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Abstract

Programming languages that provide multidimensional arrays and
a flat linear model of memory must implement a mapping between
these two domains to order array elements in memory. This layout
function is fixed at language definition time and constitutes an in-
visible, non-programmable array attribute. In reality, modern mem-
ory systems are architecturally hierarchical rather than flat, with
substantial differences in performance among different levels of the
hierarchy. This mismatch between the model and the true archi-
tecture of memory systems can result in low locality of reference
and poor performance. Some of this loss in performance can be
recovered by re-ordering computations using transformations such
as loop tiling. We explore nonlinear array layout functions as an
additional means of improving locality of reference. For a bench-
mark suite composed of dense matrix kernels, we show by timing
and simulation that two specific layouts (4D and Morton) have low
implementation costs (2–5% of total running time) and high perfor-
mance benefits (reducing execution time by factors of 1.1–2.5); that
they have smooth performance curves, both across a wide range of
problem sizes and over representative cache architectures; and that
recursion-based control structures may be needed to fully exploit
their potential.

1 Introduction

The performance of programs on modern computer systems de-
pends as much on the capabilities of the memory system as on the
instruction issue rate of the processor. For scientific computations
that repeatedly access large data sets, good locality of reference is
essential at the algorithm level for high performance. Such locality
can either be temporal, in which a data item is reused repeatedly,
or spatial, in which a group of data items “adjacent” in space are
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used in temporal proximity. Architectural components such as reg-
isters and caches support such algorithm-level locality: registers
naturally support temporal locality, cache replacement policies fa-
vor temporal locality, and multi-word cache lines support spatial
locality. The best performance usually results when the algorith-
mic patterns of locality of reference matches the patterns that the
cache organization supports well. Unfortunately, such a match can-
not always be taken for granted: features of the cache architecture
such as limited capacity and limited associativity can often interfere
with high performance.

The thesis of this paper is that joint restructuring of the control
flow of a program and of the data structures it uses results in the
highest level of performance. We focus on dense matrix codes for
which loop tiling (also called loop blocking) [63] is an appropriate
means of high-level control flow restructuring to improve locality.
Loop tiling is a program transformation that tessellates the itera-
tion space of a loop nest with uniform tiles of a given size and
shape and schedules the tiles for execution in an order consistent
with the original data dependences. Computations associated with
a given tile are executed as a group. This computation re-ordering
is typically expressed in the optimized program as a deeper loop
nest. Loop tiling is usually accompanied by loop unrolling and
software pipelining to enable better use of registers and the proces-
sor pipeline. The theory of these techniques is well-developed [43],
and implementations of the techniques are available as optimization
options in several high-performance compilers. Tiling techniques
are also often applied at the source level in numerical libraries, e.g.,
in the level-3 BLAS [16] and in LAPACK [1]. In this paper, we
assume that loop tiling has been performed either by the program-
mer or by the compiler, and examine the additional performance
gains achievable using nonlinear array layout functions. Viewed
in another formalism where we model the program as a stream of
references to array elements, tiling alters the reference stream in
the array index space by restructuring the iteration space, while the
array layout function changes the mapping from the array index
space to the virtual address space. In this paper, we evaluate the
marginal benefit of the latter transformation given that the former
transformation has been performed.

While programmers and compilers are familiar and comfortable
with transforming the control flow of programs, they are less likely
to restructure multidimensional arrays to be “cache-conscious” or
“memory-friendly”. Such restructuring techniques have been stud-
ied for pointer-based data structures, such as heaps [35, 37, 38] and
trees [13]; for profile-driven object placement [8]; for matrices with
special structure (e.g., banded matrices in LAPACK [1], or sparse
matrices [20]); and in parallel computing [5, 28, 29, 45, 51, 61]. But
when working with general dense matrices in a uniprocessor envi-
ronment, most programmers are reluctant to alter the default row-
major or column-major linearization of multidimensional arrays
that high-level languages provide, even when such ordering de-
grades cache performance. We suspect several reasons for this sta-
tus quo: the special support accorded to arrays in modern program-
ming languages; the ability to perform fast address computation in-
crementally with the default layout; and the well-understood (and
often abused) idioms of “efficient” usage patterns. We believe that



the non-standard data layouts used by library writers and in paral-
lel computing are applicable in more general situations, but are not
readily exploitable given existing programming language design.

In this paper, we consider whether user-definable layout func-
tions can and should be offered in a general way for dense matrices.
For two families of nonlinear layout functions, we quantify both the
additional costs associated with a non-standard array layout (such
as the cost of format conversion and the overhead of address com-
putation) and the improved performance that such a layout function
provides. We make the following contributions in this paper.

� We demonstrate by measurement of execution time that the
costs associated with these layout functions are minimal (x3.4),
that they are more than offset by the performance gains re-
sulting from improved locality (x3.1), and that the absolute
performance levels are acceptably high (x3.2).

� We show by measurement that such layouts reduce the vari-
ability of performance as the input matrix size is smoothly
varied (x3.3).

� We show by measurement that the performance of such lay-
outs is largely insensitive to the choice of tile size (x3.5).

� We show by simulation that such layouts improve perfor-
mance for representative multi-level memory hierarchy ar-
chitectures (x3.7).

� We show by measurement that alternative control structures
based on recursion rather than loop tiling often better exploit
the potential of these layout functions (x3.6).

The remainder of this paper is organized as follows. x2 dis-
cusses the problems with the default mappings of multidimensional
arrays, and introduces two nonlinear mappings that we expect to
demonstrate better cache performance. x3 offers measurement and
simulation results that support the claim that these layouts improve
both locality of reference and the overall performance. x4 compares
our approach with previous related work. x5 presents conclusions
and future work.

2 Nonlinear array layouts

Programming languages that support multidimensional arrays must
also provide a function (the layout function L) to map the array
index space into the linear memory address space. For ease of ex-
position, we assume a two-dimensional array with m rows and n
columns, which we index using a zero-based scheme. The results
we discuss generalize to higher-dimensional arrays and other in-
dexing schemes. We define L such that L(i; j) is the memory lo-
cation of the array element in row i and column j relative to the
starting memory location of the array, in units of array elements.
We list near the end of the argument list of L, following a semi-
colon, any “structural” parameters (such as m and n) of L, thus:
L(i; j;m;n).

We require that the layout function be one-to-one (so that dif-
ferent array elements map to different memory locations), that its
image be dense (so that there are no holes in the memory footprint
of the array), and that it be easily computable. If we restrict our
attention to layout functions that are linear and monotonically in-
creasing in the arguments i and j (such functions certainly being
easy to compute), it is easy to prove that there are only two such
layout functions [14]: the row-major layoutLRM as used in Pascal,
given byLRM (i; j;m;n) = n � i+j; and the column-major layout
LCM as used in Fortran, given by LCM (i; j;m;n) = m � j + i.
We refer to these two layouts as canonical layouts. Figure 1(a)–
(b) show these two layouts. Simple algebraic manipulation of the

defining formulas, as shown below in equations (1)–(4), reveals
that these layouts have the further desirable property of allowing
incremental computation of memory locations of elements that are
adjacent in array index space.

LRM(i; j + 1;m;n)� 1 = LRM (i; j;m;n) (1)

LRM (i; j;m;n) = LRM (i+ 1; j;m;n)� n(2)

LCM (i; j + 1;m;n)�m = LCM (i; j;m;n) (3)

LCM(i; j;m;n) = LCM(i+ 1; j;m;n)� 1 (4)

Canonical layouts do not always interact well with cache mem-
ories, because the layout function favors one axis of the index space
over the other: neighbors in the unfavored direction become distant
in memory. This is an alternative interpretation of equations (1)–
(4). This dilation effect can reduce program performance in sev-
eral ways. First, it may reduce or even nullify the effectiveness of
multi-word cache lines, as in the case of a Fortran loop that accesses
successive elements of an array row. Such low spatial locality can
usually be corrected by appropriate loop transformations (such as
interchange, reversal, or skewing) when such transformations are
legal [4]. Second, for large matrix sizes, it may even reduce the
effectiveness of translation lookaside buffers (TLBs), because the
dilation effect extends to virtual memory pages [3, 56]. Finally, it
may cause cache misses due to self-interference even when a tiled
loop repeatedly accesses a small tile in the array index space, be-
cause the canonical layout depends on the matrix size rather than
the tile size. Such interference misses are a complicated and non-
smooth function of the array size, the tile size, and the cache param-
eters [19]. These considerations lead us to investigate other array
layout functions.

We begin with the result of Lam et al. [36] that a tR � tC ar-
ray that is contiguous in memory and fits in cache causes no self-
interference misses. If we fix values for tR and tC , we can now
conceptually view our original m� n array as a d m

tR
e � d n

tC
e ar-

ray of tR � tC tiles. Equivalently, we have mapped the original
two-dimensional array index space (i; j) into a four-dimensional
space

(ti; tj; fi; fj) = (T(i;tR);T(j;tC);F(i; tR);F(j; tC))

T(i;t) = i div t

F(i; t) = i mod t

(The transformations Tand F are nonlinear, explaining the use of
this qualifier in our description of these array layout functions.) We
then create two subspaces: the space T of tile co-ordinates (ti; tj),
and the space F of tile offsets (fi; fj). We apply a canonical lay-
out function LF in the F -space (to keep each tile contiguous in
memory) and a layout function LT of our choice in the T -space
(to obtain the starting memory location of the tile), and define our
nonlinear layout function L as their sum:

L(i; j;m;n; tR; tC) = L(ti; tj; fi; fj ;m;n; tR; tC)

= LT (ti; tj;m;n; tR; tC)

+LF (fi; fj; tR; tC): (5)

Equation (5) defines a two-parameter family of layout func-
tions, parameterized by LT and LF . In this paper, we fix LF to
be the column-major layout function, and investigate two specific
choices for LT .

2.1 The 4D layout, L4D

If we choose both LT and LF to be canonical layout functions, we
call the resulting layout function the 4D layout function L4D . In
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Figure 1: Graphical description of layout functions. Arrays are m� n; tiles are tR � tC .



this paper, we chooseLT to be LRM and LF to be LCM . The fol-
lowing equations summarize the mathematical details of this map-
ping, accounting for the cases where a tile size does not exactly
divide the corresponding matrix dimension. Figure 1(c) illustrates
this layout.

(kR; kC ) = (dm=tRe; dn=tCe)

t0R = m � tR � (kR � 1)

t0C = n � tC � (kC � 1)

U(i;k; t1; t2) =

�
t1; i 6= k � 1
t2; i = k � 1

S(i;j;m;n; tR; tC) = i � n � tR +U(i;kR; tR; t
0

R) � tC � j

L4D(i; j;m;n; tR; tC) = S(ti; tj;m;n; tR; tC)

+LCM (fi; fj;

U(ti; kR; tR; t
0

R);U(tj; kC ; tC ; t
0

C))

2.2 The Morton layout, LMO

Our second nonlinear layout function has been variously described
as being based either on quadtrees [18] or on space-filling curves [27,
44, 49]. This layout is known in parallel computing as the Morton
ordering and has been used for load balancing purposes [5, 28, 29,
45, 51, 61]. It has also been applied for bandwidth reduction in
information theory [6], for graphics applications [24, 39], and for
database applications [30]. Figure 1(d) illustrates this layout.

Morton ordering has the following operational interpretation.
Divide the original matrix into four quadrants, and lay out these
submatrices in memory in the order NW, NE, SW, SE. A kR � kC
submatrix with kR > tR and kC > tC is laid out recursively
using the Morton ordering; a tR � tC tile is laid out using the LF -
ordering.

To formally define this layout function, we require tR and tC
to simultaneously satisfy

m

tR
=

n

tC
= 2d (6)

for some positive integer d. We define

LT (ti; tj; tR; tC) = tR � tC �M(ti ; tj)

where M(i; j) is the integer whose binary representation is the bit-
wise interleaving of the binary representations of i and j. Then,

LMO(i; j;m;n; tR; tC) = tR � tC �M(ti ; tj)

+LCM (fi; fj; tR; tC): (7)

There is, in fact, a family of Morton and Morton-like layout
functions, of varying degrees of complexity. The variant describes
above is more accurately called the Z-Morton layout. Chatterjee et
al. [12] discuss the details of this family in greater detail.

2.3 Practical issues

The mathematical description ofL4D andLMO above glosses over
several practical details that are critical for efficient implementation
of these ideas. We discuss these issues in this section.

Holes The L4D mapping imposes no restrictions on tile sizes or
matrix sizes. However, the definition of LMO works only when tR
and tC are constrained as described in equation (6). This assump-
tion does not hold in general, and the conceptual way of fixing
this problem is to pad the matrix to an m0 � n0 matrix that satis-
fies equation (6). There are two concrete ways to implement this
padding process.

� Frens and Wise keep a flag at internal nodes of their quad-
tree representation to indicate empty or nearly full subtrees,
which “directs the algebra around zeroes (as additive identi-
ties and multiplicative annihilators)” [18, p. 208].

Maintaining such flags makes their solution insensitive to
the amount of padding, but requires maintaining the internal
nodes of the quad-tree. This scheme is particularly useful
for sparse matrices, where patches of zeros can occur in ar-
bitrary portions of the matrices. Note that if one carries the
quad-tree decomposition down to individual elements, then
m0 � 2m and n0 � 2n in the worst case.

� We choose the strategy of picking tile sizes tR and tC from
an architecture-dependent range, explicitly inserting the zero
padding, and blindly performing all the arithmetic on the ze-
ros. We choose the range of acceptable tile sizes so that the
tiles are neither too small (which increases the overhead of
recursive control) nor overflow the cache (which results in
capacity misses). Since tiles are contiguous, there are no self-
interference misses. This makes the performance of the leaf-
level computations almost insensitive to the tile size [59].

Our scheme is very sensitive to the amount of padding, since
it performs redundant computations on the padded portions
of the matrices. However, if we choose tile sizes from the
range [Tmin; Tmax], the maximum ratio of pad to matrix size
is 1=Tmin.

Address computation costs The naı̈ve computation of the
4-tuple (ti; tj; fi; fj) from (i; j) involves integer division and re-
mainder operations and is therefore expensive. These layout func-
tions are inappropriate for programs that access array elements ran-
domly. For structured accesses, however, we can often eliminate
the explicit computation of the 4-tuple and provide efficient incre-
mental addressing. The decoupling of the layout function is critical
to such incremental address computation: once we have located a
tile and are accessing elements within it, we need not recompute
the starting offset of the tile and can use the incremental addressing
techniques developed for the canonical layouts.

Even more than for the 4D layout, the Morton layout function
is expensive to compute naı̈vely. It requires bit manipulation op-
erations, or can alternatively be computed in O(d) integer opera-
tions without any bit manipulations [42]. Yet another option is to
pre-compute the required M(i; j) values in a lookup table. In our
implementation, we use a combination of both techniques. We pro-
cess the inputs four bits at a time, generating partial contributions
to M using a pre-computed lookup table.

A naı̈ve but correct implementation strategy is to follow equa-
tion (5) and to replace every reference to array element A(i; j) in
the code with a call to the address computation routine for the ap-
propriate nonlinear layout. However, this requires integer division
and remainder operations to compute (ti; tj; fi; fj) from (i; j),
which imposes an unreasonably large overhead. To gain efficiency,
we need to exploit the decoupling of the layout function L shown
in equation (5): once we have located a tile and are accessing ele-
ments within it, we do not recompute the starting offset of the tile
and instead use the incremental addressing techniques supported by
the canonical layoutLCM .



Format conversion costs If a nonlinear layout function is
used internally within a library, an honest accounting of costs must
include the cost of converting to and from a canonical represen-
tation at the library interface. We demonstrate in x3.4 that such
conversions can indeed be performed efficiently.

Tile size selection The tile size chosen for loop tiling has a
significant impact on performance, and previous work (e.g., [2, 15,
17, 19, 62]) has addressed various questions related to tile size se-
lection. The nonlinear layout schemes are based on the result that
a small contiguous tile exhibits no self-interference misses. This
makes their performance largely insensitive to the tile size, as long
as we choose the tile size in a range so that the tile is neither too
small nor overflows the cache. We demonstrate this fact in x3.5.

Control flow We need to restructure control flow in order to
reap the benefits of Morton ordering. The natural control flow that
makes good use of this ordering is based on recursion rather than
on tiled loop nests. We demonstrate this point in x3.6.

Multi-level memory hierarchies If the control flow of the
program can exploit Morton ordering, we expect the layout func-
tion to be particularly beneficial for multi-level memory hierar-
chies. This expectation arises from the recursive nature of the
ordering, which keeps the elements of a quadrant together. This
means that an element or tile of the matrix that is absent from a
level of the memory hierarchy is likely to be found in the next level.
Our simulations in x3.7 confirm this point.

2.4 Summary

The layout of a multi-dimensional array in memory is a key de-
terminant of the performance of code that uses that array. Current
high-level programming languages do not make this array attribute
easily accessible to programmers or compilers. Even the use of
canonical orderings in implementations of arrays is artificial. A
d-dimensional array has d! canonical orderings [14], but a given
programming language uses a single ordering that was fixed at lan-
guage design time. Within a single module or compilation unit, the
effect of an arbitrary canonical layout can be simulated by permut-
ing the order of indices. This process is tedious and error-prone,
leads to obfuscated code, and does not extend across modules. A
more reliable and scalable solution is to discard the flat linear mem-
ory model and to make the layout of multi-dimensional arrays an
explicitly programmable attribute.

Making the layout attribute of arrays explicitly programmable
does raise the obvious question of how one chooses the desired
layout. This problem is related to the problem of choosing good
data decompositions in languages such as High Performance For-
tran [34]. We expect that the techniques for layout optimization
developed in the vector and parallel computing context (e.g., [11,
25, 31, 32, 41]) can be adapted to the hierarchical memory situation.

3 Experimental results

Table 2 describes benchmark suite that we use to evaluate nonlin-
ear array layout functions. Three of these codes call the BLAS
3 [16] routine dgemm to perform matrix multiplication on tile-sized
chunks of data. We implemented the various versions of these
codes in ANSI C, then compiled and executed them on the three
platforms described in Table 3. The versions of these codes using
canonical layouts are blocked where appropriate (i.e., not in the re-
cursive codes). The CHOL code is the “shackled” version due to

Benchmark Ultra 10 Ultra 60 Miata
L4D LMO L4D LMO L4D LMO

BMXM 0.93 1.06 0.95 1.05 0.97 0.95
RECMXM — 0.94 — 0.94 — 0.95

STRASSEN — 0.87 — 0.79 — 0.91
CHOL 0.78 — 0.85 — 0.67 —

STDHAAR 0.68 0.67 0.64 0.64 0.42 0.43
NONHAAR 0.62 0.61 0.58 0.58 0.40 0.40

Table 1: Summary of the performance improvement of nonlinear
data layouts. Each table entry is the arithmetic mean over a range
of problem sizes of the ratio of the execution time of the nonlinear
layout code (including conversion from a canonical layout) to the
execution time of the canonical layout code. Smaller numbers are
better.

Kodukula et al. [33]. The BMXM, RECMXM, and STRASSEN codes
were run on matrices initialized with random data. The CHOL code
was run on a matrix initialized with random data while keeping
it symmetric and diagonally dominant. The STDHAAR and NON-
HAAR codes were run on two real images cropped to the appropri-
ate size.

We were the only user on the systems for the duration of the
runs. We use a self-calibrating timing loop to ensure that the com-
putation ran for at least 2 seconds, to eliminate the effects of low
timer resolution; we measure elapsed time for the computation (ex-
cluding such things as allocation and initialization) using the sys-
tem call getrusage(); and we execute multiple trials to further
reduce measurement error. We evaluate cache performance using
ATOM [52] and TLB performance using fast-cache [40].

The following sections highlight our major results. The data
presented below is a highly condensed version of our complete
data, due to length limitations.

3.1 Performance improvement over canonical layouts

Table 1 shows normalized execution time (time with a nonlinear
layout/ time with a canonical layout) for each benchmark, averaged
over matrix sizes in the range 100–1000 (specific values depend on
the benchmark). We see that nonlinear layouts can dramatically
reduce execution time, with some benchmarks finishing in half the
time of the code with a canonical layout.

3.2 High performance

In order to allay concerns about the absolute level of performance
of our codes, Figure 2 presents execution times for RECMXM and
STRASSEN normalized to the execution time of the vendor-supplied
native BLAS routine dgemm, and Figure 3 presents MFLOP/s for
CHOL. We observe that, for the matrix multiplication codes, both
L4D and LMO are competitive with the native library, and even
outperform it for large problem sizes. The sawtooth pattern in the
curves is due to a mismatch between the tile size and the amount of
loop unrolling performed by the compiler.

3.3 Robust performance

Figure 4 shows the execution time of CHOL for various tile sizes
(a) and matrix sizes (b) using both LCM and L4D on the DEC
Miata. These graphs clearly show that L4D is superior to LCM .
First, Figure 4(a) shows that L4D produces lower execution time
for all tile sizes examined. Similarly, Figure 4(b) shows that the
performance of L4D is extremely robust as a function of matrix



Name Description BLAS? Layouts used
LCM L4D LMO

BMXM Tiled 6-loop matrix multiplication
p p p p

RECMXM Recursive matrix multiplication [18]
p p p

STRASSEN Strassen’s matrix multiplication [55]
p p p

CHOL Right-looking Cholesky factorization [33]
p p

STDHAAR Standard wavelet compression of image (Haar basis) [54]
p p p

NONHAAR Non-standard wavelet compression of image (Haar basis) [54]
p p p

Table 2: Description of benchmark suite.

Parameter Ultra 10 Ultra 60 Miata
CPU UltraSPARC-IIi UltraSPARC-II Alpha 21164
Clock rate 300 MHz 300 MHz 500 MHz
L1 cache 16KB/32B/1, on-chip 16KB/32B/1, on-chip 8KB/32B/1, on-chip
L2 cache 512KB/64B/1, off-chip 2MB/64B/1, off-chip 96KB/64B/3, on-chip
L3 cache none none 2MB/64B/1, off-chip
RAM 320MB 512MB 512MB
Data TLB entries 64 64 64
VM page size 8KB 8KB 8KB
cc version Workshop Compilers 4.2 Workshop Compilers 4.2 DEC C V5.6-075
cc switches -fast -fast -fast
Native BLAS libsunperf.so libsunperf.so libdxml.a
Operating system SunOS 5.6 SunOS 5.6 OSF1 V4.0 878

Table 3: Machine configurations. The entries for the cache configurations are the cache parameters C/B/A.
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Figure 2: Absolute performance level of our codes. (a) Execution time of RECMXM on Ultra 10 normalized with respect to execution time
of native BLAS routine dgemm. (b) Execution time of STRASSEN on Ultra 10, Ultra 60, and Miata, normalized with respect to execution
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size. In contrast, self-interference misses degrade performance for
LCM when the matrix is a multiple of the cache size. The other
platforms and benchmarks exhibit similar behavior.

3.4 Format conversion cost

All measurements provided thus far include the cost of converting
from canonical layout to the appropriate nonlinear layout. We mea-
sured the conversion cost to be 2–5% of the total execution time.
We conclude that the benefits of nonlinear layouts outweigh the
conversion cost.

3.5 Tile size selection issues

Figure 5 compares our work to the TSS algorithm of Coleman and
McKinley [15]. We compare execution times for a range of prob-
lem sizes of the L4D layout with tile sizes set to 17 and 30 with the
execution time of the TSS algorithm. For the comparison, we ob-
tained the authors’ (corrected) Fortran code and supplied it with L1
cache parameters for the machine. We do not time their overhead of
computing the tile sizes. The shapes of the graphs reveal that non-
linear layouts significantly reduce the variability in performance.
There is a strong correlation between the measured execution time
and the number of elements contained in the tile size selected by the
TSS algorithm. We conjecture that any tile size selection algorithm
based on GCD computations (as is the case with the TSS algorithm)
will show similar non-smooth performance characteristics.

3.6 Control flow issues

Table 1 shows that in some cases the full benefit of nonlinear lay-
outs can be achieved only when the control structure of the pro-
gram matches the data layout. For example, L4D works very well
for BMXM which has a nested loop control structure, while LMO

actually increases execution time. In contrast, the recursive con-
trol structure of RECMXM matches the recursive nature of LMO ,
producing commensurate improvements in execution time. Gus-
tavson [26] and and Chatterjee et al. [12] discuss this issue in greater
detail.

3.7 Cache and TLB simulations

To gain further insight into the memory system behavior of nonlin-
ear layouts, we simulated various cache configurations: L1 caches
of 16KB, 1-way and 2-way associative, with 32-byte blocks; and
L2 caches of 128KB and 512KB, 1-way associative, with 64-byte
blocks. Our results add further support to our claim that nonlinear
layouts reduce cache misses over canonical layouts. However, the
reduction is not uniform across all portions of the memory hierar-
chy for all benchmarks. For a 16KB direct-mapped L1 cache, and
matrix size of 512, LCM incurs miss ratios of 5.8% and 33% for
RECMXM and CHOL respectively, while RECMXM achieves a 4.4%
miss ratio using LMO , and CHOL achieves 3.2% with L4D . In
contrast, the nonlinear layouts increase the L1 miss ratio for both
STDHAAR and NONHAAR, from 18% using the canonical layout
to 27% for the nonlinear layouts. This is due to degenerate inter-
ference misses between tiles. Increasing the associativity signifi-
cantly reduces this disparity. We are also investigating techniques
to eliminate this effect through instruction scheduling or by using
alternative nonlinear layouts.

Although the L1 miss ratio can increase in some cases, we
note that the L2 miss ratio decreases dramatically for STDHAAR

and NONHAAR when using nonlinear layouts. Specifically, NON-
HAAR drops from 14% for the canonical layout to 4.5% for LMO

for the 512KB L2. Similar reductions occur for the 128KB cache

and STDHAAR. For the other benchmarks L2 global miss ratios are
generally lower for the nonlinear layouts. Associativity and capac-
ity generally reduce the miss ratio for all layouts.

The TLB benefits of nonlinear layouts are most evident for
STDHAAR and NONHAAR. Simulations of a 64-entry fully-associative
TLB reveal that nonlinear layout reduces the TLB miss ratio to
0.01% compared to 2.5% for the canonical layout. We note that
TLB performance could be improved by using superpages [57] to
map the entire array with a single TLB entry.

3.8 Summary

The experimental data support our claim that nonlinear layouts pro-
vide significant performance benefits for dense matrix codes.

By making the layout of a matrix a programmable attribute,
we enable the global optimization of this attribute. This would
further reduce the number of conversions between canonical and
non-standard layouts. This is essentially the approach to data par-
allelism taken in High Performance Fortran [34], and techniques
for automatic data mapping developed in that context (e.g., [11, 25,
31, 32]) can equally well be applied to a uniprocessor environment
to improve memory hierarchy performance.

Such layout functions can initially coexist with default layouts
by encapsulating them within user-defined record types or classes,
without having to change the definition of the language. The use of
the BLAS routines in our codes establishes this point.

4 Related work

We categorize related work into two categories: previous applica-
tion of nonlinear array layout in scientific libraries, and work in
the compiler community related to tiling for parallelism and cache
optimizations.

Scientific libraries The PHiPAC project [7] aims at producing
highly tuned code for specific BLAS 3 [16] kernels such as matrix
multiplication that are tiled for multiple levels of the memory hier-
archy. Their approach to generating an efficient code is to explicitly
search the space of possible programs, to test the performance of
each candidate code by running it on the target machine, and select-
ing the code with highest performance. It appears that the code they
generate is specialized not only for a specific memory architecture
but also for a specific matrix size.

Frens and Wise [18] provide an implementation of recursive
matrix multiplication. We adopted their idea of computation re-
structuring by recursion unfolding. They appear to carry the re-
cursion down to the level of single array elements, which causes a
dramatic loss of performance.

Gustavson [26] discusses the role of recursive control strategies
in automatic variable blocking of dense linear algebra codes, and
shows dramatic performance gains compared to implementations
of the same routines in IBM’s Engineering and Scientfic Subroutine
Library (ESSL).

Stals and Rüde [53] investigate algorithmic restructuring tech-
niques for improving the cache behavior of iterative methods. They
do not investigate nonlinear data reorganization.

The goal of out-of-core algorithms [23] is related to ours. How-
ever, the problems differ in two fundamental ways: the limited as-
sociativity of caches and their fixed replacement policies are not
relevant for virtual memory systems; and the access latencies of
disks are far greater than that of caches.

The application of space-filling curves is not new to parallel
processing, although most of the applications of the techniques
have been tailored to specific application domains [5, 28, 29, 45,



51, 61]. They have also been applied for bandwidth reduction in
information theory [6], for graphics applications [24, 39], and for
database applications [30]. Most of these applications have far
coarser granularity than our test codes. We have shown that the
overheads of these layouts can be reduced enough to make them
useful for fine-grained computations.

Tiling and related work The compiler literature contains much
work on iteration space tiling. Some authors aim at gaining paral-
lelism [63], while others target improving cache performance [9,
62]. Kodukula et al. [33] present a data-centric approach to loop
tiling called “shackling” that handles imperfect loop nests and can
be composed to tile for multiple levels of the memory hierarchy.
Carter et al. [10] discuss hierarchical tiling schemes for a hierarchi-
cal shared memory model. Porterfield’s dissertation [46] discusses
program transformations and software pre-fetching techniques to
improve the cache behavior of scientific codes.

Lam, Rothberg, and Wolf [36] discuss the importance of cache
optimizations for blocked algorithms. A major conclusion of their
paper was that “it is beneficial to copy non-contiguous reused data
into consecutive locations”. Our nonlinear data layouts can be
viewed as an early binding version of this recommendation, where
the copying is done possibly as early as compile time. Coleman
and McKinley [15] choose tiles based on cache parameters to re-
duce self- and cross-interference misses, usually resulting in non-
square tiles. They claim that their method outperforms the copy
optimization recommended by Lam et al. [36]. We have compared
our approach with theirs in x3.5. Rivera and Tseng [47, 48] dis-
cuss intra- and inter-array padding as a means of reducing conflict
misses. Ghosh et al. [21, 22] present an analytical model for esti-
mating cache misses for perfect loop nests.

A substantial body of work in the parallel computing literature
deals with layout optimization of arrays. Representative work in-
cludes that of Mace [41] for vector machines; of various authors
investigating automatic array alignment and distribution for dis-
tributed memory machines [11, 25, 31, 32]; and of Cierniak and
Li [14] for DSM environments. The last paper also recognizes the
importance of joint control and data optimization.

5 Conclusions and future work

The canonical array layout functions provided by current high-level
programming languages can cause performance problems in hier-
archical memory systems. Loop restructuring techniques can only
partially correct these performance problems. Nonlinear layout
functions provide a complementary solution. We have examined
two nonlinear layout functions for multidimensional arrays that
promise improved performance at low cost. The experimental and
simulation results are promising, and we conclude that the L4D

and LMO layouts deliver high performance, improve robustness of
performance, and work well with multi-level memory hierarchies.

Our experimental implementations were based on C macros
and functions, with no special compiler support. The observed per-
formance is nonetheless quite respectable. It is our position that the
ability to directly manipulate array layout has ramifications all the
way up to algorithm design [50, 60], and is not something that com-
pilers alone should manipulate. Replacing one layout by another is
simple and easily mechanizable, but determining matching control-
flow changes is significantly more complicated than loop tiling.
Further research is needed to determine whether such changes can
be automated, and how best such layouts can be packaged to enable
users to easily tune their codes for the memory hierarchy.

We are currently working on developing an analytical model
of the behavior of such layouts, similar to the models for canoni-

cal layouts [19, 21, 22, 58]. We are also working on increasing the
size of our benchmark suite and covering more of the architectural
design space through timing and simulation.
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