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ABSTRACT 

This paper describes the results of a study into the dynamic 
behavior of a magnetic bearing system. The research focuses 
attention on the influence of nonlinearities on the forced response of 
a two-degree-of-freedom rotating mass suspended by magnetic 
bearings and subject to rotating unbalance and feedback control. 
Geometric coupling between the degrees of freedom leads to a pair 
of nonlinear ordinary differential equations which are then solved 
using both numerical simulation and approximate analytical 
techniques. The system exhibits a variety of interesting and 
somewhat unexpected phenomena including various amplitude 
driven bifurcational events, sensitivity to initial conditions and the 
complete loss of stability associated with the escape from the 
potential well in which the system can be thought to be oscillating. 
An approximate criterion to avoid this last possibility is developed 
based on concepts of limiting the response of the system. The 
present paper may be considered as an extension to an earlier study 
by the same authors which described the practical context of the 
work, free vibration, control aspects and derivation of the 
mathematical model. 

NOMENCLATURE 
A 	coupling parameter 
B flux (T) 
E eccentricity 
F 	force (N) 

dimensional proportional feedback (Tim) 
✓ potential energy 
x,y 	dimensional position (m) 	• 
X,Y nondimensional position 

a 	force proportionality constant (1/m) 

• stiffness (proportional feedback) 

• damping (derivative feedback) 

'P 	forcing frequency 

C,D,G,H constants in the harmonic balance solution 

I Current address: Engineer, Binding Design Group, Power 
Generation Business Unit, Westinghouse Corp., Orlando, FL. 

INTRODUCTION 
Magnetic bearings are under development for use in a 

number of practical applications (O'Connor, 1992) and offer 
compelling advantages in certain circumstances. However, they also 
present significant challenges to the designer of magnetic levitation 
systems for rotating shafts where rotor dynamic stability and robust 
vibration control are fundamental considerations (Nonami, 1990; 
Williams et al., 1991; Lee and Kim, 1992). 

Hebbak (1985) well illustrated several nonlinear aspects of 
magnetic bearings and examined the effects of coordinate coupling 
that arises from eddy currents during shaft rotation. 

The present work examines the effects of coordinate 
coupling due to the geometry of the pole arrangement and the 
uneven flux distribution that results from nonconstant gaps when the 
shaft is displaced from the bearing center. These coupling forces 
arise even in the nonrotating case. In this work, the effects of eddy 
currents and other transient phenomena are neglected. 

SYSTEM MODEL 
Consider the active magnetic bearing shown schematically in 

figure 1. Each magnet pair is independently subject to linear flux 
control, but the forces from the actuator include coordinate coupling. 
Experimental measurements were used to determine the relationship 
between principal and normal forces. Details of the form of this 
coupling can be found in Knight et al. 1993, together 'with the 
derivation of the equations of motion. In summary, it was found that 
the ratio of the attractive, on-axis force between each magnet and Me 
shaft to the normal, off-axis force was proportional to the sHaft 
displacement in the off-axis direction. For magnet 1, for instancei 

Fx  = axFy 	 (1) 

The principal force is modeled using one-dimensional 
magnetic circuit theory. Applying independent-axis control of flux, 
making the flux in each magnet equal to a steady bias flux plus a 
control flux 

B1= Bb + Bi sc 	 (2) 

where the control flux is of equal magnitude but opposite sign in 
opposing magnets, i.e., 

Six= -B3,e 	 (3) 

and is proportional to shaft displacement 
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coil 

X 

gap 

B le= -kY 
	

(4) 

The components of dimensionless force from all magnets acting 
together can be derived as 

Fx  = Kx - 	(1 + K2y2) 	 (5a) 

F,= Ky - 	(1 + K2x2) 	 (5b) 

for the case of symmetric geometry and control, with no gravity 
loading. 

FIGURE 1. Geometry of active magnetic bearing and shaft 

It is important to note that in the absence of geometric 
coupling of x and y forces, this system would be entirely linear. 
The actual forces available hum a magnet arrangement will contain 
additional nonlinearities, but these are neglected in the present 
analysis. Note also that an increase in the proportional gain does not 
diminish the magnitude of the coupling, but increases it. 

These forces can be obtained from a potential energy 
function : 

v 	_ 419 (x2 + y2) _ x2x2y2 	(6) 

motion of a small ball rolling on this potential energy surface as 

where the terms are given in the nomenclature section. A useful 
analogy is to consider the free behavior of the shaft akin to the 

shown in figure 2. Three different values of the coupling parameter 
are used. Due to the coupling (the last term in equation 1) these are 
not surfaces of revolution and it is precisely this apparently subtle 
feature that underlies much of the nonlinear behavior to be described 
later. If coupling and deflections are relatively strong then figure 
2(c) indicates the possibility of trajectories 'escaping' from the 
region locally surrounding the stable equilibrium (rest position). 
Although this 'unstable in the large' type of behavior is less likely to 
occur for practical values of the system parameters (the shaft may hit 
the magnets) the potentially catastrophic nature of this event is given 
due consideration. 

Derivative feedback control is also introduced and the 
subsequent actuator forces can be added to an unbalance forcing 
function which finally results in dimensionless equations of motion 
of the form: 

X" = - XX + 	- &X( +K2Y2  + 2KTYY' + F2Y12  
2 	 (7) 

+ Efl2cosSIT 

I +}c2x2  + ncrxr + r2r2  
2 	 (8) 
+ Eli sinf2T 

where again the terms are given in the nomenclature section. The 
primes indicate differentiation with respect to dimensionless time T. 
These equations may be integrated in time after assigning values to 
the system parameters K, r, A and E, along with appropriate initial 
conditions for the state variables X, Y, X' and Y. It should be 
noted that the forms of the forcing function in the final terms of 
Equations (2) and (3) also constitute initial conditions, in the form of 
an assumed phase angle for the forcing function at T = 0. Initially, 
steady-state oscillations will be considered using both numerical 
simulation and approximate analytical techniques. This will be 
followed by a transient study focussing attention on initial behavior 
starting from the rest state. The catastrophic 'escape' scenario 
corresponding to figure 2(c) with forcing is described including the 
development of a potentially useful approximate criterion for 
restricting the forces to avoid this possibility (Walsh, 1990). 

(a)  

(b)  

FIGURE 2. Potential energy wells for different degrees of coupling 
A: 0.1, 0.2, 0.5 (K = 5.0). 
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STEADY STATE RESPONSE 
Two methods are used to examine the response of the 

system to unbalance forcing: numerical integration from arbitrary 
initial conditions using a fourth-order Runge-Kutta algorithm; and 
approximate calculation of steady state solutions by the harmonic 

• balance method. In the former approach a sufficiently large number 
of transient cycles are allowed to decay before recording the 
magnitude of the steady-state response. These solutions may be 
considered exact, and a variety of sophisticated algorithms and fast 
computers have shifted much research interest toward numerical 
simulation. However, the data generated by such an approach is 
often cumbersome and difficult to interpret. In the latter approach the 
assumed solution is harmonic and hence only steady-state 
information can be obtained. The solutions are approximate (a series 
solution is truncated) but it is still useful to obtain a functional form 
for the solution which captures the essential response dependence on 
system parameters. Clearly it is useful to combine and compare 
these two approaches, and this is the path followed by the present 
paper. 
Numerical simulation 

The effects of four parameters are examined: K, r, A and E. 
The proportional control coefficient K determines how rapidly the 
flux, and thereby the force, from a magnet is reduced as the shaft 
approaches that magnet. A value of Kr-1 would cause the flux to be 
reduced to zero at contact (not counting the contribution from the 
derivative control coefficient r). Larger values of K would 
correspond to "stiffer" bearings. Because of the form of non- 
dimensionalization of Equations (2) and (3), however, an increase in 
K while holding r constant causes a decrease in the effective 
dissipation coefficient, by virtue of a change in the natural 
frequency. This must be considered when interpreting the results of 
parametric studies, since a straightforward increase in the 
dimensional quantity k (1/m) would not affect the dissipation 
(derivative control) coefficient. The fact that K cannot be eliminated 
from the equations of motion is a result of the essential nature of 
nonlinear systems. 

The measurements of Knight etal. 1992, indicate that 0.15 
is a reasonable value for the coordinate coupling coefficient A. 
These measurements were made using an actuator geometry similar 
in size and clearance to those in present use in magnetic bearings. In 
the calculations below, A is varied from 0.05 to 0.25. The values of 
F were chosen to provide dissipation of the same order as in a linear 
system having damping ratios between 0.1 and 0.3. 

Figure 3 shows the effect of increasing the coefficient K 
from 1.0 in part a to 3.0 in part b to 5.0 in part c. As noted above, 
increasing K alone results in a smaller value of the derivative control 
coefficient. With this in mind. Figure 3 indicates an important 
feature of the system: that for some combinations of parameters, the 
response exhibits a split, with the motion on one axis having a much 
higher amplitude than that on the other axis. Associated with this 
split is a sudden jump in one of the amplitudes as the frequency is 
increased. In fact, one of the solutions of Figure 3c extends beyond 
an eccentricity of 1.0, which in the physical case would result in 
solid contact. At some frequencies near the natural frequency, 
however, two solutions exist that are both within the physical 
bounds of the system. Furthermore, the solutions are dependent on 
the initial conditions. For the case shown, the integration begins 
with both shaft position and velocity equal to zero. The numerical 
integration proceeds until all transients have decayed and the peak 
amplitudes in the two directions are sampled. The forcing function, 
the final terms in Equations (2) and (3), also imposes an implicit 
initial condition by virtue of its assumed phase. In fact, the cosine 
portion of the forcing function begins with a step imposition of force 
at time t4, although all transients associated with this discontinuity 
have decayed before the amplitudes are sampled. Practically, loading 
of this sort might result from blade loss in a turbomachine. If, 
however, the cosine and sine parts of the force are exchanged, the 
solutions for X and Y are also found to have exchanged places. This 
dependence on phase or initial conditions is a characteristic of! 
nonlinear systems. 

0
o 0.5 	1 	1.5 	2 	2.5 

Frequency 

Frequency 

FIGURE 3. Effect of variation in dimensionless proportional control 
coefficient K: 1.0, 3.0, 5.0 (A = 0.15, F = 0.4). 
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FIGURE 4. Typical time series and phase projections of the coupled 
oscillation (K = 5.0, A = 0.15, r =0.4, E = 0.1, CI =0.9925). 
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FIGURE 5. Effect of variation in the coupling parameter A: 0.05, 

	

0.15, 0.25 	= 0.4, K = 3.0). 

Reduction of the derivative control coefficient F can also 
bring about a situation with multiple solutions, as shown in Figure 
6, as can an increase of the unbalance eccentricity, not shown. The 
important practical implication of this type of loss of stability is that 
it may cause a sudden, discontinuous jump in the response. 

Thus, the bifurcation seems mostly to be an amplitude-
driven phenomenon, such that when a critical amplitude is exceeded, 
the solutions split. In all cases, the split is initial-condition-
dependent. In some cases the split is followed by instability. 
Solution by Harmonic Balance 

The other approach to examining the steady-state response of 
a nonlinear system adopted in the present study is the harmonic 
balance method, which is approximate but analytical rather than 
numerical (Jordan and Smith, .1987; Virgin, 1988). It has the 
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FIGURE 6. Effect of variation in derivative control coefficient r: 
0.2, 0.4, 0.6 (K = 3.0, A = 0.15). 

Figure 7 shows the amplitudes obtained by harmonic balance 
for the case corresponding to Figure 6a. These results indicate that 
in the neighborhood of the natural frequency, four solutions actually 
exist; two are identical. Two of the solutions are apparently 
unstable, but the harmonic balance method does not yield stability 
characteristics. Based on the results of numerical integration, 
however, it appears that the solutions corresponding to equal 
amplitudes for X and Y are unstable when they lie between the 

advantage that both stable and unstable solutions can be located, 
whereas numerical integration can locate only stable solutions. 

The method consists of assuming steady solutions of the 
form 

X = C cosf2T + DsinDT 	 (9) 

Y = G cosfIT + HsinfIT 	 (10) 

where C, D, G, and H are to be determined. Equations (4) and (5) 
are differentiated and substituted into the equations of motion. The• 
resulting powers of trigonometric functions are expanded using trig 
identities, after which the harmonics higher than 1 are neglected. 
Because the truncation of higher harmonics is not performed until 
after the powers of trig functions are expanded, the solution retains 
its nonlinear character, although the equations have been 
approximated. The resulting four algebraic equations for the 
constants C, D, G, and H are coupled and highly nonlinear and 
must themselves be solved by a numerical Newton-Raphson 
iteration. When the constants are found, the steady amplitudes can 
be calcula ed readily. 
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In Figure 4a is shown a typical time series of the X and Y 
displacements in the region where the symmetry of the response is 
broken. It is interesting to note that a linear response based on a 
paraboloid potential energy surface would have resulted in a phase 
lag of nabetween the two responses, as well as equal amplitudes. 
This effect is seen more clearly in figure 4b where X and Y are 
plotted against each other, the phase projection of Figure 4c. 

The effect of the coupling parameter can also be examined. 
Figure 5 illustrates the effect of increasing the value of A, while K is 
held constant at 03. The values of all parameters except A are equal 
to those of the case shown in Figure 3b. As A is increased beyond a 
threshold value, between 0.15 and 0.25, multiple solutions appear 
near the natural frequency. In this set of plots, the natural frequency 
is a constant, making this parametric variation somewhat easier to 
interpret than the previous one. 
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unequal solutions. Thus the jump in one of the amplitudes stems 
from a change in that solution's stability. Where the equal-amplitude 
solutions lie below the unequal solutions, they are the stable ones. 
The unequal solutions are.believed to exist at all frequencies, but are 
difficult to locate by Newton-Raphson beyond the range that is 
shown. 

The close correspondence between the numerical and 
analytical results supports the validity of both methods. Neither 
method alone is sufficient for a complete understanding, however, , 
because the numerical solutions are dependent on initial conditions, 
and the analytical solutions provide no information on stability. 
Stability analyses based on Floquet theory and numerical path-
following techniques will form the basis of future research. 

0 
o 	0.5 	I 	1.5 	 2 5 

Frequency 
• 

FIGURE 7. Multiple coexisting solutions obtained using the 

harmonic balance method (K = 3.0, A = 0.15, r = 0.2). 

TRANSIENT RESPONSE 
In a typical linear dynamic system the natural period is a 

constant and steady state amplitudes are independent of initial 
conditions, i.e. the response is unique. This is not necessarily the 
case for nonlinear systems and Knight et al. 1993 have shown that 
for the system under consideration the natural period of the coupled, 
unforced, undamped system is a function of amplitude and 
interesting precession behavior is observed. For the forced nonlinear 
system the initial conditions determine which steady state solution is 
picked up. Furthermore, in chaotic systems this sensitivity to initial 
conditions is extreme with adjacent trajectories diverging 
exponentially [Jordan and Smith, 19871 even though the system is 
deterministic and the response bounded. 

An interesting feature of this system is found for the forced 
case corresponding to Figure 2c. Suppose the system is started from 
rest. Applying the periodic force will result in transient behavior 
followed by one of two general outcomes. First, the system may 
settle into some kind of steady-state behavior, resulting in an 
oscillation of the form shown in figures 3-7. However, a second 
and more dramatic possibility occurs when the forcing is sufficiently 
large to cause 'escape' from the potential energy well, i.e. enough 
energy is present in the system for the schematic ball to traverse the 
hilltop which surrounds the equilibrium point: the stiffness becomes 
negative. In a nonlinear system such as this the question of what 
constitutes 'large' forcing is not as simple as it appears. Clearly, the 
greater the forcing magnitude (eccentricity E) the greater the 
response, and proximity to the resonant frequency is also likely to 
cause magnified response. The essentially nonlinear phenomenon of 
escape is captured by mapping the combinations of forcing 
parameters which lead to escape. This is shown in Figure 8 for a 
grid of approximately 40,000 simulations. The initial conditions are 
zero displacement and velocity in both directions. The black areas 
indicate that starting from rest the solution escaped (to infinity) 
within four forcing cycles and the grey corresponds to escape 
between four and 100 cycles. The unshaded regions are those 
forcing parameter combinations that lead to steady state behavior. 
The general dependence of escape on the forcing parameters is as 
expected, however the boundaries between escape and no escape are 
fractal in nature, revealing self-similar behavior on finer and finer 
length scales (Walsh, 1993). A close up view of the resonance 
region is shown in figure 8b. 
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FIGURE 8. Escape eccentricity versus escape frequency ratio (K = 

3.0, A = 0.15, T = 0.2, E = 0.1), the lower figure is an 
enlargement. 

Ap annroxlmate criterion 
It is tempting to try to establish a criterion such that escape is 

avoided. This type of behavior has been encountered in other 
physical systems with a softening spring nonlinearity and the 
following approach delineates regions of the forcing parameters as 
safe or unsafe according to an ad hoc analytical criterion which can 
then be compared directly to the escape boundaries obtained using 
numerical simulation. 

Returning to the approximate analytical solutions obtained 
using the harmonic balance method it is relatively easy to recast the 
equations so that given a limiting displacement the combination of 
forcing parameters required to achieve this response can be 
identified, and plotting these boundaries in the parameter space the 
safe (below the boundary) and unsafe (above the boundary) regions 
can be obtained. This is shown in figure 9a where K = 3, Xmax = 

0.4, A = 0.15 and T is varied as indicated. Figures 9b-d show 
similar plots where a different parameter has been varied while the 
others are kept fixed. In all cases the effect of the parameters on the 
escape characteristics are more or less as expected. Although these 
results are based on steady-state oscillation, by adjusting the 
maximum allowable displacement it is possible to ensure that the 
boundaries are below the exact transient results of figure S. As 
expected the proximity to resonance has the greatest influence on the 
likelihood of escape. Similar approaches have also been developed 
based on limiting the maximum velocity or total energy of the 
response and various safety factors have been incorporated (Virgin, 
1989; Virgin et al., 1992). 
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FIGURE 9. Loci of the lowest eccentricity which causes a specified 
displacement for a given forcing ratio. Results based on harmonic 
balance. Base parameters: X max  = 0.4, A = 0.15, r= 0.4, K = 

3.0. (a) variation of r, (b) variation of A, (c) variation of Xmax , 
(d) variation of K.  

CONCLUSIONS 
Equations of motion and limited parametric studies are 

presented for the case of a magnetic bearing subject to flux control, 
with geometric coordinate coupling. There are two effects of the 
coupling parameter on the system potential energy: a reduction of the 
principal stiffness, and introduction of a nonlinear normal stiffness. 

The equations of motion are nonlinear and exhibit behavior 
that is distinctly different from that of linear systems. In forced 
response (rotating unbalance), the amplitudes of the system show: 
bifurcations that are the result of changes in stability of multiple 
coexisting solutions. The stability seems mostly to be amplitude 
dependent, and the "critical" amplitude is a function of several 
parameters: K, G, E and A. Under certain circumstances the system 
may lose all stability resulting in escape. An approximate criterion to 
avoid this possibility is introduced 

The practical consequences of the results presented here are 
significant to the design of magnetic bearing actuators and 
controllers. The bifurcations and the associated tendency to escape, 
which appear to be primarily amplitude-driven phenomena, are 
predicted to begin within the clearance of the auxiliary bearings 
typical of present magnetic bearing systems. The possible interaction 
of coordinate coupling with the additional nonlinearity involved in 
accidental contact with the auxiliary bearings is beyond the scope of 
the present work, but should be pursued further. The discontinuities 
are especially likely to cause difficulty when there is a sudden 
change in parameters, which could result from large unbalance due 
to blade loss or other failure, a sudden amplitude shift due to base 
motion or step changes in bearing force associated with temporary 
control interruption. It is likely that most of these effects could be 
removed or compensated for if the control of axes were coupled 

• appropriately. To the authors knowledge, this is not being done in 
practice because it requires more complex control algorithms and/or 
additional circuitry. Because the nonlinear effects explored here all 
arise from the geometric coupling in the bearing actuator, the design 
of the actuator is of extreme importance. The independent horseshoe 
design used in this paper is one of two widely used geometries, the 
other consisting of a series of pole pairs extending inward from a 
continuous baeking ring. The second geometry may be found to be 
preferable, but additional measurements are needed to determine the 
level of coupling to be expected there. It should not be assumed to 
be smaller without further study. 

In the long term, successful implementation of magnetic 
bearings where large eccentricities may be encountered will depend 
on a deeper understanding of the nonlinear characteristics of the 
combined rotor-actuator-control system. 
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