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Abstract—To solve the problem of nonlinear blind source 
separation (BSS), a novel algorithm based on kernel multi-
set canonical correlation analysis (MCCA) is presented. 
Combining complementary research fields of kernel feature 
spaces and BSS using MCCA, the proposed approach yields 
a highly efficient and elegant algorithm for nonlinear BSS 
with invertible nonlinearity. The algorithm works as follows: 
First, the input data is mapped to a high-dimensional 
feature space and perform dimension reduction to extract 
the effective reduced feature space, translate the nonlinear 
problem in the input space to a linear problem in reduced 
feature space. In the second step, the MCCA algorithm was 
used to obtain the original signals. 
 
Index Terms—nonlinear blind source separation, kernel 
feature spaces; multi-set canonical correlation analysis; 
reduced feature space; joint diagonalization 
 

I.  INTRODUCTION 

In recent years, blind source separation (BSS) raises 
great interest. In fact, BSS plays an important role in 
many diverse application areas, such as radio 
communications, radar, sonar, seismology, image 
processing, speech processing (cocktail party problem) 
and biomedical signal analysis where multiple sensors are 
involved. In the last years, linear BSS has become 
relatively well established signal processing and data 
analysis techniques [1]. On the other hand, nonlinear BSS 
is technique that is still largely under development, and 
has the potential to become rather powerful tools [2]. 

Kernel-based methods have also been considered for 
solving the nonlinear BSS problem [3], [4]. The data are 
first implicitly mapped to high-dimensional feature space, 
and the effective reduced feature space in feature space is 
extracted, translate the nonlinear problem in the input 
space to a linear problem in reduced feature space. 

Canonical correlation analysis (CCA) is a classical tool 
in multivariate statistical analysis to find maximally 
correlated projections between two data sets, since it was 
proposed by H. Hotelling [5]. There are detail 
descriptions of CCA in [6], which has been widely used 
in many modern information processing fields, such as 
for test of independence [7], blind equalization of MIMO 
channels [8] and BSS [9],[10]. With CCA, the objective 
is to find a transformation matrix which is applied to 
mixtures and maximizes the autocorrelation of each of 
the recovered signals (the outputs of the transformation 
matrix). By maximizing this autocorrelation, the original 
uncorrelated source signals will be recovered. This 

approach rests on the idea that the sum of any 
uncorrelated signals has an autocorrelation whose value is 
less or equal to the maximum value of individual signals 
[11]. The algorithm based on CCA which computation 
burden is little and the flexibility is strong, can satisfy the 
demand of engineering application. Based on the idea of 
maximize generalized relativity measurement, J. 
Kettenring present-ed several ways to generalize CCA to 
more than two sets of variables, namely MCCA (Multi-
set CCA) [12]. By assuming that sources are not 
correlated with the others and every source has a different 
temporal structure, which is a mild condition that can be 
easily, satisfied in practical applications, a MCCA linear 
BSS algorithm was proposed in [13]. This paper proposed 
a novel nonlinear BSS algorithm based on kernel feature 
spaces and MCCA. The algorithm can adapt to nonlinear 
BSS with invertible nonlinearity. The details of the new 
method will be described in the following sections. The 
paper is organized as follows: Section II presents the 
detail analysis of linear BSS algorithm based on MCCA. 
In the Section III, the new nonlinear BSS algorithm based 
on kernel MCCA will be analyzed. Then some 
simulations of the algorithm proposed in this paper are 
conducted in the Section IV. Section V is the conclusion.  

II.  LINEAR BSS ALGORITHM BASED ON MCCA 

A.  Linear BSS problem formulation 
Consider the following instantaneous linear mixture 

model: 

 ( ) ( ) ( )t t t= +x Hs n . (1) 

where  is the m-
dimensional vector of mixed signals observed by m 
sensors, is the additive noise vector, 

1 2( ) ( ( ), ( ), ( ))T
mt x t x t x t= Lx

( )tn

( 1, )t = L T

H is the 
unknown m n×  mixing matrix,  1( ) 2, ( ),t s t( ) (t s=s

( ))T
ns tL ( 1, )t T= L

( )ts

 is the n-dimensional vector of 
source signals (which is also unknown and m ), and 
the superscript T  denotes the transpose operator. BSS 
methods aim at estimating the source signals . 
Suppose the source signals are not correlated with the 
others and every source has a different temporal structure, 
and the additive noise vector  is statistically 
independent of . 

n

( )ts

≥

( )tn
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2 Nonlinear Blind Source Separation Using Kernel Multiset Canonical Correlation Analysis 

The task of BSS is to estimate the mixing matrix H  
(or is pseudo-inverse, that is referred to as the 
demixing matrix), given only a finite number of 
observation data . And obtain the 
estimated source signals  

: 

= #W H

( ) ( 1,t = L
( )y

tx )
(t y=

T

t

1 2( ), ( ), (nt y t yL ))Tt
( 1, )t T= L

 ( ) ( )t =y Wx . (2) 

We just consider the case of m , for less sources 
than mixtures ( ) the BSS problem is said to be 
over-determined, and it is easily reduced to a square BSS 
problem by selecting m mixtures or applying some more 
sophisticated preprocessing like PCA. 

n=
m n>

B.  MCCA 
CCA is a multivariate statistical technique similar in 

spirit to principal component analysis (PCA). While PCA 
works with a single random vector and maximizes the 
variance of projections of the data, CCA works with a 
pair of random vectors (or in general with a set of m 
random vectors) and maximizes correlation between sets 
of projections. 

Given two random vectors, and , of dimension 
 and . The first canonical correlation can be defined 

as the maximum possible correlation between the two 
projections  and  of and  [6]: 

1x

(2
1 1= α

2x

2x

1p 2p

(1)
1 1

T=u α x1
)Tv 1x 2x

( ) ( )

( ) ( )

(1) ( 2)
1 1

(1) ( 2)
1 1

(1) (2)
1 1 2 1 1 1 2

,

(1) (2)
1 12 1

1 1, (1) (1) (2) (2)2 2
1 11 1 1 22 1

, max ,

max

T T

T

T T

corrρ =

=

α α

α α

x x α x α x

α C α

α C α α C α

 (3) 

where . 11 1 1 12 1 2 21 2 1 22 2 2, , ,T T T= = = =C x x C x x C x x C x xT

After finding the first pair of optimal vectors  and 
, we can proceed to find the second pair  and 
 which maximizes the correlation and at the same 

time ensures that the new pair of combinations 2 2{ ,  is 
uncorrelated with the first set . This process is 
repeated until we find all the  pairs of 
optimal vectors  and , 

(1)
1α
(1)
2α

u v

(2)
1α
(2)
2α

}

p
1 1{ , }u v

min( ,
1, 2, ,

1 2 )p p =

i p(1)
iα

(2)
iα = L . 

Since the choice of rescaling is therefore arbitrary, 
Normalizing the vectors  and  by letting 

 and 22 , we see that CCA 
reduces to the following Lagrangian [6]: 

(1)
iα

(2)
i =α

(2)
iα

(1) (1)
11 1T

i i =α C α (2) 1T
iα C

(1)
(1) (2) (1) (2) (1) (1)

12 11

(2)
(2) (2)

22

( , , ) ( 1)
2

( 1)
2

T Ti
i i i i i i i

Ti
i i

L
λ

λ

λ

= −

− −

α α α C α α C α

α C α

−
. (4) 

Taking derivatives in respect to  and , the 
CCA problem can be obtained by solving the following 
generalized Eigen values problem 

(1)
iα

(2)
iα

 . (5) 
1 (1) 2 (1)

12 22 21 11

1 (2) 2 (2)
21 11 12 22

i i i

i i i

λ

λ

−

−

=

=

C C C α C α

C C C α C α

There’s a generalized Eigen problem of the 
form λ=Ax Bx . We can therefore find the coordinate 
system that optimizes the correlation between 
corresponding coordinates by first solving for the 
generalized eigenvectors of (5) to obtain  and . (1)

iα
(2)
iα

According to the ways in [6] we can generalize CCA 
problem to the minimization of the total distance. 

For CCA, two matrices  and  contain the 
vectors  and . The CCA 
problem can also be express as 

(1)A
(2)
1( ,α

(2)A
(2), )pα

(1) (1)
1( , , pα αL ) L

 

(1) ( 2)

(1) (2)
12

,

( ) ( )

( ) ( )

max tr( )

. .

0

, {1, 2}, , , 1, , ,

T

k T k
kk

k T l
i kl j

s t I

k l l k i j p j i

=

=

= ≠ = ≠

A A
A C A

A C A

α C α

L

 (6) 

where I  is an identity matrix with size . q q×
The canonical correlation problem can be transformed 

into a distance minimization problem where the distance 
between two matrices is measured by the Frobenius norm: 

 

(1) ( 2)

(1) (2)
1 2

,

( ) ( )

( ) ( )

min

. .

0

, {1, 2}, , , 1, , ,

F

k T k
kk

k T l
i kl j

s t I

k l l k i j p j i

−

=

=

= ≠ = ≠

A A
x A x A

A C A

α C α

L

. (7) 

We can give a similar definition for MCCA. Given m 
multivariate random variables in matrix form{ } . 
We are looking for the linear combinations of the 
columns of these matrices in the matrix form 

1, , Kx xL

(1) ( ), , KA AL  such that they give the optimum solution of 
the problem: 

 

(1) ( )

( ) ( )
, 1,, ,

( ) ( )

( ) ( )

min

. .

0

, 1, , , , , 1, , ,

K

K k l
k lk l k l F

k T k
kk

k T l
i kl j

s t I

k l K l k i j q j i

= ≠
−

=

=

= ≠ = ≠

∑
A A

x A x A

A C A

α C α

L

L L

 (8) 

which is the sum of the squared Euclidean distances 
between all of the pairs of the column vectors of the 
matrices . ( ) , 1, ,k

k k K=x A L

C.  BSS Algorithm Analysis 
We start by specifying the signal. It is assumed that the 

sources are spatially uncorrelated, the correlation matrix 
of the sources [ ] E{ ( ) ( )}T

ss t tτ τ= −R s s
}

 is a diagonal 
matrix, where E{⋅  denotes the statistical expectation 
operator. For nonzero correlation lags, we have 
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0[ ] { ( ) ( )} { ( ), , ( )}T
ss mE t t diagτ τ λ τ λ= − = LR s s τ  (9) 

with ( ) 0iλ τ ≠  for some nonzero delaysτ . 
First, we choose the observed signals  as  and ( )tx 1x
( )t τ−x  as . Then the Eigen value problem in (4) 

becomes 
2x φφφ

 
1 (1) 2

1 (2) 2 (2)

( ) (0) ( ) (0)

( ) (0) ( ) (0)

(1)
xx xx xx i i xx i

xx xx xx i i xx i

τ τ λ

τ τ λ

−

−

=

=

R R R α R α

R R R α R α
 (10) Figure 1. Invertible nonlinear model. 

where ( )xx τR  and  are the correlation matrices of 
the mixed signals. 

(0)xxR

 In the context of BSS, the vectors  and  in (5) 
are the same and denote them by . Which 
is the demixing vector applied to the mixed signals. The 
Separate signals can be obtained 

(1)
iα

(1)
i iα

(2)
iα

(2)
iα= =w

 . (11) ( ) ( )T
i it =y w x t

2

Equation (10) can be rewritten as 

 1 1(0) ( ) (0) ( )xx xx xx xx i iτ τ− − = iλR R R R w w  (12) 

which can be further simplified into 

 . (13) ( ) (0) , 1, ,xx i i xx i iτ λ= =R w R w L m

Joint the sub problems into one, we have 

 ( ) (0)xx xxτ =R W ΛR W  (14) 

where the demixing matrix W  contains the 
vectors , 1( , , )mw wL 1( , )diag , mλ λ=Λ L  is a diagonal 
matrix. 

So the CCA problem for  and ( )tx (t )τ−x  can be 
simplified into a generalized Eigen value decomposition 
problem, and can be used for BSS [9]. 

For MCCA, we choose the vector 1 2, , , Kx x xK  
as 1 2( ), ( ), , ( )Kt t tτ τ− − −x x xK τ

,
. Compare the (7) and 

(8). The MCCA problem for 1 2, ( ),t t( )τ τ− − Kx x  
( )Kt τ−

{ [ ], , 1, , ,xx i j i j K i jτ τ− = ≠R L

x can be simplified into a joint diagonalization 
problem. We can find a joint diagonalizer W  of 

 using the joint 
approximate diagonalization method in [14],[15], which 
satisfies 

}

 ,[ ] T
xx i j i jτ τ− =WR W D  (15) 

where  is a set of diagonal matrices. The separate 

signals are computed as 
,{ i jD }

t( ) ( )Tt =y W x . We call this BSS 
algorithm MCCA. 

III.  KERNELIZING MCCA METHOD FOR NONLINEAR BSS 

We generalize the MCCA linear BSS algorithm 
described above to the invertible nonlinear setting 
depicted in Fig. 1 [4]. This underlying mixing process 

( )t =x  ( )( )tf s  is more general than the post-nonlinear 
xture model proposed in [16] because thmi e nonlinearity 

wise
h

correlati etween 

f  is not restricted to be component . 
By projecting the input data ( )tx  to some igh-

dimensional feature space via a nonlinear mapping φ  and 
then find the weight matrix W  that maximizes the 

on b separate signals. Obviously, if 
1−=φ f  and 1−= AW then , es are perfectly the sourc

recovered and ( ) ( )t t=y s  [3]. 
The basic idea of kernel-based method allows 

onstructing very powerful nonlinear variants of existing 
linear t based algorithms by mapping the 
data x 1, )T

c
 scalar produc
( )t (t = L  i plicitl  into som e 

ace F  through some mapping :ℜ Fφ . 
Performing a simple linear algorithm in F , then 
corresponds to a nonlinear algorithm in input space. All 

efficiently and never directly but implicitly 
in famous kernel 
trick

m y e kernel featur

sing the 

sp m →

can be d
F

one 
 by u
( , ) ( ), ( )ij i j i j= =K K x x φ x φ x . Kernels offer a 

great deal of flexibility, as they can be generated from 
other kernels. In the kernel, the data appears only through 
entries in the Gram matrix. Therefore, this approach gives 
a further advantage as the number of tunable parameters 
and updating time does not depend on the number of 

ce is
clustering [4]. Deno the mapped p ints by

attributes being used. 

A.  Constructing reduced kernel feature space 
However, a straight forward application of the kernel 

trick to BSS has so far failed as, after kernelizing, the 
BSS algorithm has to be applied to a T dimensional 
problem which is numerically neither stable nor tractable. 
We need to specify how to handle its possibly high 
dimensionality. As in Fig. 2, two methods that obtain an 
orthogonal basis in feature space with reduced dimension 
are described [3]. 

A method to obtain the low dimensional subspa  
ting o : =xφ  

[ ]( (1)), , ( ( ))TLφ x φ x and [ 1: ( ),Lvφ φ v  = ], ( )dφ v . We 
assume that the columns of vφ  constitute a basis of the 
column space of xφ , form

 

ally expressed as  

( ) ( ) ( )span span and rank d= =v x vφ φ φ (16) 

And vφ  being a basis implies that the matrix T
v vφ φ  has 

full rank and i  an orthonormal basis can 

 

ts inverse exists,
be define as . This basis end 1/ 2: ( )T −Ξ = v v vφ φ φ ables us to 
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parameterize the signals in feature space as real valued d-
dimensional signals 

 
 
 
 

  (17) 1/ 2( ) : ( ( )) ( ) ( ( ))T T Tt t −= Ξ =x v vψ φ x φ φ φ φ x tv

)

T

By employing the kernel trick 

  (18) 
( ) ( ) ( ) ( , )

( ) ( ) ( ( )) ( , ( )

T T
ij i j i j

T T
it i it t

= =

= =
v v

v x

φ φ φ v φ v K v v

φ φ φ v φ x K v x

where , . Substituting (18) into 
(17) changes it to 

, 1, ,i j d= L 1, ,t = L

 

1
2

1 1 1

1

1

( , ) ( , )
( ) :

( , ) ( , )

( , ( ))

( , ( ))

d

d d

d

t

t

t

d

−
⎡
⎢= ⎢
⎢⎣

⎡ ⎤
⎢ ⎥⋅ ⎢ ⎥
⎢ ⎥⎣ ⎦

L
M O M

L

M

x

K v v K v v
ψ

K v v K v v

K v x

K v x

⎤
⎥
⎥
⎥⎦  (19) 

Another more direct method to obtain the low 
dimensional subspace is KPCA (kernel principal 
component analysis) [4]. For simplicity, we assume that 
the data is centered in feature space. To perform KPCA 
we need to find eigenvectors 1[ , , ]T= LE e e  and Eigen 

values 1 Tλ λ≥ ≥L  of the covariance matrix 1 T

T x xφ φ . 

Now, let  be the diagonal matrix with the Eigen values 
along the diagonal and let  

Λ

 1 T

T
⎛ ⎞ =⎜ ⎟
⎝ ⎠

x xφ φ E EΛ  (20) 

which can also be expressed as 

 ( ) ( )1 T

T
⎛ ⎞ =⎜ ⎟
⎝ ⎠

x x x xφ φ φ E φ E Λ  (21) 

So 1, , Tλ λL  are the Eigen values of 1 T

T x xφ φ  with 

corresponding Eigen vectors xφ E . Normalizing the first d 
eigenvectors yields a d-dimensional orthonormal basis  

mℜ

dℜ

　

Figure 2. Mapping the input data to reduced feature space. 

  (22) 1/ 2: ( )d T −Ξ = xφ E Λ

where using ( )  to ensure orthonormality 
and

1/ 2T −Λ
, ]d1: [ ,d = LE e e . So the input data corresponding in 

the reduced feature space can be described as 
1/ 2

1 1

( ) : ( ( )) ( ) ( ( ))
1 0

( (1), ( ))
1

1 ( ( ), ( ))0

T T T
d

T

T
d

d

t t T t

t

T T t

λ

λ

−= Ξ =

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥
⎣ ⎦

O M M

x xψ φ x Λ E φ φ x

e K x x

e K x x

⎤
⎥

d

 (23) 

which are calculated conveniently using the kernel trick. 

B.  Nonlinear BSS 
By mapping the signals x  from input space onto 

signals  in reduced kernel feature space, the 
nonlinear problem in input space has been transformed to 
a linear problem in reduced kernel feature space. So we 
can apply MCCA method to solve this linear BSS 
problem in reduced kernel feature space.  

( )t
( )txψ

For the signals in reduced kernel feature space 

 ( ) : ( ( ))Tt t= Ξ ∈xψ φ x ℜ

(t

 (24) 

We choose the vectors 1 2( ), ( ), ,t tτ τ− − Kx xψ ψ ψx  
)Kτ−  as the components 1 2, , , Kx x  in MCCA. The 

MCCA problem for 
xK

1 2( ), ( ), , ( )Kt t tτ τ τ− − −Kx x xψψ ψ  
can be simplified into a joint diagonalization problem. 
We can find a joint diagonalizer W  of 
{ }, i j[ ], ,i j i jτ τ 1, K,− = L ≠ψψR  using the joint 
approximate diagonalization method in [14],[15], which 
satisfies 

  (25) ,[ ] T
i j iτ τ− =ψψWR W Σ j

}

t

where {  is a set of diagonal matrices. The extracted 

d nonlinear components are , among 
which are the components of interest. Harmeling and 
Ziehe, et al. [4] have defined a selection procedure to find 
the original sources automatically. By repeating the 
algorithm with the same parameters (kernel choice, d ), 
but instead of sending  into the feature space we start 
with the  dimensional demixed results  , map them 
to the feature space, reduce the dimensionality and demix 
with MCCA, which yield y . The sought-after 
components of  are the ones that are matched best by 
the components 

,i jΣ

( ) ( )Tt = xy W ψ

( )ty

' ( )t

( )tx
d

( )ty
' t( )y  of the second run of MCCA in 

feature space.
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IV.  COMPUTER SIMULATIONS 

All simulations were conducted in the MATLAB 
environment running on an ordinary PC with double 
2.2GHZ CPU and 1GB size of memory. To make the 
demonstration more convincing, the blind separation 
algorithm was tested on mixtures of realistic speech 
signals (super-Gaussian signals) and modulated signals 
(sub-Gaussian signals). 

A.  Simulations for linear BSS by MCCA 
In order to measure the performance of algorithms, we 

use the performance index (PI) as in [17] defined by  

 
1 1
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1 1
( 1) max
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g
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∑ ∑

∑

⎞
⎟−
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⎠  (26) 
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Figure 3. Source signals. 
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where ijg  is the -element of the global system 
matrix 

( , )i j
=G HW  and max j ijg  represents the maximum 

value among the elements in the ith row vector of , G
max j jig  does the maximum value among the elements 
in the ith column vector of . When the perfect 
separation is achieved, the performance index is zero. In 
practice, the values of performance index around 10

G

2−  
gives quite a good performance. 

As shown in Fig.3, the source signals are two speech 
source signals and two modulated signals (a AM signal 
and a FM signal), which are mixed by random matrix H , 
the sampling points are 20000. The mixing signals are 
shown as in Fig.4. And the separation results by MCCA 
BSS algorithm are shown as in Fig.5, the cost time for 
separation is 0.1563s. It can effectively complete the 
separate processing and have a good performance of real 
time. 
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A lot of experiments have been conducted by the 
changing the impact of additive white Gaussian noise. 
Results as in Fig.4 show typical performance of the 
MCCA BSS algorithm is more accuracy and stabilization 
than CCA BSS algorithm. When the signal noise ratio 
(SNR) above zero, the performance index of MCCA BSS 
algorithm is less than , and gives quite a good 
performance. 

210−

B.  Simulations for nonlinear BSS by kernel MCCA 
In order to quantificationally evaluate the separation 

effect, here we choose the resemble coefficient ijξ  of 
separation signal and source signal to test the resemble 
degree of separating signal  and expecting 
signal . The resemble coefficient 

( )ty

ij( )ts ξ  can be described 
as [18] 
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Figure 9. Separate signals by kernel MCCA 
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where 0 1ijξ≤ ≤

1ij

. When j  (c is a constant),  ( ) ( )i t c t= ⋅y s
then ξ = . 

ij

It allows separate results e

j

xit difference on 
amplitude. When ( )ty  and ( )ts  are mutual 
independent, 0

i

ξ = . When 0ijξ <
signals and so gnals are reve  order. 

First simulation is to sub-Gaussian signal

, it means separate 
urce si rse

s. As shown 
in

t f
 (28) 

where 

 Fig. 7, the source signals are one sinusoidal signal and 
one FM signal: 
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π π
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1 2000, 2000st f= =L . These source signals are 
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Employing a Gaussian RBF kernel, 

 

nonlinearly mixed by 

1 2
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t e e

t e e− −

= −
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s s
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( ) 2 2, exp( 2i j i jK x x x x )σ= − −  (30) 

and set 20d = , using Clustering method to construct the 
featur

kernel MCCA nonlinear BSS algorithm are shown as in 

reduced e space. The mixing signals are shown as 
in Fig. 8. And the separation results by this proposed 
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Fig. 9. The resemble coefficients of separate signals and 
source signals are [0.9913 0.0142; 0.0117 0.9935] . 
It can effectively complete the separate processing and 
have a good performance. 

The second simulation is to super-Gaussian signals. As 
shown in Fig. 10, the source signals are two speech 
source signals (a man and a woman) =dr1_fetbo_sa2 
and =dr2_mcewo_sx182, were ly taken from 
the TIMIT database [3].These source signals are non-
linearly mixed by 

 
t

 (31) 

Employing a Gaussian RBF kernel, and set

1( )ts
 random2 ( )ts

1 2 1

2 2 1

( ) ( ( ) 1)cos( ( ))
( ) 1.5( ( ) 1)sin( ( ))
t t t
t t

π
π

= − +
= +

x s s
x s s

 20d = , 
 featur

Fig. 11. And 
 MCCA
 12. The 

ource

. It can 

using KPCA method to construct the reduced e 
space. The mixing signals are shown as in 
the separation results by this proposed kernel  
nonlinear BSS algorithm are shown as in Fig.
resemble coefficient matrix of separate signals and s  

signals is 
complete the separate processing successfully. 
 

V.  CONLUSION 

This paper proposed an algorithm for nonlinear BSS. It 
extends the MCCA linear BSS algorithm to the non-
linear domain using the “kernel trick”. In the first step of 
the method, the input data are mapped to high-
dimensional feature space by kernel trick and the 
effective reduced feature space is extracted by Clustering 
or KPCA method, translating the nonlinear problem in 
the input space to a linear problem in reduced feature 
space. In the second step, by using MCCA linear BSS 
algorithm, the linear BSS problem can be efficient solved. 
MCCA linear BSS relies only on second-order statistics 
of the observation signals, the computation burden is 
relatively light, can complete the blind separation of 
super-Gaussian and sub-Gaussian signals at the same 
time, which make it have a broad application foreground. 
The experimental results show that the kernel MCCA can 
complete the nonlinear separate processing successfully. 
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