
r
τ,τ(D)

As previously mentioned, we now adapt the arguments first given in [3]. The result itself is
decoupled from the regularity results for elliptic PDEs, thus we formulate it as an embedding
theorem.

Theorem 1. Let D be some bounded polyhedral domain in R
d. Then we have a continuous

embedding

Kmp,a(D) ∩Bsp,p(D) →֒ Brτ,τ (D) ,
1

τ
=
r

d
+

1

p
, 1 < p <∞ ,

for all 0 ≤ r < min(m, sd
d−1 ) and a >

δ
dr. Therein δ denotes the dimension of the singular set (i.e.

δ = 0 if there are only vertex singularities, δ = 1 if there are edge and vertex singularities etc.).

Proof . Clearly, for r = 0 the result is trivial, thus we always assume r > 0 and hence 0 < τ < p.

Step 1: To start with we note that since a polyhedral domain D in particular is Lipschitz we can
extend every u ∈ Hs

p(D) to some function ũ = Eu ∈ Hs
p(R

d). Consider first the term P0ũ. This
can be represented as

P0ũ =
∑

k∈Zd

〈ũ,Φ(· − k)〉Φ(· − k) .

Since Φ shares the same smoothness and support properties, the coefficients 〈ũ,Φ(· − k)〉 can
be treated exactly like any of the coefficients 〈ũ, ψI〉 for |I| = 1 in Step 2 (note that below the
vanishing moments of ψe only become relevant for |I| < 1). Thus the claim can be formulated as

( ∑

(I,ψ)∈Λ

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ

)1/τ

≤ c max
{
‖u|Kmp,a(D)‖ , ‖u|Bsp,p(D)‖

}
.

Step 2: Now put
ρI = inf

x∈Q(I)
ρ(x) ,

7



and consider first the situation ρI > 0. We recall the following classical approximation result: For
every I there exists a polynomial PI of degree less than m, such that

‖ũ− PI |Lp(Q(I))‖ ≤ c0|Q(I)|m/d|ũ|Wm
p (Q(I)) ≤ c1|I|

m/d|ũ|Wm
p (Q(I))

for some constant c1 independent of I and u. Now recall that ψI satisfies moment conditions of
order up to m, i.e. it is orthogonal to any polynomial of degree up to m−1. Thus we can estimate,
using Hölder’s inequality,

|〈ũ, ψI〉| = |〈ũ− PI , ψI〉| ≤ ‖ũ− PI |Lp(Q(I))‖ · ‖ψI |Lp′(Q(I))‖ ≤ c1|I|
m/d|ũ|Wm

p (Q(I))|I|
1
2−

1
p

≤ c1|I|
m
d
+ 1

2−
1
p ρ−m+a
I

( ∑

|α|=m

∫

Q(I)

|ρ(x)m−a∂αũ(x)|pdx

)1/p

=: c1|I|
m
d
+ 1

2−
1
p ρ−m+a
I µI .

Now we shall split the index set Λ: For j ≥ 0 let Λj ⊂ Λ be the set of all pairs (I, ψ) with
|I| = 2−jd, and for k ≥ 0 let Λj,k ⊂ Λj contain those (I, ψ) such that

k2−j ≤ ρI < (k + 1)2−j .

For k > 0 we additionally require Q(I) ⊂ D. Furthermore, we put Λ0
j = ∪k≥1Λj,k. Then we find

using Hölder’s inequality

∑

(I,ψ)∈Λ0
j

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c1

∑

(I,ψ)∈Λ0
j

(
|I|m/dρ−m+a

I µI
)τ

≤ c1

( ∑

(I,ψ)∈Λ0
j

(
|I|m

τ
d ρ

(a−m)τ
I

) p
p−τ

) p−τ
p
( ∑

(I,ψ)∈Λ0
j

µpI

) τ
p

.

Since there is a controlled overlap between the cubes Q(I) (i.e. every x ∈ Ω is contained in a finite
number of cubes Q(I), and this number is bounded by some constant cp2 independent of x), we can
estimate the second factor

( ∑

(I,ψ)∈Λ0
j

µpI

) 1
p

=

( ∑

(I,ψ)∈Λ0
j

∑

|α|=m

∫

Q(I)

|ρ(x)m−a∂αũ(x)|pdx

)1/p

≤ c2

( ∑

|α|=m

∫

D

|ρ(x)m−a∂αũ(x)|pdx

)1/p

≤ c2‖u|K
m
p,a(D)‖ .

For the first factor we note that by choice of ρ we always have ρI ≤ 1, hence the index k is at
most 2j for the sets Λj,k to be non-empty, and the number of elements in each of these sets can
be bounded by c3k

d−1−δ2jδ (where c3 depends only on D, particularly on the number and precise
shape of the singular vertices, edges etc.; this estimate further uses k ≤ 2j). Then we find

( ∑

(I,ψ)∈Λ0
j

(
|I|m

τ
d ρ

(a−m)τ
I

) p
p−τ

) p−τ
p

≤

( ∑

(I,ψ)∈Λ0
j

(
|I|m

τ
d k(a−m)τ2−j(a−m)τ

) p
p−τ

) p−τ
p

≤

( 2j∑

k=1

∑

(I,ψ)∈Λj,k

(
2−jaτk(a−m)τ

) p
p−τ

) p−τ
p

8



≤

(
c32

−ja pτ
p−τ

2j∑

k=1

k(a−m) pτ
p−τ kd−1−δ2jδ

) p−τ
p

.

For this last sum we have to distinguish three cases, according to the value of the exponent (greater,
equal or less than −1). We note that

(a−m)
pτ

p− τ
+ d− 1− δ =

pτ

p− τ

(
a−m+ (d− 1− δ)

(1
τ
−

1

p

))
=

pτ

p− τ

(
a−m+ r

d− 1− δ

d

)
> −1

⇐⇒ a−m+ r
d− 1− δ

d
> −

1

τ
+

1

p
= −

r

d
⇐⇒ a−m+ r

d− δ

d
> 0 ,

hence we find

( ∑

(I,ψ)∈Λ0
j

(
|I|m

τ
d ρ

(a−m)τ
I

) p
p−τ

) p−τ
p

≤ c42
−jaτ2jδ

p−τ
p





2j(a−m)τ+j(d−δ) p−τ
p , a−m+ r d−δd > 0 ,

(j + 1)
p−τ
p , a−m+ r d−δd = 0 ,

1 , a−m+ r d−δd < 0 .

Step 3: We now put Λ0 =
⋃
j≥0 Λ

0
j . Summing the first line of the last estimate over all j we

obtain
∑

(I,ψ)∈Λ0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c4

∑

j≥0

2−jmτ2jd
p−τ
p ‖u|Kmp,a(D)‖τ ≤ c5‖u|K

m
p,a(D)‖τ <∞

provided the geometric series converges, thus in the case a−m+ r d−δd > 0 we find the condition

mτ > d
p− τ

p
⇐⇒ m > d

p− τ

pτ
= d
(1
τ
−

1

p

)
= d ·

r

d
= r .

Similarly, in case a−m+ r d−δd = 0 the resulting estimate is

∑

(I,ψ)∈Λ0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c4

∑

j≥0

2−jaτ2jδ
p−τ
p (j + 1)

p−τ
p ‖u|Kmp,a(D)‖τ ≤ c′5‖u|K

m
p,a(D)‖τ <∞ ,

where the series converges if, and only if

aτ > δ
p− τ

p
⇐⇒ a > δ

(1
τ
−

1

p

)
⇐⇒ a >

δ

d
r ⇐⇒ m > r

d− δ

d
+
δ

d
r = r ,

which is exactly the same condition as before. Finally, in case a−m+ r d−δd < 0 we find

∑

(I,ψ)∈Λ0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c4

∑

j≥0

2−jaτ2jδ
p−τ
p ‖u|Kmp,a(D)‖τ ≤ c′′5‖u|K

m
p,a(D)‖τ <∞ ,

where now we obtain the condition

aτ > δ
p− τ

p
⇐⇒ a > δ

p− τ

pτ
= δ
(1
τ
−

1

p

)
= δ ·

r

d
.

Step 4: Next, we need to consider the sets Λj,0. Here the assumption ũ ∈ Bsp,p(R
d) comes into

play once more. We note that #Λj,0 ≤ c72
jδ, thus we can estimate using Hölder’s inequality

∑

(I,ψ)∈Λj,0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c

p−τ
p

7 2jδ
p−τ
p 2−jd(

1
p
− 1

2 )τ

( ∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
p

) τ
p

9



= c
p−τ
p

7 2jδ
p−τ
p 2−jsτ

( ∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p
)p|〈ũ, ψI〉|

p

) τ
p

.

Now summing over j and once more using Hölder’s inequality gives

∑

j≥0

∑

(I,ψ)∈Λj,0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c

p−τ
p

7

∑

j≥0

2−jsτ2jδ
p−τ
p

( ∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p
)p|〈ũ, ψI〉|

p

) τ
p

≤ c
p−τ
p

7

(∑

j≥0

2−j
spτ
p−τ 2jδ

) p−τ
p
(∑

j≥0

∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p
)p|〈ũ, ψI〉|

p

) τ
p

≤ c8‖ũ|B
s
p,p(R

d)‖τ . ‖u|Bsp,p(D)‖τ ,

under the condition

δ <
spτ

p− τ
⇐⇒

s

δ
>

1

τ
−

1

p
⇐⇒ r <

sd

δ
.

Step 5: Finally, we need to consider those ψI whose support intersects ∂D. Then we can estimate
similar to Step 4, with δ replaced by d− 1. This results in the condition

∑

(I,ψ)∈Λ:suppψI∩∂D 6=∅

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ ≤ c9‖ũ|B

s
p,p(R

d)‖τ . ‖u|Bsp,p(D)‖τ if r <
sd

d− 1
.

Summarily we have proved

‖u|Brτ,τ (D)‖ ≤ ‖ũ|Brτ,τ (R
d)‖ . ‖u|Bsp,p(D)‖+ ‖u|Kmp,a(D)‖ ,

with constants independent of u.

Remark 3. The conditions m > r and a > δ
dr and the cases considered in Steps 2 and 3

(depending on the sign of a−m+r d−δd ) are not completely independent, though it seems not clear
at first glance whether there is potential for improvement.
However, we find that these steps of the argument indeed exclude parameters r ≥ m or a ≤ δ

dr. In

detail: Assuming r ≥ m we either have a−m+r d−δd ≥ 0 which as before leads to the contradicting

condition m > r, or we have a−m+ r d−δd < 0, which immediately implies

0 > a−m+ r
d− δ

d
≥ a− r + r

d− δ

d
= a−

δ

d
r ,

thus contradicting the condition a > δ
dr obtained in Step 3. Thus r < m indeed is necessary for

our argument to work.
In a similar way, assuming a ≤ δ

dr, again we either have a−m+ r d−δd ≥ 0, which implies

δ

d
r ≥ a ≥ m− r

d− δ

d
=⇒ 0 ≥ m− r ,

and thus contradicts the condition obtained in Step 3, or a−m+ r d−δd < 0 which obviously once

more gives a contradiction to Step 3. Hence we conclude a > δ
dr to be necessary for our argument.

Whether these restrictions are due to the chosen argument, or the result becomes false otherwise,
is not clear.

10



Remark 4. The result remains true if D is an unbounded domain, but u is a priori known to
have compact support. In particular, this refers to D being an infinite cone or some dihedral angle
D = Dα = {x ∈ R

3 : 0 < ϑ < α}, (ρ, ϑ, z) being the cylindrical coordinates in R
3. Since Besov

spaces are compatible with localization arguments (i.e. decomposing a domain by using partitions
of unity, a function belongs to a Besov space on the original domain if, and only if, every piece
belongs to Besov spaces corresponding to the respective subdomains), the respective localization
arguments for polyhedral domains carry over to this kind of consideration for Besov regularity.

Remark 5. The above results correspond well to the ones obtained by Dahlke and Dahlke/Sickel:
In case d = 2 every solution of −∆u = f with f ∈ Hs(D) can be decomposed into a regular part
uR ∈ Hs+2(D) and a singular part uS with lower Sobolev regularity, but with a special structure
(a finite linear combination of special singularity functions which are known explicitly depending
on the respective interior angles). In 3D such a decomposition exists only in special cases of the
domain D. Dahlke investigated the Besov regularity of the singular part, which in general is
significantly higher than its Sobolev regularity, and also much higher than the regularity of the
regular part. For the last observation we note that for a bounded Lipschitz domain D we have
Hs(D) = Bs2,2(D) →֒ Brτ,τ (D) for every r < s, and the result becomes false for r = s (where as

before 1
τ = r

d + 1
2 ). Hence, though the singular part might have a higher regularity, the Besov

regularity of u = uR + uS can in general not exceed s+ 2. Since f ∈ Km−1
a−1 implies u ∈ Km+1

a+1 and
Kmm(D) →֒ Hm(D), choosing a = m (whenever this choice is admissible for the regularity result in
Kondratiev spaces) shows that both our and Dahlke’s results yield the same Besov regularity for
u.
Moreover, the estimates of Steps 3 and 4 essentially reproduce the regularity estimates for the
singular functions: Away from the singularities, these functions are smooth (arbitrary high Sobolev
regularity), and near the vertex/edge we have a much greater Besov-regularity (Dahlke’s 2D-result
corresponds to the observation that for only vertex singularities (i.e. δ = 0) in Step 4 we may
choose r to be arbitrarily large).
A similar observation is true for the result of Dahlke/Sickel, who investigated polyhedral cones in
d = 3: Here we obtain exactly the same conditions on the parameters since the spaces V lp,β used

therein essentially coincide with the spaces Klp,l−β .

4 Regularity result for spaces B
m
τ,∞(D)

We shall begin this section with reformulations of some estimates in the proof of Theorem 1, as
we actually showed a little more than claimed.
Using the notations of that proof, we define an operator Pint on Kmp,a(D) by defining

Pintu =
∑

(I,ψ)∈Λ0

〈ũ, ψI〉ψI . (4.1)

Then Step 3 can be reformulated as

Pint : K
m
p,a(D) −→ Brτ,τ (D) , ‖Pintu|B

r
τ,τ (D)‖ . ‖u|Kmp,a(D)‖ . (4.2)

With the same arguments, only replacing the summation over j by a supremum, we also find

Pint : K
m
p,a(D) −→ Bmτ,∞(D) , ‖Pintu|B

m
τ,∞(D)‖ . ‖u|Kmp,a(D)‖ . (4.3)

11



(observe that the condition a−m+ r d−δd > 0 then simply becomes a−m δ
d > 0, which exactly is

the assumption on a in case m = r). This observation motivated to have a closer look at the case
r = m and spaces Bmτ,∞(D) (for general τ , i.e. we will not require the relation 1

τ = m
d + 1

p ).
In a similar way, we can reformulate Steps 4 and 5: Defining

Pbdu =
∑

(I,ψ)∈Λ\Λ0

〈ũ, ψI〉ψI , (4.4)

we so far proved

Pbd : Bsp,p(D) −→ Brτ,τ (R
d) , ‖Pbdu|B

r
τ,τ (R

d)‖ . ‖ũ|Bsp,p(R
d)‖ . ‖u|Bsp,p(D)‖ , (4.5)

as long as r < d
d−1s. Also here we can be a little more precise: By summing over j without using

Hölder’s inequality the second time it follows

∞∑

j=0

( ∑

(I,ψ)∈Λj,0

|I|(
1
p
− 1

2 )τ |〈ũ, ψI〉|
τ

) p
τ

. ‖ũ|B
(d−1)r

d
p,p (Rd)‖p , thus Pbd : B

(d−1)r
d

p,p (D) −→ Brτ,p(R
d) ,

recall δ p−τp = τδ( 1τ − 1
p ) = τ δdr. The second application of Hölder’s inequality in Step 4 then

simply corresponds to the standard embedding Br+ετ,p (Rd) →֒ Brτ,τ (R
d), ε > 0. In other words: The

boundary terms are completely covered by the assumed Besov regularity in Bsp,p(D) respectively
Sobolev regularity in Hs(D) (in case p = 2).
In the next theorem, we shall have a closer look at the operators Pint and Pbd, the considered
function spaces being motivated by the reformulations and observations above.

Theorem 2. Let D be some bounded polyhedral domain in R
d and 0 < τ < p, 1 < p <∞. Then

we have

Pint : K
m
p,a(D) −→





Bmτ,∞(D) , m < a+ (d− δ)( 1τ − 1
p ) ,

B
m,− 1

τ
+ 1

p
τ,∞ (D) , m = a+ (d− δ)( 1τ − 1

p ) ,

B
a+(d−δ)( 1

τ
− 1

p
)

τ,∞ (D) , m > a+ (d− δ)( 1τ − 1
p ) ,

as well as

Pbd : Bsp,q(D) −→ B
s+ 1

τ
− 1

p
τ,q (Rd) , 0 < q ≤ ∞ ,

both mappings being bounded linear operators.

Proof . We only show the necessary modifications of the proof of Theorem 1.
Step 2’: Using the same notations, we then find using Hölder’s inequality

∑

(I,ψ)∈Λ0
j

|〈ũ, ψI〉|
τ ≤ c1

∑

(I,ψ)∈Λ0
j

(
|I|

m
d
+ 1

2−
1
p ρ−m+a
I µI

)τ

≤ c1

( ∑

(I,ψ)∈Λ0
j

(
|I|(

m
d
+ 1

2−
1
p
)τρ

(a−m)τ
I

) p
p−τ

) p−τ
p
( ∑

(I,ψ)∈Λ0
j

µpI

) τ
p

︸ ︷︷ ︸
.‖u|Km

p,a(D)‖τ

.
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For the first factor we proceed as before,

( ∑

(I,ψ)∈Λ0
j

(
|I|

m
d
+ 1

2−
1
p ρa−mI

) pτ
p−τ

) p−τ
p

≤

(
c32

−j(a+ d
2−

d
p
) pτ
p−τ

2j∑

k=1

k(a−m) pτ
p−τ kd−1−δ2jδ

) p−τ
p

≤ c42
−j(a+ d

2−
d
p
)τ2jδ

p−τ
p





2j(a−m)τ+j(d−δ) p−τ
p , m− a < (d− δ)p−τpτ ,

(j + 1)
p−τ
p , m− a = (d− δ)p−τpτ ,

1 , m− a > (d− δ)p−τpτ .

Step 3’: Taking the supremum over j ≥ 0 we obtain from the first line of the last estimate

sup
j≥0

2j(m+ d
2−

d
τ
)τ

∑

(I,ψ)∈Λ0
j

|〈ũ, ψI〉|
τ ≤ c4 sup

j≥0
2j(m+ d

p
− d

τ
)τ2−jmτ2jd

p−τ
p ‖u|Kmp,a(D)‖τ

= c4 sup
j≥0

‖u|Kmp,a(D)‖τ = c4‖u|K
m
p,a(D)‖τ ,

without any additional condition on τ . Similarly, in case m − a = (d − δ)( 1τ − 1
p ) the resulting

estimate is

sup
j≥0

2j(m+ d
2−

d
τ
)τ (j + 1)−

p−τ
pτ

τ
∑

(I,ψ)∈Λ0
j

|〈ũ, ψI〉|
τ ≤ c4 sup

j≥0
2j(m−a+(d−δ)( 1

p
− 1

τ
))τ‖u|Kmp,a(D)‖τ

= c4 sup
j≥0

‖u|Kmp,a(D)‖τ = c4‖u|K
m
p,a(D)‖τ .

Finally, in case m− a > (d− δ)( 1τ − 1
p ) we find

sup
j≥0

2j(a+(d−δ)( 1
τ
− 1

p
)+ d

2−
d
τ
)τ

∑

(I,ψ)∈Λ0
j

|〈ũ, ψI〉|
τ ≤ c4 sup

j≥0
2j(a−δ(

1
τ
− 1

p
)τ2−jaτ2jδ

p−τ
pτ

τ‖u|Kmp,a(D)‖τ

= c4 sup
j≥0

‖u|Kmp,a(D)‖τ = c4‖u|K
m
p,a(D)‖τ <∞ .

Step 4’: To estimate the boundary part Pbdu, as before we only need to modify the summation
over j ≥ 0:

∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
τ ≤ c

p−τ
p

7 2j(d−1) p−τ
p

( ∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
p

) τ
p

,

and further for q <∞

∑

j≥0

2j(s+
1
τ
− 1

p
+d( 1

2−
1
τ
))q

( ∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
τ

) q
τ

≤ c
p−τ
pτ

q

7

∑

j≥0

2j(s+
1
τ
− 1

p
+d( 1

2−
1
τ
))q2j(d−1) p−τ

pτ
q

( ∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
p

) q
p

= c
p−τ
pτ

q

7

∑

j≥0

2j(s+d(
1
2−

1
p
))q

( ∑

(I,ψ)∈Λj,0

|〈ũ, ψI〉|
p

) q
p
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≤ c
p−τ
pτ

q

7 ‖ũ|Bsp,q(R
d)‖q ∼ ‖ũ|Bsp,q(R

d)‖q . ‖u|Bsp,q(D)‖q ,

which proves Pbdu ∈ B
s+ 1

τ
− 1

p
τ,q (Rd). The result for q = ∞ follows by standard modifications.

Corollary 1. Let u ∈ Kmp,a(D)∩Bsp,∞(D) for some bounded polyhedral domain D ⊂ R
d. Suppose

s > d−1
d m and a > δ

dm. Then there exists some 0 < τ0 ≤ p such that

u ∈ Bmτ,∞(D) →֒ Lp(D)

for all τ∗ < τ < τ0, where
1
τ∗

= m
d + 1

p .

Note: While it also holds u ∈ Bmτ,∞(D) for τ ≤ τ∗, these spaces are no longer embedded into
Lp(D). From the point of view of n-term approximation, the result then becomes useless (the
mere knowledge of this Besov regularity no longer yields any approximation rate). We further note
that we always have Hs

p(D) →֒ Bsp,∞(D).

Proof . We can decompose u according to u = Pintu+ Pbdu|D. Then we can consider both terms
separately.
First we need to have a closer look at the condition m− a < (d− δ)p−τpτ :

m− a < (d− δ)
p− τ

pτ
= (d− δ)

(1
τ
−

1

p

)
< (d− δ)

( 1

τ∗
−

1

p

)
= (d− δ)

m

d
.

Clearly, the inequality m − a < (d − δ)md is equivalent to the assumption a > δ
dm. Thus for τ

sufficiently close to τ∗, the required condition m − a < (d − δ)p−τpτ for Pintu ∈ Bmτ,∞(D) can be

satisfied, and we find 1
τ0

= m−a
d−δ + 1

p (in case a ≥ m we just choose τ0 = p).

Similarly s > d−1
d m implies s + 1

τ∗
− 1

p > d−1
d m + 1

τ∗
− 1

p = m, thus for τ sufficiently close to

τ∗ we still have s + 1
τ − 1

p ≥ m. Hence we have B
s+ 1

τ
− 1

p
τ,∞ (Rd) →֒ Bmτ,∞(Rd), which in turn yields

Pbdu|D ∈ Bmτ,∞(D).

5 An extension argument for Kondratiev spaces

In this section we seek to relax the required Sobolev regularity in Corollary 1. This will be done
by modifying the splitting u = Pintu+Pbdu. In what follows we denote by S ⊂ ∂D the singularity
set of D. Then we recall that the distance function ρ is bounded away from zero on any closed
subset of D not containing S.
As a first step, instead of Pbd we consider the operator P̃sing,

P̃singu =
∑

j≥0

∑

(I,ψ)∈Λj,0

〈ũ, ψI〉ψI ,

i.e. we take only those terms of wavelets touching the singular set S. Then with the same estimates
leading to the properties of Pbd in Theorem 2 we obtain

P̃sing : Bsp,∞(D) −→ B
s+(d−δ)( 1

τ
− 1

p
)

τ,∞ (D) , 0 < τ < p ,
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as a bounded linear operator. Ultimately, the embedding B
s+(d−δ)( 1

τ
− 1

p
)

τ,∞ (D) →֒ Bmτ,∞(D) →֒ Lp(D)

for some τ > τ∗ then leads to the condition s > δ
dm.

For the other part P̃regu = u−P̃singu we once more want to use the regularity of u in the Kondratiev-
scale. However, inspecting the previous proofs yields that this requires modifying the index sets Λj,k
to include also those wavelets touching the boundary, and extending the corresponding estimates
for wavelet coefficients. This can be done by extending the functions from Kmp,a(D) to R

d in a
suitable way.
In particular, we first have to define a counterpart of the scale Kmp,a(D) for functions on R

d. We

start with a function η, which is defined on R
d and smooth on R

d \ S, and it is assumed to mimic
the distance function ρ, i.e. in a (sufficiently small) neighbourhood of the singularity set S the
function η shall be equivalent to the distance to S. Moreover, we suppose that η has values only
in the interval [0, 1]. Then we put

Kmp,a(S) :=
{
u measurable : η|α|−a∂αu ∈ Lp(R

d) , |α| ≤ m
}
.

One possible approach now consists in retracing the steps of Stein’s original proof in [22, Section
VI.3.2-VI.3.3] in order to determine whether his extension operator is also bounded with respect
to the Kmp,a-norms:

Lemma 5.1. For every a ∈ R, Stein’s extension operator E defined in [22, Section VI.3.2] is
bounded as a mapping E : Kmp,a(D) −→ Kmp,a(S).

The proof can be found in Appendix A. With the extension operator E at hand, we now put

Pregu =
∑

j≥0

∑

k>0

∑

(I,ψ)∈Λη
j,k

〈Eu, ψI〉ψI , Ληj,k = {(i, ψ) ∈ Λ : 2−jk ≤ ηI < (k + 1)2−j} .

We note that we no longer require Q(I) ⊂ D in the definition of Ληj,k. Moreover, we define

Psingu =
∑

j≥0

∑

(I,ψ)∈Λη
j,0

〈Eu, ψI〉ψI .

This implies
u = Eu

∣∣
D

= Pregu
∣∣
D
+ Psingu

∣∣
D
.

The wavelet coefficients corresponding to terms with (I, ψ) ∈ Ληj,k for k > 0 can now be estimated
in exactly the same way as in the proof of Theorems 1 and 2, in particular

∑

k>0

∑

(I,ψ)∈Λη
j,k

µpI .
∑

|α|=m

∫

Rd

∣∣η(x)m−a∂α(Eu)(x)
∣∣pdx ≤ ‖Eu|Kmp,a(S)‖

p . ‖u|Kmp,a(D)‖p .

Concerning the singular part Psingu we will need

Lemma 5.2. For every s > 0, 1 < p < ∞ and 0 < q ≤ ∞, Stein’s extension operator E is
bounded as a mapping E : Bsp,q(D) −→ Bsp,q(R

d).
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Proof . This result is an easy consequence of the real method interpolation. For an arbitrary
natural number m > s and 1 < p <∞ it holds

(
Lp(D), Hm

p (D)
)
s/m,q

= Bsp,q(D)

in the sense of equivalent (quasi-)norms, see e.g. [23]. This remains valid for D = R
d. The claim

then follows from the interpolation property and Stein’s original result for Hm
p (D), m ≥ 0.

As a particular consequence, we find

‖Psingu|B
s+(d−δ)( 1

τ
− 1

p
)

τ,∞ (D)‖ . ‖Eu|Bsp,∞(Rd)‖ . ‖u|Bsp,∞(D)‖

by essentially the same arguments as in the proofs of Theorem 2 and Corollary 1. We only note
that |Λj,0| ∼ 2j(d−1) has to be replaced by |Ληj,0| ∼ 2jδ. Altogether, we have proved

Theorem 3. Let u ∈ Kmp,a(D)∩Bsp,∞(D) for some bounded polyhedral domain D ⊂ R
d. Suppose

min(s, a) > δ
dm. Then there exists some 0 < τ0 ≤ p such that

u ∈ Bmτ,∞(D) →֒ Lp(D)

for all τ∗ < τ < τ0, where
1
τ∗

= m
d + 1

p .

Remark 6. We specialize the above result to the cases d = 2 and d = 3 and p = 2: In case
d = 2 we always have δ = 0, hence there is no restriction on the parameters except for the (almost)
trivial ones s > 0 and a > 0. In particular, concerning the Sobolev regularity the trivial result
u ∈ H1(D) whenever f ∈ H−1(D) is already sufficient.
The case d = 3 is a little more diverse: Except for special right-hand sides we now have δ = 1,
hence there is an upper bound for m, which corresponds to the limited Besov regularity of the
corresponding singularity functions proved in [6].
In case of smooth cones or smooth domains except for conical points at the boundary there are
analogous regularity results in weighted Sobolev spaces (see [15]), and our argument for the Besov
regularity can be transferred (cf. [9]). Then we again have arbitrary Besov regularity for the
singular part, and no upper bound for m.

6 Approximation rates for solutions of elliptic boundary

value problems

In this final section we shall combine the embedding from Theorem 3 with the n-term approxima-
tion rates from (2.4) and (2.5).

Theorem 4. Let D be some bounded polyhedral domain in R
d. Suppose min(s, a) > δ

dm. Then
every function u ∈ Kmp,a(D) ∩Bsp,∞(D) satisfies

σn
(
u;Lp(D)

)
. n−m/d‖u|Bmτ,∞(D)‖ . n−m/dmax

(
‖u|Kmp,a(D)‖, ‖u|Bsp,∞(D)‖

)

as well as
σn
(
u;W 1

p (D)
)
. n−(m−1)/dmax

(
‖u|Kmp,a(D)‖, ‖u|Bsp,∞(D)‖

)

with constants independent of u and n.
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Unfortunately, these results can only partially be transferred to Finite element approximation. On
the one hand, we are always in the situation where Bmτ,∞(D) is compactly embedded into Lp(D)

for 1 < p < ∞, thus particularly we have B̃mτ,∞(D) = Bmτ,∞(D) (see e.g. [23], [24]). On the other
hand, the available results do not profit from the relaxation of the microscopic parameter, i.e.
these involve the smaller spaces B̃sτ,τ (D) instead of B̃sτ,∞(D). We still obtain from the embedding
Bmτ,∞(D) →֒ Bm−ε

τ,τ (D) for arbitrary ε > 0 the following assertion.

Theorem 5. Let D be some bounded polyhedral domain in R
d. Suppose min(s, a) > δ

dm, and
let r ≥ m− 1

τ . Then every function u ∈ Kmp,a(D) ∩Bsp,∞(D) satisfies

σFEN
(
u;Lp(D)

)
. N−α/dmax

(
‖u|Kmp,a(D)‖, ‖u|Bsp,∞(D)‖

)

for all α < m. Similarly, provided r ≥ m+ 1− 1
τ we have

σFEN
(
u;W 1

p (D)
)
. N−β/dmax

(
‖u|Kmp,a(D)‖, ‖u|Bsp,∞(D)‖

)

for all β < m− 1, with constants independent of u and n.

As a final step, we now assume u to be the solution of some elliptic boundary value problem.

Theorem 6. Let D be some bounded polyhedral domain without cracks in R
d, and consider the

problem
−∇

(
A(x) · ∇u(x)

)
= f in D , u|∂D = 0 .

Under the assumptions of Proposition 1, for a right-hand side f ∈ Km−1
a−1 (D) the uniquely deter-

mined solution u ∈ H1
0 (D) can be approximated at the rate

σn
(
u;H1(D)

)
. n−m/d‖f |Hm−1(D)‖ ,

where
m+ 1 < d

δ min(s0, a+ 1) .

Therein s0 denotes the Sobolev-regularity of u. This result remains true for adaptive Finite element
approximation for sufficiently large polynomial degree r.

Remark 7. (i) The more usual assumption f ∈ Hm−1(D) generally leads to a more restrictive
condition on m. We always have Hm−1(D) →֒ Km−1

0 (D), thus u ∈ Km+1
a+1 for a < min(a, 1). This

in turn gives the condition δ
d (m+ 1) < min(s0,min(a, 1) + 1) = min(2, s0, a+ 1), where a is as in

Proposition 1.
(ii) Often Sobolev regularity statements are of the form: u belongs to Sobolev spaces Hs(D) for all
s < s0, and in general u 6∈ Hs0(D). Then we still have the condition m+ 1 < d

δ s0 in the previous
theorem.

In the situation of a polygon in R
2 the statement in Theorem 6 becomes particularly simple.

Corollary 2. Let D ⊂ R
2 be a polygon (or more generally a Lipschitz domain with polygonal

structure). Let ai,j ∈ Wm
∞(D), i, j = 1, 2, A = (ai,j)i,j=1,2, and consider the problem

−∇
(
A(x) · ∇u(x)

)
= f in D , u|∂D = 0 , (6.1)
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for f ∈ Kma ∩H−1(D). Then it holds

σn
(
u,H1(D)

)
. n−m/2 max

(
{f |H−1(D)‖ , ‖f |Km−1

a−1 (D)‖
)

whenever a > −1 is a parameter such that (6.1) is uniquely solvable.

Thus in this situation, apart from the basic existence result in H1(D) we do not need any infor-
mation about the Sobolev regularity, and similarly, also for the parameter a the only restriction is
the availability of an existence result for f ∈ Km−1

a−1 (D).
Similar results hold for other types of boundary conditions, and also for bounded domains D ⊂ R

3

with smooth boundary except for conical points. More general polyhedral domains in R
3 require

additional conditions: On the one hand we need more specific knowledge of the Sobolev-regularity
of the solution, and on the other hand we need a to be large enough (which in turn might require
more sophisticated existence results than Proposition 1). Nevertheless the resulting conditions
improve the ones available so far by replacing the usual factor d

d−1 by d
δ .

A Proof of Lemma 5.1

For the most part Stein’s proof carries over without change, hence we shall mostly be concerned
with some necessary modifications.
The first step consists in reducing the problem to smooth functions. It is easily seen that the set
C∞(D) is dense in Kmp,a(D) for all parameters: Given a function u ∈ Kmp,a(D) we can multiply it
with a smooth cut-off function, hence we may assume u to have compact support. With standard
mollification arguments we see that such a function (and simultaneously its partial derivatives)
can be approximated in the L2-sense by C∞-functions. Clearly this immediately extends also to
approximation w.r.to the Kmp,a(D)-norm.
Stein then shows first that the extension operator applied to a smooth function u ∈ C∞(D) yields
again a smooth function Eu ∈ C∞(Rd). It now remains to check the corresponding norm estimates.
Below we shall keep close to Stein’s notation.

Step 1: Preparations First, let D be a special Lipschitz domain, i.e. D = {(x, y) ∈ R
d+1 :

y > ϕ(x)} with ϕ : Rd −→ R being Lipschitz continuous with Lipschitz constant M . Let δ(ξ) =
d(ξ, ∂D) be the distance of the point x ∈ D

c
to the boundary, and let ∆(ξ) be the regularized

version as constructed by Stein [22, Section VI.2.1]. For this distance function we have the estimates
C1δ(ξ) ≤ ∆(ξ) ≤ C2δ(x), as well as

∣∣∣∣
∂α

∂ξα
∆(ξ)

∣∣∣∣ ≤ Bα
(
δ(ξ)

)1−|α|
, ξ ∈ D

c
,

for constants C1, C2 and Bα independent of D.
Now let ξ0 = (x0, ϕ(x0)) ∈ ∂D and put

Γξ0 = {ξ = (x, y) : y < ϕ(x0), |y − ϕ(x0)| > M |x− x0|} ,

the lower cone with vertex at ξ0. Then we clearly have Γξ0 ∩D = {ξ0}, and elementary geometric

calculations for (x, y) ∈ D
c
and the cone Γ(x,ϕ(x)) yield

δ(x, y) ≥
M−1

(1 +M−2)1/2
(
ϕ(x)− y

)
=

1

(1 +M2)1/2
(
ϕ(x)− y

)
.
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Thus it follows

ϕ(ξ)− y ≤ (1 +M2)1/2δ(x) ≤
1

C1
(1 +M2)1/2∆(x) ≡ C3∆(x) .

Now we further put δ∗(ξ) = 2C3∆(ξ), and hence obtain the estimate

δ∗(x, y) ≥ 2
(
ϕ(x)− y

)
.

From the definition of δ we obtain

δ(x, y) ≤ d
(
(x, y), (x, ϕ(x))

)
= |y − ϕ(x)| = ϕ(x)− y

for all points (x, y) ∈ D
c
. It further follows

y + λδ∗(x, y) ≥ y + δ∗(x, y) ≥ y + 2
(
ϕ(x)− y

)
= 2ϕ(x)− y

for all λ > 1. Finally, we also have

δ∗(x, y) = 2C3∆(x, y) ≤ 2C3C2δ(x, y) ≤ 2C3C2

(
ϕ(x)− y

)
.

Step 2: Stein defined the operator E on special Lipschitz domains by

Ef(x, y) =

∫ ∞

1

f
(
x, y + λδ∗(x, y)

)
ψ(λ)dλ , x ∈ R

d, y ∈ R ,

where ψ : [1,∞) −→ R is a rapidly decaying continuous function such that
∫∞

1
ψ(λ)dλ = 1 and∫∞

1
λkψ(λ)dλ = 0 for all k ∈ N.

Now fix a point (x0, ϕ(x0)) ∈ ∂D. The properties of the function ψ particularly imply |ψ(λ)| ≤
Aλ−2 for some constant A. Using this and the previous estimates for δ∗ we can estimate for
y < ϕ(x0)

|Ef(x0, y)| ≤ A

∫ ∞

1

|f(x0, y + λδ∗)|
dλ

λ2
≤ Aδ∗

∫ ∞

y+δ∗
|f(x0, s)|(s− y)−2ds

≤ Aδ∗
∫ ∞

2ϕ(x0)−y

|f(x0, s)|(s− y)−2ds

.
(
ϕ(x0)− y

) ∫ ∞

2ϕ(x0)−y

|f(x0, s)|(s− y)−2ds . (A.1)

This pointwise estimate now is the basis for proving estimates in weighted Sobolev norms.

Step 3: As a first case, consider the weight function ρ(x, y)2 = |x|2 + |y|2, i.e. the distance to a
fixed point for which we w.l.o.g. choose the origin. In particular, we now assume ϕ(0) = 0, and
start with the case m = 0. We then obtain for arbitrary β ∈ R

∫ ϕ(x0)

−∞

ρ(x0, y)
pβ |Ef(x0, y)|

pdy

.

∫ ϕ(x0)

−∞

(
ϕ(x0)− y

)p
ρ(x0, y)

pβ

(∫ ∞

2ϕ(x0)−y

|f(x0, s)|(s− y)−2ds

)p
dy

19



=

∫ ∞

0

ỹpρ
(
x0, ϕ(x0)− ỹ

)pβ
(∫ ∞

ϕ(x0)+ỹ

|f(x0, s)|(s− ϕ(x0) + ỹ)−2ds

)p
dỹ

≤

∫ ∞

0

ỹpρ
(
x0, ϕ(x0)− ỹ

)pβ
(∫ ∞

ỹ

|f(x0, s̃+ ϕ(x0))|s̃
−2ds̃

)p
dỹ

The essential step now lies in applying the following version of Hardy’s inequality with weights
(see [19]), ∫ ∞

0

(
u(x)

∫ ∞

x

g(y)dy

)q
dx . C(u, v)

∫ ∞

0

(
v(y)g(y)

)q
dy ,

which holds for g non-negative and 1 ≤ q ≤ ∞ if, and only if

C(u, v) = sup
r>0

(∫ r

0

|u(t)|qdt

)1/q(∫ ∞

r

|v(t)|−q
′

dt

)1/q′

<∞ .

This shall be applied with g(s̃) = |f(x0, s̃ + ϕ(x0))|s̃
−2, u(t) = tρ(x0, ϕ(x0) − t)β and v(t) =

t2ρ(x0, t+ ϕ(x0))
β . Upon C(u, v) being finite, we obtain

∫ ϕ(x0)

−∞

ρ(x0, y)
pβ |Ef(x0, y)|

pdy .

∫ ∞

0

|f(x0, s̃+ ϕ(x0))|
pρ(x0, s̃+ ϕ(x0))

pβds̃

=

∫ ∞

ϕ(x0)

|f(x0, s)|
pρ(x0, s)

pβds .

Since for y > ϕ(x0) we have Ef(x0, y) = f(x0, y), we finally arrive at
∫ ∞

−∞

ρ(x0, y)
pβ |Ef(x0, y)|

pdy .

∫ ∞

ϕ(x0)

|f(x0, s)|
pρ(x0, s)

pβds ,

from which we easily obtain the claim for m = 0.

Step 4: It remains to check the condition C(u, v) <∞ for Hardy’s inequality. Note that we have
to find a bound independent of x0 or ϕ(x0). First we note that due to the assumption ϕ(0) = 0
we also have |ϕ(x0)| ≤ M |x0|. For simplification we then assume β ≥ 0, the case β < 0 can be
handled with similar arguments.
We start by noting

|x0|
2 ≤ ρ

(
x0, ϕ(x0)± t

)2
≤ |x0|

2 +
(
|ϕ(x0)|+ t

)2
≤ |x0|

2 +
(
M |x0|+ t

)2
≤ C2

M max(|x0|, t)
2 .

We then find
∫ r

0

u(t)pdt ≤

∫ r

0

tpCβpM max
(
|x0|, t

)βp
dt . CβpM rp+1 max

(
|x0|, r

)βp
.

Moreover, we obtain for r < (2M + 1)|x0| (note −2p′ + 1 < 0)
∫ ∞

r

v(t)−p
′

dt ≤

∫ ∞

r

t−2p′ |x0|
−βp′dt . |x0|

−βp′r−2p′+1 .

For r ≥ (2M + 1)|x0| we have to take a little more care. In this case we have t ≥ r ≥ 2M |x0| ≥
2|ϕ(x0)| and hence

ρ(x0, ϕ(x0)± t) ≥ |ϕ(x0)± t| ≥
∣∣t− |ϕ(x0)|

∣∣ ≥ t/2 .
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Then we find ∫ ∞

r

v(t)−p
′

dt ≤

∫ ∞

r

t−(2+β)p′dt . r−(β+2)p′+1 .

Combined this gives (recall 1
p +

1
p′ = 1)

sup
r>0

(∫ r

0

|u(t)|pdt

)1/p(∫ ∞

r

|v(t)|−p
′

dt

)1/p′

≤ c(M,p, β) sup
r>0

(
max

(
|x0|, r

)β
r1+1/pmax

(
|x0|, r

)−β
r−2+1/p′

)
= c(M,p, β)

for some constant c(M,p, β) independent of x0.
Step 5: For partial derivatives of f (i.e. the case m > 0) similar arguments can be used (as
explained in [22]). Exemplary we show it for some second-order partial derivative, w.l.o.g. ∂2jEf .
It holds

∂jEf =

∫ ∞

1

∂jf(· · · )ψ(λ) dλ+

∫ ∞

1

∂yf(· · · )λ∂jδ
∗ψ(λ) dλ

and hence

∂2jEf =

∫ ∞

1

∂2j f(· · · )ψ(λ) dλ+ 2

∫ ∞

1

∂j∂yf(· · · )λ∂jδ
∗ψ(λ) dλ

+

∫ ∞

1

∂2yf(· · · )(λ∂jδ
∗)2ψ(λ) dλ+

∫ ∞

1

∂yf(· · · )λ∂
2
j δ

∗ψ(λ) dλ . (A.2)

We first note ∂αδ∗ ≤ cα(δ
∗)1−|α| for all multiindices α and |ψ(λ)| ≤ Akλ

−k. For the first term we
then find as above with y < ϕ(x0)

∣∣∣∣
∫ ∞

1

∂2j f(· · · )ψ(λ) dλ

∣∣∣∣ ≤
∫ ∞

1

∣∣∂2j f(· · · )ψ(λ)
∣∣ dλ ≤ A2

∫ ∞

1

∣∣∂2j f(· · · )
∣∣ dλ
λ2

.
(
ϕ(x0)− y

) ∫ ∞

2ϕ(x0)−y

|∂2j f(x0, s)|(s− y)−2 ds , (A.3)

and similarly
∣∣∣∣
∫ ∞

1

∂j∂yf(· · · )λ∂jδ
∗ψ(λ) dλ

∣∣∣∣ ≤ cjA3

(
ϕ(x0)− y

) ∫ ∞

2ϕ(x0)−y

|∂j∂yf(x0, s)|(s− y)−2 ds (A.4)

as well as
∣∣∣∣
∫ ∞

1

∂2yf(· · · )(λ∂jδ
∗)2ψ(λ) dλ

∣∣∣∣ ≤ c2jA4

(
ϕ(x0)− y

) ∫ ∞

2ϕ(x0)−y

|∂2yf(x0, s)|(s− y)−2 ds . (A.5)

It remains the last integral in (A.2). We re-write ∂yf as

∂yf(x
0, y + λδ∗) = ∂yf(x

0, y + δ∗) +

∫ y+λδ∗

y+δ∗
∂2yf(x0, t) dt .

Due to the choice of ψ, i.e.
∫∞

1
λψ(λ) dλ = 0, we then have

∫ ∞

1

∂2yf(· · · )λ∂
2
j δ

∗ψ(λ) dλ =

∫ ∞

1

λ∂2j δ
∗ψ(λ)

∫ y+λδ∗

y+δ∗
∂2yf(x0, t) dt dλ .
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This can be estimated by

∣∣∣∣
∫ ∞

1

∂2yf(· · · )λ∂
2
j δ

∗ψ(λ) dλ

∣∣∣∣ . (δ∗)−1A4

∫ ∞

1

(∫ y+λδ∗

y+δ∗

∣∣∂2yf(x0, t)
∣∣ dt
)
λ−3 dλ

= (δ∗)−1A4

∫ ∞

y+δ∗

(∫ ∞

t−y
δ∗

λ−3 dλ

)∣∣∂2yf(x0, t)
∣∣ dt

∼ (δ∗)−1

∫ ∞

y+δ∗
(δ∗)2

∣∣∂2yf(x0, t)
∣∣ dt

(t− y)2

.
(
ϕ(x0)− y

) ∫ ∞

2ϕ(x0)−y

|∂2yf(x0, s)|(s− y)−2 ds .

This last integral as well as those in (A.3)–(A.5) are immediate counterparts of (A.1). From there
the remaining estimates follow by analogous arguments.
Similarly for all other partial derivatives of Ef : After differentiation under the integral every
term can be treated separately, and for terms involving lower order derivatives of f we use Taylor
expansion and the moment conditions for ψ.

Step 6: So far, all arguments were valid for arbitrary special Lipschitz domains in arbitrary
dimension d. For Babuska-Kondratiev spaces on polyhedral domains in R

3, however, we need to
consider a second weight function. Hence assume we are given a special Lipschitz domain with
ϕ(x1, 0) = 0 for all x1 ∈ R, and consider the weight function ρ̃(x1, x2, x3)

2 = x22 + x23 (i.e. the
distance to a fixed straight, for which w.l.o.g. we chose the x1-axis). Then all previous arguments
in Steps 3 and 5 carry over without any change, only the condition for Hardy’s inequality needs to
be checked for the new weights u(t) = tρ̃(x0, ϕ(x0)− t)

β and v(t) = t2ρ̃(x0, t+ϕ(x0))
β , but clearly

also these calculations can be transferred, upon simply replacing |x0| by |x2|.

Step 7: The results for special Lipschitz domains in Steps 1–6 now can be used to derive the
estimate for general Lipschitz polyhedral domains. The idea is to consider a suitable covering of
the singularity set by (finitely) man open sets U1, . . . , UN ⊂ R

d. This cover of S is chosen in such
a way that in every set Ui the distance to the singularity set S can be described (after rotation
and translation) by either of the weight functions used in Steps 3 or 6, respectively. This cover
of S then is to be extended with additional finitely many open sets UN+1, . . . , UM to an open
cover of D. On these sets UN+1, . . . , UM the distance function η shall be bounded from below.
Finally, we assume that we can associate with every Ui a special Lipschitz domain Di such that
Ui ∩D = Ui ∩Di. With these sets Ui and Di in hand we are back in the situation of [22, Section
3.3], where it is described how to glue together the extension operators Ei (w.r.to the domains Di)
to finally obtain E (essentially it is a partition of unity argument for some partition adapted to
the domains Di and the neighbourhoods Ui). Note that the operators EN+1, . . . ,EM correspond
to the unweighted case, i.e. the situation in Stein’s original work.
In particular: If D ⊂ R

2 is a polygon (or a Lipschitz domain with polygonal structure), then S
consists of finitely many points, which trivially can be covered by N = #S many, pairwise disjoint
open sets Ui. For these sets and the associated special Lipschitz domains Di we use the arguments
in Steps 3–5 (the reference points being the respective vertices).
In case of a polyhedral domain D ⊂ R

3, the situation is a little more diverse. The cover of S then
consists of three types of open sets: The first one covering the interior of exactly one edge each,
but staying away from all vertices. This clearly corresponds to the setting of Step 6. To describe
the other two types, let A ∈ S be a vertex, and Γ1, . . . ,Γn edges with endpoint in A. Then for
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every j we can find a cone CA,Γj
with vertex in A and axis Γj with sufficiently small height and

opening angle, so that no two such cones intersect. Clearly, in any such cone the distance to S is
exactly the distance to the axis of the cone (the intersection with S is just the edge Γj). Finally,

let B̃A be a ball around A with sufficiently small radius, and denote by C̃A,Γj
a cone with half

the opening angle of CA,Γj
. As the last type of neighbourhoods we define BA to be the interior of

B̃A \
⋃
j C̃A,Γj

. Then on BA the distance to S is equivalent to the distance to A.
The norm estimates for E carry over to our situation without change, we only note that the
estimates in Steps 2–6 due to the assumptions on the Ui exactly correspond to estimates for the
‖ · |Kma (S)‖-norm.

Remark 8. The definition of the neighbourhoods for vertices and edges is essentially taken from
[1]. In that article also similar extension arguments can be found (Lemma 3.15, 3.16). However,
their arguments seem to contain some slight gaps: They fixed a reference point (a reference axis) for
the weight functions and assumed ϕ(x0) = 0, not noting that for ϕ(x0) 6= 0 “a simple translation
in x3” also moves the reference point (axis) for the weight.
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