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Abstract—This paper presents a theoretical framework for
Bayesian estimation in the case of imprecisely known probability
density functions. The lack of knowledge about the true density
functions is represented by sets of densities. A formal Bayesian
estimator for these sets is introduced, which is intractable for
infinite sets. To obtain a tractable filter, properties of convex
sets in form of convex polytopes of densities are investigated.
It is shown that pathwise connected sets and their convex hulls
describe the same ignorance. Thus, an exact algorithm is derived,
which only needs to process the hull, delivering tractable results
in the case of a proper parametrization. Since the estimator
delivers a convex hull of densities as output, the theoretical
grounds are laid for deriving efficient Bayesian estimators for
sets of densities. The derived filter is illustrated by means of an
example.
Keywords: Nonlinear Bayesian estimation, convex set,
convex polytope

I. INTRODUCTION

In many technical applications, unknown quantities are
incorporated and have to be dealt with. Typical examples
include localization problems, map building, reconstruction of
quantities from noisy measurements, etc. A main problem is to
determine estimates of inaccessible states from measurements
corrupted by noise. In general, Bayesian inference models are
used for combining data to reach conclusions and insight.
This implies that the herein used probability distributions
are assumed to be optimal. The appropriateness of stochastic
mechanisms has thus to be questioned, when probabilities
are not well known. A proposal to overcome this issue is to
process sets of possible probabilities, which are the focus of
this paper.

After proposing a generic Bayesian estimator for sets of
densities, convex sets parametrized as convex polytopes are
investigated. It is shown that a pathwise connected set and its
convex hull describe the same ignorance. Thus restricting our
investigation to convex sets is sufficient. An exact Bayesian
estimator, which only processes the convex hull, is derived
and illustrated by means of an example.

First of all the existing approaches are discussed: For
stochastic uncertainties a multitude of approaches exist. For
linear Gaussian systems, the famous Kalman Filter [1] can
be utilized. For the case of non-Gaussian noise, typically
appearing in nonlinear systems, closed-form solutions do
not exist in general. Additionally, recursive processing being
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Figure 1. Convex sets of probabilities in the theorey of interval probabilities,
robust Bayesian analysis and coherent previsions.

necessary for many technical systems, the complexity of the
density representation increases continually. Only in special
cases, the complexity is bounded [2]. So, for almost all real-
world applications, approximations are inevitable. A common
approach is to linearize the system as in the extended Kalman
Filter [3] or to assume the joint densities to be Gaussian as in
the Unscented Kalman Filter [4].

Widely used are particle filters, where densities are repre-
sented by random or pseudo-random samples [5]. Though they
shine through their algorithmic simplicity, they do posses some
problems in terms of convergence [6], [7]. Another approach
is to represent the probability densities by function series: [8]
uses Gram-Chalier expansions, [9] derives a filter based on
generalized Edgeworth series for continuous time systems with
additive Gaussian noise, and [10], [11] use Fourier Expansions.
Furthermore, Gaussian Mixtures [12], Dirac Mixtures [13] or
combinations of them [14] are also utilized.

Convex sets of probabilities found attention in literature
as well. [15] investigates interval-probabilities. This concept
pursues the goal of generalizing classical probability theory
in order to achieve an extensible description of uncertainty.
The key idea is to assign intervals to random events instead of
single values. Convex sets have a significant role in this theory:
The largest set of distributions yielding a certain interval of
probabilities is convex. Such a set is called the structure of an
interval probability assessment.

In the theory of robust Bayesian analysis [16], [17] convex
sets are used to assess global robustness. Neighbourhood



classes of functions are often employed to study sensitivity to
prior distributions. At this, the range of deviations is computed
while varying the prior over a class of functions. Such sets are
common to be convex.

Lower and upper probabilities are defined as a special
case of lower and upper previsions in the subjectivistic and
behavioristic theory of imprecise probabilities [18]. These
probabilities generally correspond to convex polyhedrons with
parallel faces.

As illustrated by Figure 1, convex sets are to be regarded as
an underlying concept for a variety of theories, which aspire to
extend classical probability theory. Against the background of
decision theory, [19] provides an overview and a justification
of using convex sets of probabilities. In this context, convex
sets are called credal sets. Considering linear loss or utility
functions, an arbitrary set and its convex hull effect the same
pattern of preferences. So the main reason for using credal sets
is that the largest set containing all probability distributions,
which induce a specific decision, is convex. Transferring the
concepts of conditional probability and independence to the
theory of probability sets turned out to be a difficult task. We
overcome this issue by identifying all sets inducing the same
probability assessment.

For our investigations we will follow Levi’s epistemology
as suggested in [20], [21]. According to this, stochastic models
are intended to express lack of precision. Such a model pro-
duces a single estimate, which is considered to be the best one.
Due to inappropriate assumptions, incomplete prior knowledge
or unknown quantities, there might be more estimates to be
taken into account. In this regard, set-valued stochastic models
can cope with the incapability to specify appropriate probabil-
ities. In that case, a random variable will be characterized by a
set of distributions, each of which is a possible and permissible
probabilistic description of that variable. Sets of probability
distributions represent a state of ignorance, since we are not
capable of making a decision among those distributions. This
means that the possible distributions compete for being the
best estimate. Adding all convex combinations to the set, i.e.,
taking the convex hull, is one way to effect a compromise.
This accounts for the strong tendency towards convex sets.
Existing approaches such as the set-valued Kalman filter [21]
or projection-based approaches [22] model only the initial state
as a convex set. In contrast, this work provides a theoretical
framework for modeling system and measurement noise as
convex sets as well.

In this article, we consider systems with a continuous state
space and investigate convex sets of probability density func-
tions. The sets of the corresponding cumulative distributions
are also convex because of the linearity of integration. The
following section reviews the discrete-time Bayesian estimator
and explains the concept of processing sets of densities. The
remainder of this paper is structured as follows: In Section
III, convex polytopes of densities are defined. It is shown
that intervals of probabilities and expectation values can easily
be computed by using the vertices of the polytopes. Section
IV derives a Bayesian estimator for convex polytopes. This
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Figure 2. Structure of a discrete-time system and a Bayesian estimator for
sets of densities.

estimator processes only the vertices of the polytopes and
thereby generates the vertices of a new convex polytope. This
resulting polytope is the convex hull of the exact set, which
would arise from element-wise processing. The key result
is that the exact set and its covering convex polytope yield
the same probability intervals, even after multiple processing
steps. An example application is investigated in Section V.
Here, the measurement uncertainties of a radar altimeter are
given by a convex polytope. This work is concluded in Section
VI with an outlook to future investigations.

II. PROBLEM FORMULATION

In this paper, we focus on probabilistic dynamic discrete-
time nonlinear systems, which can be described by

xk+1 = ak(xk, uk,wk) , (1)
y

k
= hk(xk,vk) , (2)

where the underlining denotes vectors and the lowercase
boldface letters random variables. In the system equation (1),
the time update is performed: The system function ak( · , · , · )
projects the n-dimensional inaccessible state, characterized by
the random vector xk ∈ Ωx ⊆ Rn, with respect to the
input uk ∈ Ωu ⊆ Rk and the system noise wk ∈ Ωw ⊆
Rp ∼ fw

k (wk) onto the state xk+1 at the discrete time
k + 1. The measurement equation (2) models the outcome of
a measurement y

k
∈ Ωy ⊆ Rm at time k with respect to the

state xk and the measurement noise vk ∈ Ωv ⊆ Rq ∼ fv
k (vk)

utilizing the measurement function hk( · , · ).
The real system is a realization of the probabilistic system

(1) and (2) as depicted in Figure 2. The realizations of random
vectors are denoted by a hat.

Assuming the probability densities of the noise fw
k (wk),

fv
k (vk) and the initial density fp

0 (xk) as being stochastically
independent, an estimation for the state xk at time k can be
determined with the Bayesian estimator, which consists of two
steps:

The filtering step determines an improved estimate f e
x (xk)

by incorporating a measurement ŷ
k

into a prior estimate



fp
k (xk) by evaluating

f e
k (xk) =

1
ck
fL
k (xk)fp

k (xk) , (3)

fL
k (xk) := f(ŷ

k
|xk) =

∫
Ωv

δq
(
ŷ

k
− hk(xk, vk)

)
fv
k (vk) dvk ,

ck =
∫

Ωx

fL
k (xk)fp

k (xk) dxk .

The conditional density fL
k (xk) = f(ŷ

k
|xk) is called like-

lihood, ck is a normalization constant, and δq(.) is the q-
dimensional Dirac delta function.

In the prediction step, the state estimate is extrapolated from
fk(xk) at discrete time k to time k + 1 by determining

fk(xk+1) =
∫

Ωx

fT
k (xk+1|xk)fk(xk) dxk , (4)

fT
k (xk+1|xk) =

∫
Ωw

δp
(
xk+1 − ak(xk, uk, wk)

)
fw
k (wk) dwk .

The conditional density fT
k (xk+1|xk) is also called transition

density. Since uk is assumed to be known, it is not explicitly
denoted in fT

k (xk+1|xk). The prior density normally is the
result of a previous filtering step, i. e., fk(xk) = f e

k (xk).
Now we turn to investigating sets of densities: As discussed

in the introduction, such sets can evolve from imprecise
prior knowledge, unknown measurements or unknown system
parameters. Since this work focuses on theoretical aspects, it
is not investigated how proper sets of densities can be obtained
for practical applications.

Here we consider to have a set of system functions AK

and a set of measurement functions Hk at time k. The set of
transition densities is then given by

MMMT
k :=

{
fT
k

∣∣xk, xk+1 ∈ Ωx, ak ∈ Ak,

fT
k (xk+1|xk) =

∫
Ωw

δp
(
xk+1 − ak(xk, uk, wk)

)
fw
k (wk) dwk

}

and the set of likelihoods is given by

MMML
k =

{
fL
k

∣∣fL
k (xk) =

∫
Ωv

δq
(
ŷ

k
− hk(xk, vk)

)
fv
k (vk) dvk,

xk ∈ Ωx, hk ∈ Hk

}
.

The Bayesian estimator for sets of densities is defined as
the element-wise processing of the sets. The filtering step can
be written as

MMMe
k =

{
f e
k

∣∣f e
k (xk) =

fp
k (xk)fL

k (xk)∫
Ωx
fp
k (xk)fL

k (xk) dxk

,

xk ∈ Ωx, f
L

k ∈MMM
L
k , f

p
k ∈MMM

p
k

}
,

with MMMp
k being the set of priors. The prediction step results

in

MMMp
k+1 =

{
fp
k

∣∣fp
k (xk+1) =

∫
Ωx

fT
k (xk+1|xk)fk(xk) dxk,

xk+1 ∈ Ωx, f
T

k ∈MMM
T
k , f

e
k ∈MMM

e
k

}
.

This formulation is more of formal importance, because for
infinite sets the latter expressions are intractable. Therefore, a
parametrization based on convex polytopes is investigated in
the following sections.

III. CONVEX SETS OF PROBABILITY DENSITIES

As a special case of convex sets we consider convex poly-
topes of probability densities, which can easily be obtained by
taking the convex hull of a finite number of density functions.
The reason for choosing convex polytopes is clarity and
mathematical brevity. Since the number of density functions
may be arbitrarily large, any convex set can be approximated
with an arbitrarily small error. A generalization to general
convex sets is a laborious task but does not promise additional
insights.

A convex polytope is defined by

PPP :=

{
n∑

i=1

αi · fi

∣∣∣ n∑
i=1

αi = 1, αi ≥ 0

}
, (5)

where f1, . . . , fn are arbitrary probability density functions.
For every f =

∑
i αifi ∈ PPP the probability of an event A can

be written as the convex combination

P (A) =
∫

A

f(x) dx =
n∑

i=1

αi

∫
A

fi(x) dx ,

where the integrals in the latter expression are the probabilities
computed from the vertices f1, . . . , fn. Hence, PPP yields a
probability interval IPPP (A) :=

[
P (A), P (A)

]
for every event

A, where

P (A) =
n

min
i=1

{∫
A

fi(x) dx
}

and

P (A) =
n

max
i=1

{∫
A

fi(x) dx
}

.

The probability interval of the complementary event Ac is
given by

[
1− P (A), 1− P (A)

]
.

Interestingly, a pathwise connected set MMM which contains
f1, . . . , fn and which has the convex hull PPP as depicted in
Figure 3 provides the same intervals of probabilities as PPP .
This relationship is proven in the following theorem. Note,
that the operator conv{MMM} denotes the convex hull ofMMM.

Theorem 1
Consider a polytope PPP as defined in equation (5) and a
pathwise connected setMMM with the following properties:

{f1, . . . , fn} ∈MMM and PPP = conv{MMM} .
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Figure 3. The setMMM contains the vertices f1, . . . , fn of PPP and is pathwise
connected.

Then, for an event A, the set of probabilities

IMMM(A) :=
{
P (A)

∣∣∣P (A) =
∫

A

f(x) dx, f∈MMM
}

is an interval identical to IPPP (A).

PROOF. Since MMM ⊆ PPP , the set of probabilities IMMM(A) is a
subset of IPPP (A).

Let fi and fj define the endpoints of the probability
interval IPPP (A). Since MMM is pathwise connected, there exists
a continuous path Pi,j : [0, 1] 7→ MMM with Pi,j(0) = fi and
Pi,j(1) = fj . Due to the linearity of the integral, the interval

Ii,j(A) =
{
P (A)

∣∣∣P (A) =
∫

A

f(x) dx, f∈ Pi,j ([0, 1])
}

is pathwise connected as well and has the same endpoints as
IPPP (A). Thus we have

IPPP (A) = Ii,j(A) ⊆ IMMM(A)

and the proof is complete. �
This Theorem is a strong argument for the utilization of

convex sets: It does not make any difference if a pathwise
connected set or its convex hull is considered. The probability
intervals of any event will not differ.

Analogously, we can derive an interval for the expectation
values induced by PPP , i.e.,[

n
min
i=1

Efi
{x} , n

max
i=1

Efi
{x}

]
.

In a similar manner, the preceding observations can be adopted
for every linear functional, since sets of convex combinations
of scalars result in intervals.

In contrast, specifying intervals for the variances cannot be
achieved by determining minimal and maximal variance of
the vertex densities. A lengthy, but straightforward, calculation
yields

Vf{x} =
n∑

i=1

αi Vfi{x}

+
1
2

n∑
i=1

n∑
j=1

αiαj

[
Efi
{x} − Efj

{x}
]2

for f =
∑

i αifi ∈ PPP . So the variances of PPP depend both
on the variances of the vertices f1, . . . , fn and the squared
distances of their expected values.

IV. BAYESIAN ESTIMATION WITH CONVEX SETS

The previously explained Bayesian estimator for sets of
densities performs filter and prediction steps elementwise.
Consequently, an appropriate representation of infinite sets is
inevitable in order to realize filter and prediction step with
bounded complexity. We have to ascertain that we are able
to retain that representation after filtering and prediction for
further processing steps. In this section, we present a Bayesian
state estimator for convex polytopes of density functions. We
assume that not only the initial state but also measurement and
system noise are modelled as convex polytopes.

A. Filtering with Convex Polytopes

First, we consider the filter step. Let

PPPp := conv{fp
1 , . . . , f

p
m}

be the convex polytope of prior or predicted probability density
functions and

PPPL := conv
{
fL
1 , . . . , f

L
n

}
be the convex polytope of likelihoods. For the sake of clarity,
we omit the time index k. Here, the subscripts denote the
different vertices of a polytope. The elementwise application
of filter step (3) yields the exact set

MMMe :=
{

fp · fL∫
Ω
fp(ν) · fL(ν) dν

∣∣∣∣ fp ∈ PPPp, fL ∈ PPPL

}
.

The following theorem reveals a way of calculating the convex
hull ofMMMe. Let VVV (PPPp) and VVV

(
PPPL
)

denote the vertices of PPPp

and PPPL, respectively. We have VVV (PPPp) = {fp
1 , . . . , f

p
m} and

VVV
(
PPPL
)

=
{
fL
1 , . . . , f

L
n

}
.

Theorem 2 (Filtering Step for Convex Polytopes)
The vertices of the smallest convex polytope covering MMMe

are obtained by elementwise filtering of VVV (PPPp) with VVV
(
PPPL
)
.

According to this, we define PPPe by

conv

{
fp
i · fL

j∫
Ω
fp
i (ν) · fL

j (ν) dν

∣∣∣∣ fp
i ∈ VVV (PPPp) , fL

j ∈ VVV
(
PPPL
)}

.

Then we have

PPPe = conv{MMMe} .

PROOF. Suppose that fp is an element of PPPp and fL lies in
PPPL. Then there are weights α1, . . . , αm and β1, . . . , βn, such
that

fp =
m∑

i=1

αi · fp
i and fL =

n∑
j=1

βi · fL
j ,



where fp
i ∈ VVV (PPPp) and fL

j ∈ VVV
(
PPPL
)
. For a shorter notation,

we define Γi,j :=
∫

Ω
fp
i (ν) · fL

j (ν) dν. Applying (3) to fp

and fL gives

f e(xk) =
fp(xk) · fL(xk)∫

Ω
fp(ν) · fL(ν) dν

=

∑m,n
i=1,j=1 αif

p
i (xk) ·βjf

L
j (xk)∑m,n

k=1,l=1 αkβl

∫
Ω
fp
k (ν) · fL

l (ν) dν

=
m,n∑

i=1,j=1

[
αiβj∑m,n

k=1,l=1 αkβlΓk,l

]
fp
i (xk) · fL

j (xk)

=
m,n∑

i=1,j=1

[
αiβjΓi,j∑m,n

k=1,l=1 αkβlΓk,l

]
fp
i (xk) · fL

j (xk)
Γi,j

.

The coefficients in the latter sum are non-negative and satisfy
m,n∑

i=1,j=1

[
αiβjΓi,j∑m,n

k=1,l=1 αkβlΓk,l

]
= 1 .

Hence, f e is to be regarded as a convex combination of the
density functions

fp
i · fL

j∫
Ω
fp
i (ν) · fL

j (ν) dν
,

which result from elementwise filtering of VVV (PPPp) and VVV
(
PPPL
)

and are themselves elements of MMMe. In particular, f e lies in
the convex hull of these functions. This states thatMMMe ⊆ PPPe,
which finishes the proof. �

If PPPp or PPPL consists of only one element, then convexity
will be conserved, as stated in the next theorem.

Theorem 3
The exact set MMMe is convex, if PPPp or PPPL is a singleton set.
In particular, the following equation applies:

PPPe =MMMe

PROOF. We will show MMMe ⊇ PPPe. Without loss of generality,
we assume that PPPL =

{
fL
1

}
. Let f e ∈ PPPe be arbitrary. Then

this function is a convex combination

f e =
m∑

i=1

αi ·
fp
i · fL

1∫
Ω
fp
i (ν) · fL

1 (ν) dν

of the vertices VVV (PPPe), where
∑m

i=1 αi = 1, αi ≥ 0. In
order to prove that f e lies in MMMe we have to determine
fp =

∑m
i=1 γi · fp

i ∈ PPPp, such that

f e =
m∑

i=1

αi ·
fp
i (xk) · fL

1 (xk)∫
Ω
fp
i (ν) · fL

1 (ν) dν

=
fp(xk) · fL

1 (xk)∫
Ω
fp(ν) · fL

1 (ν) dν

=
(
∑m

i=1 γi · fp
i (xk)) · fL

1 (xk)∫
Ω

(
∑m

k=1 γk · fp
i (ν)) · fL

1 (ν) dν

=
m∑

i=1

γi ·
fp
i (xk) · fL

1 (xk)∑m
k=1 γk

∫
Ω
fp
k (ν) · fL

1 (ν) dν
∈MMMe

(6)

holds. A comparison of coefficients gives
αi

Γi
=

γi∑m
k=1 γk ·Γk

. (7)

As before, Γi denotes the integral
∫

Ω
fp
k (ν) · fL

1 (ν) dν. We
require that the weights γi sum to one and therefore we have

1 =
m∑

i=1

γi =
m∑

i=1

αi

Γi
·

(
m∑

k=1

γk ·Γk

)
.

Together with (7) we now obtain

γi =
αi/Γi∑m
i=1 αi/Γi

.

The weights γi are obviously non-negative and result thus in
the demanded function fp =

∑m
i=1 γi · fp

i for (6).
�

B. Prediction with Convex Polytopes

In line with Theorem 2, a corresponding conclusion holds
for the prediction step. We define the convex polytope of
estimated densities by PPPe = conv{f e

1 , . . . , f
e

m} and accord-
ingly the convex polytope of transition densities by PPPT =
conv

{
fT
1 , . . . , f

T
m

}
. As before, MMMp denotes the resulting set

after elementwise processing with (4).

Theorem 4 (Prediction Step for Convex Polytopes)
The prediction step for sets of densities with the vertex sets
VVV (PPPe) and VVV

(
PPPT
)

yields the vertices of PPPp, which is related
to the exact setMMMp by means of the equation

PPPp = conv{VVV (PPPp)} = conv{MMMp} .

PROOF. Every f e ∈ PPPe and every fT ∈ PPPT can be written as

f e =
m∑

i=1

αi · f e
i and fT =

n∑
j=1

βi · fT
j ,

respectively. Due to the linearity of integration, it follows
directly that

fp =
∫

Ω

fT( · |xk) · f e(xk) dxk

=
m,n∑

i=1,j=1

αiβj

∫
Ω

fT
j ( · |xk) · f e

i (xk) dxk ,
(8)

where
∑m,n

i=1,j=1 αiβj = 1 and
∫

Ω
fT
j ( · |xk) · f e

i (xk) dxk are
the vertices of PPPp. Hence, the predicted density fp lies in PPPp

as anticipated. �
In the following theorem, we again consider the situation

of processing only one probility density function f e or fT

instead of PPPe or PPPT.

Theorem 5
If PPPe or PPPT is singleton, thenMMMp is convex and equal to PPPp.

PROOF. Considering (8), one can easily accept that convexity
will be preserverd, when the cardinality of PPPe or PPPT amounts
to one. �
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`
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the vertices of PPP which is the convex hull of MMM. The exact set MMM arises
from elementwise processing of PPP1 and PPP2.

C. Discussion

Elementwise processing of two convex sets of density
functions usually leads to a non–convex setMMM. With Bayesian
estimation, this occurs when combining sets of prior densities
and sets of likelihoods, or transition densities. It was shown
that after each filter step or prediction step the convex hull of
the exact set can easily be found by restricting oneself to the
vertices of the polytopes.

Especially (8) points out that in general the exact set MMM
is a proper subset of the corresponding polytope PPP . This
is due to the fact that this equation can be interpreted as
a quadratic function of the weights. Considering the convex
hull PPP instead of the non–convex resulting set MMM, implies
that density functions will be introduced after each processing
step, which are not part of the exact set, as illustrated in
Figure 4. Fortunately, the use of the covering polytope for
further processing is appropriate, since it leads to exactly the
same probability assessment. This is due to the linearity of the
integral, which yields the probability from the densities.

One key statement of this paper is that after multiple
recursive processing steps the result of the proposed estimator
is the convex hull of the exact set given by elementwise
processing. This means that applying k processing steps to
PPP and taking the convex hull afterwards results in the same
set as processing the vertices VVV (PPP ) and taking the convex hull
of them at all time steps until k. This is mainly due to the fact
that the resulting vertices are images of the vertices of PPP .

Other approaches working on sets of densities commonly
just use sets of prior probabilities, whereas likelihoods and
transition densities are fixed. In this particular case convexity
will be preserved due to Theorem 3 and 5. In terms of convex

polytopes, we have proposed a method of modelling system
and measurement noise as sets as well.

An important point to emphasize is the fact that the vertices
of the resulting polytope are in general affinely independent.
Then, the polytope is a simplex, which cannot be simplified
to a polytope with less vertices. The example in the following
section shows a special case, where some of the vertices after
each processing step coincide.

In conclusion, this section shows that only the finite sets
of vertices are required to implement a Bayesian estimator for
convex polytopes, though it can be interpreted as element-wise
processing of an infinite number of densities. Unfortunately,
the number of vertices needed to characterize the convex
set increases exponentially over the number of processing
steps, depending on the number of vertices of the prior sets.
Processing two convex sets with n and m vertices usually
leads to a set whose convex polytope is characterized by n ·m
vertices.

V. EXAMPLE

To illustrate the idea of an estimator for sets of densities,
a simple example is discussed in this section. [23] presents
a problem, where a radar altimeter is utilized for measuring
the ground clearance of a plane. The measurements differ
significantly when flying over trees in contrast to flying over
clear ground. The likelihood

fL
k = πN (x̂1, σ

2
1) + (1− π)N (x̂2, σ

2
2) (9)

is suggested, where N (x̂, σ2) denotes the probability density
funcion of the normal distribution with standard deviation σ
and expected value x̂. When flying over a tree-covered area,
N (x̂1, σ

2
1) describes the likelihood of an echo x over clear

ground and N (x̂2, σ
2
2) the echo over tree tops. In contrast to

[23], we assume the probability π of being over clear grounds
to be uncertain in a sense of ignorance.

For our example, we assume having three identical mea-
surements, which should be fused. The likelihood has the
parameters x̂1 = −1, σ2

1 = 1/4, x̂2 = 1, σ2
1 = 1 and the

parameter π lies in the interval [0.3, 0.8]. According to (9) the
set is defined as

PPPL =
{
fL
k

∣∣fL
k ( · ) = λ

(
0.3 · N (−1,

1
4

) + 0.7 · N (1, 1)
)

+

(1− λ)
(

0.8 · N (−1,
1
4

) + 0.2 · N (1, 1)
)
, λ ∈ [0, 1]

}
.

In the first step, the likelihood set PPPL is fused with a
uniform distribution. The result is naturally the same set,
which is depicted in Figure 5(a). The multiplication with
itself results in a set with four vertices of four-component
Gaussian mixtures as plotted in Figure 5(b). In the plot, only
three components can be seen, since two are identical. This is
because of the symmetries within the chosen sets due to the
simplicity of the problem. Figure 5(c) shows the second fusion
step. Now the set of vertices consists of eight six-component
Gaussian mixtures. Again, only four different densities can be
distinguished, since some of the densities are identical. The
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(a) The initial set of likelihood densities. The two vertex densities of the
polytope and nine densities in-between are plotted. The polytope was fused
with a uniform density, so the result after the first step is identical with the
likelihood set. The interval of the expectation, depicted by the vertical dashed
lines, is [−0.6, 0.4].
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(b) After the first fusion step. Now only the resulting three vertex densities
are plotted and the expectation interval, depicted by the vertical dashed lines,
is [−0.97, 0.06].
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(c) After the second fusion step. Only the resulting four vertex densities are
plotted and the expectation interval, depicted by the vertical dashed lines, is
[−0.99,−0.25].
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(d) After the third fusion step. Only the resulting five vertex densities are
plotted and the expectation interval, depicted by the vertical dashed lines, is
[−1.0,−0.5].

Figure 5. Four fusion steps with PPPL. The prior distribution is uniform. The number of vertices increases by one after each step, but in general the number
increases exponentially.

final step ist depicted in Figure 5(d). The resulting polytope
has five vertices.

Though some of the vertex densities are projected onto each
other, it can be seen that the use of convex polytopes yields the
same key problem as standard stochastic nonlinear filters: The
complexity of the density representation typically increases
exponentially with each filtering step. Here, the number of
vertices and the number of Gaussian components increase with
each step. Coping with this increase of complexity is part of
future work.

Considering the intervals of the expectations, which are
depicted as vertical lines, it can be seen that the width stays
constant from the initial to the first step and decreases from the

first to the second step. This implies that ignorance decreases
at a different rate as the stochastic uncertainty, which typically
decreases strictly monotonically and is not discussed here. The
investigation of the convergence of Bayesian estimators with
sets of densities is another interesting point of further research.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a theoretical framework for processing sets
of probability densities in the context of Bayesian estimation
was presented. Since a generic Bayesian estimator for density
sets is intractable, convex sets were examined. To keep the
mathematical expressions simple, only convex polytopes were
discussed. It was shown that enlarging a non-convex set to



its convex hull does not increase the extent of ignorance,
i. e., the probability intervals of arbitrary events. The convex
hull is merely the larger set, which constitutes the same
probability assessment. Therefore the utilization of convex sets
is sufficient.

A main drawback of using convex polytopes lies in the
fact that the number of vertices grows exponentially during
processing, which is a direct consequence of Theorems 2
and 4. There exists no straightforward method to simplify
the resulting polytopes, since the function space is infinite-
dimensional and the polytopes are thus typically simplices. A
direction of future work might be to employ Gaussian mixture
or Fourier representations. Due to approximation, vertices can
therefore become affinely dependend, which allows reducing
the number of vertices. It should be mentioned that the herein
used sets are then sets of approximate functions and thus do
not necessarily contain the true probability density.

Another important point to emphasize is that convex poly-
topes are sets of mixture densities. Every function inside a
polytope is a convex combination of the vertices, which can
themselves be mixture densities. So for some applications the
number of vertex densities tend to be infinite. An example is
a density set where the mean value is unknown but assumed
to lie in a specific interval. In this regard we desire to model
convex set of translated densities, which have no polytopic
representation.

Another application is decentralized data fusion. At this,
information fusion is performed on several processing nodes,
which usually are spatially distributed. Information in terms
of measurements is incorporated into an estimate in each
processing node. This estimate is transmitted to the other
nodes that incorporate this data into their own estimates.
Due to the lack of knowledge about which measurements are
incorporated into the estimate, multiple processing of the same
measurement can occur, which leads to unknown correlations.
Approaches handling these unknown correlations are, e. g.,
covariance hulls and covariance intersection filters [24], [25],
where marginal densities with unknown correlation coeffi-
cients are predestinated for a set-based model. An examination
in the light of the results of this work seems promising.

Further research will focus on more general models of
convex sets to which the presented results can directly be
applied.
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