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Ž .Measures of association between two random variables r.v. that are

symmetric nondecreasing functions of the canonical coefficients provided
by the nonlinear canonical analysis of the r.v.’s are studied. These mea-
sures can be used to characterize independence. Their estimators are
obtained by estimating a suitable approximation to nonlinear canonical
analysis. When some conditions ae satisfied, asymptotic distributions of
the estimators, both under the independence hypothesis and under depen-
dence, are given. A class of tests of independence with asymptotic level of
significance can be investigated.

1. Introduction. Several measures of association between two random
Ž .variables r.v. based on the canonical analysis of these r.v.’s have been

introduced in the literature, and a review of such measures can be found in
Ž . Ž .Cramer and Nicewander 1979 and Lazraq and Cleroux 1988 . A general´

Ž .enough study of these measures is proposed in Lin 1987 and, more recently,
Ž .in Dauxois and Nkiet 1997 , where a global study of the induced tests is

developed. In these works the measures considered are constructed using
Ž .linear canonical analysis LCA of the r.v.’s and, thus, characterize only lack

of a linear relationship. It can be interesting to look for another class of
measures of association which characterize independence.

Ž .The properties of nonlinear canonical analysis NLCA suggest that such a
class can be derived from this analysis, but there is little work in this
direction. The canonical coefficients from NLCA have already been used for
testing independence, but uniquely when the related random variables are

� Ž .�categorical see, for instance, Tsai and Sen 1990 . That is restrictive because
one knows that, in this particular case, NLCA is a LCA of suitable random
vectors, and thus it suffices to use classical measures of association. Conse-
quently, it appears that the use of NLCA is more interesting when the
related random variables are not categorical.

In this paper, we propose a class of measures of association between
random variables with values in any measurable spaces, constructed using
symmetric nondecreasing functions and the canonical coefficients derived
from NLCA. The properties of these measures show that they are appropriate
to characterize independence without any assumption on the distribution of
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the random variables considered. Using results about estimation of NLCA
� Ž . Ž .�Dauxois and Pousse 1975 , Lafaye de Micheaux 1978 and asymptotic

� Ž . Ž .�theory of canonical analysis Dossou-Gbete and Pousse 1991 , Pousse 1992 ,
a class of estimators is proposed for each measure, and the asymptotic
properties of these estimators are given. This leads us to introduce a class of
independence tests, and we show that this class includes tests based on the
usual chi-squared index. A test of the introduced class is obtained from a few

Žsteps. First, the chosen infinite-dimensional measure of association based on
. ŽNLCA is approximated by a finite-dimensional one based on a suitable

.LCA ; then the latter is estimated from an i.i.d. sample; then the test is based
on a simple function of the estimate. In Section 6.4 simulations are furnished
with the objective of evaluating performances of some tests of the introduced
class and comparing them to classical ones. The results suggest that these
tests are generally more powerful than classical tests and that the use of
B-spline approximation in the estimation of NLCA induces more powerful
tests than that based on the usual chi-squared index.

In order to emphasize the main points of the paper, certain proofs of
lemmas and propositions are left to Section 7.

( )2. Nonlinear canonical analysis NLCA of random variables. We
Ž . 2Ž .consider a probability space �, AA, P such that the Hilbert space L P of

random variables with finite second-order moment is separable.
Ž .Let X and Y be random variables defined on �, AA, P , with values in

Ž . Ž .measurable spaces � , AA and � , AA , respectively, and with probabilityX X Y Y
2Ž .distribution measures denoted by P and P . We denote by L P the spaceX Y X
Ž 2Ž ..of measurable real functions � defined on � and such that � � X � ��,X

2Ž . 2Ž .and by L P the space analogous to L P with respect to Y.Y X
Ž .Nonlinear canonical analysis NLCA is the search of two variables f �1

Ž . � 2Ž .� Ž . � 2Ž .� Ž .� X � � L P and g � � Y � � L P , such that the pair f , g1 1 X 1 1 1 Y 1 1
² : Ž . Ž 2 . Ž 2 .maximizes f , g � � fg under the constraints � f � � g � 1, with iter-

ations under orthonormality constraints. This means that, for i � 2, one
Ž . � 2Ž .� Ž . �searches for two variables f � � X � � L P and g � � Y � �i i i X i i i

2Ž .� Ž .L P , such that the pair f , g is a solution for the above maximizationY i i
² : ² :problem with the additional constraints f , f � 0, g, g � 0, for allk k

� 4k � 1, . . . , i � 1 .
Considering the subspaces

H � � X ; � � L2 P and H � � Y ; � � L2 PŽ . Ž . Ž . Ž .� 4 � 4X X Y Y

2Ž . � Ž .�of L P , it is known see Dauxois and Pousse 1975 that the solution for
the NLCA problem is obtained, for example, from spectral analysis of the
Ž . X Y X Ylinear self-adjoint operator T � � � , that is, the restriction of � � at� HX

H , where � X and �Y are the conditional expectations relative to X and Y,X
respectively. If T is a compact operator, NLCA exists and is characterized by
a triple:

� , � X , � Y ,Ž . Ž . Ž .� 4Ž . Ž .i�0, . . . , N i�0, . . . , Ni i ii�0, . . . , N 1 2
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� 4 Ž 2 .where N, N , N are elements of � � �� . In this triple, � is the1 2 i i�0, . . . , N
sequence of nonzero eigenvalues of T arranged in decreasing order and

Ž . Ž .repeated according to multiplicity; the systems � and �i i�0, . . . , N i i�0, . . . , N1 22Ž . 2Ž .are orthonormal bases of L P and L P , respectively, satisfyingX Y

� i � 0, . . . , N , T � X � � 2� X and � Y � ��1�Y � X .Ž . Ž . Ž . Ž .Ž . Ž .i i i i i i

The � ’s are termed the nonlinear canonical coefficients. Letting � be thei �

Ž .constant random variable with value equal to 1, one can see that T � � � .� �

Ž . Ž .So the first canonical terms are � � 1 and � X � � Y � � and are0 0 0 �

termed the trivial canonical terms.
As an important property of NLCA, one knows that X and Y are indepen-

dent if, and only if, for each i � 0, one has � � 0. This shows the interest ofi
constructing measures of association by the use of nonlinear canonical coef-
ficients.

REMARK 2.1. In fact, NLCA is a generalization of linear canonical analysis
Ž . Ž .of random vectors X � X , . . . , X � and Y � Y , . . . , Y �. Indeed, LCA of X1 p 1 q

and Y is the computation of the above variables f and g in the formsi i
f � Ý p ai X and g � Ýq bi Y . In LCA these variables are obtained fromi i�1 k k i i�1 k k
the spectral analysis of the finite rank operator R � V�1	2V V�1V V�1	2,1 12 2 21 1

Ž . Ž . � Ž .with V � � X 
 X , V � � Y 
 X � V , V � � Y 
 Y , where 
 denotes1 12 21 2
Ž .the tensor product between vectors see Section 7.3 . These operators are the

Ž . Ž . Ž .classical ones with matricial expressions � XX� , � YX� and � YY � , respec-
tively; they are covariance operators when X and Y are centered random
vectors. Throughout this paper we use operators and tensor products; for
details about the matricial correspondences, one may refer to Dauxois, Ro-

Ž .main and Viguier 1994 .

REMARK 2.2. Both LCA and NLCA are particular cases of canonical
analysis of Hilbertian subspaces H and H of a real separable Hilbert space1 2

² :H with inner product 	 , 	 . Canonical analysis of H and H is theH 1 2
² :computation of unit vectors f � H and g � H that maximize f , g H1 1 1 2 1 1

with iterations under orthonormality constraints. The solution for this prob-
lem is obtained from spectral analysis of several operators. One of them is the
self-adjoint operator T � 
 
 , where 
 stands for the orthogonalH H � H E1 2 1

projector onto the closed subspace E of H. Clearly, one can also use the
2Ž . Ž .operator 
 
 . When H is the space L P , LCA resp. NLCA is obtainedH H1 2

Ž . Ž . Žby taking H � span X , . . . , X and H � span Y , . . . , Y resp. H � H1 1 p 2 1 q 1 X
.and H � H .2 Y

Ž . Ž .The trivial canonical terms � � 1 and � X � � Y � � do not give0 0 0 �

any information about independence of X and Y. They can be avoided by
restricting NLCA to centered variables. Let us consider the spaces

H � � f � H � � f � 0 ,� 4Ž .X X

H � � g � H � � g � 0 ;� 4Ž .Y Y
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� X Y Ž . Ž .� �one can verify that, � f � H , � � f � 
 
 f . Canonical analy-X � H H H � HX X Y X

sis of H � and H � , which is called centered NLCA of X and Y, provide theX Y
same canonical terms as NLCA of X and Y except for the trivial terms. Since
the spectral decomposition of T is

N N
2 2T � � � X 
 � X � � 
 � � � � X 
 � X ,Ž . Ž . Ž . Ž .Ý Ýi i i � � i i i

i�0 i�1

it is clear that centered NLCA of X and Y is obtained from spectral analysis
of S � T � � 
 � .� �

REMARK 2.3. One can also obtain NLCA of X and Y from spectral
analysis of T � � �Y � X . This operator has the same eigenvalues as T ; for all� HY

Ž .i � 0, . . . , N, the variable � Y is a unitary eigenvector of T � associated withi
2 Ž . �1 X Ž Ž ..� and � X � � � � Y . This shows the symmetry of NLCA.i i i i

Ž .REMARK 2.4. Generally, one has lim � � 0. So the decreasing com-i��� i
Ž 2 .plete sequence � � � of eigenvalues of T is an element of thei i�0, . . . , N

Ž .space c of numerical sequences u such that lim u � 0. Never-0 n n� � n��� n
Ž .theless, if there exists a measurable function f such that X � f Y , then HX

is included in H ; thus, all the canonical coefficients are equal to 1 and theY
previous property does not hold. In this latter case, we set � � �, where �
denotes the numerical sequence for which all the terms are equal to 1.

3. Measures of association based on NLCA. Several measures of
association in the literature are constructed as functions of the canonical

Ž 2 2 .coefficients deriving from LCA. They have the form � � , . . . , � , where � is1 s
� Ž .�a symmetric nondecreasing function Jensen and Mayer 1977 and the � ’si

are the aforementioned canonical coefficients.
We want to define measures of association constructed analogously by the

use of canonical coefficients deriving from centered NLCA. Since the sequence
of these coefficients belongs to c , we first need to extend the definition of0
symmetric nondecreasing functions so that their definition domain could be
subsets of c .0

3.1. Symmetric nondecreasing functions defined on subsets of c .0

DEFINITION 3.1. A symmetric nondecreasing function is a real function �
defined on a subset DD of c such that the following hold:� 0

Ž .1. For each x � x � DD and any permutation  : � � �, the sequencen n� � �

Ž . Ž . Ž .x � x belongs to DD and � x � � x .  Žn. n� � � 

Ž . Ž .2. For each x � x � DD and each y � y � DD such that � n � �,n n� � � n n� � �

� � � � Ž . Ž .x � y , one has � x � � y .n n
3. There exists a nondecreasing real function f with definition domain�

� Ž . 4x � � � x, 0, . . . � DD containing 0, such that�

� �� x , 0, . . . � f x and f x � 0 � x � 0 .Ž . Ž . Ž .Ž .� �
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Clearly, any symmetric nondecreasing function � is a nonnegative map
and one has

3.1 � x � 0 � � n � �, x � 0.Ž . Ž . n

Ž .Although the sequence � � 1, 1, . . . does not belong to c , we can extend0
the domain of some symmetric nondecreasing functions at this point. Indeed,

Žn. Ž .let � � 1, . . . , 1, 0, . . . be the sequence of c having 1 at the n first places0
and 0 elsewhere. Suppose that, for each n � �*, �Žn. belongs to DD and that�

Ž Ž Žn... Ž .the nondecreasing sequence � � is bounded, we can set � � �n� �*
Ž Žn..lim � � .n���

�EXAMPLE 3.1. The symmetric norming functions � Gohberg and Krejnp
Ž .�1971 defined by

1	p
p� �� x � x , 1 � p � ��,Ž . Ýp nž /

n��

and
� �� x � max xŽ .� n

n��

are examples of symmetric nondecreasing functions. If p is finite, the natural
p Ž .domain of � is the space l of real sequences x � x such thatp n n� �

� � pÝ x � ��, and if p � ��, it is the space c . The definition domain ofn� � n 0
Ž .� is extendible to � as previously indicated and one has � � � 1.� �

3.2. Definition and properties of measures of association based on NLCA.
Here, we propose a class of measures of association constructed through the
canonical coefficients of centered NLCA.

Ž .Let X, Y be a pair of random variables having a NLCA. We consider a
Ž .symmetric nondecreasing function � such that � � � 1; we assume that the

decreasing sequence � of squares of coefficients derived from the centered
� 4 Ž . Ž .NLCA of X and Y belongs to DD � � . Thus we can set r X, Y � � � . So� �

we define a measure of association r and we have the following proposition.�

PROPOSITION 3.1. The following properties hold for r :�

Ž . Ž .1. r X, Y � r Y, X ;� �

Ž .2. we have r X, Y � 0 if, and only if, X and Y are independent random�

variables;
3. if for all real measurable functions � defined on � there exists a realX

Ž .measurable function � defined on � such that, almost surely, � X �Y
Ž . Ž .� Y , then we have r X, Y � 1;�

4. if � and � are bijective bimeasurable functions defined on � and � ,X Y
Ž Ž . Ž .. Ž .respectively, we have r � X , � Y � r X, Y ;� �

Ž .5. when X, Y has the bivariate standard normal distribution with correla-
tion coefficient �, there exists a nondecreasing real function h such that�

Ž . Ž 2 .r X, Y � h � .� �
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PROOF. Property 1 is an obvious consequence of the NLCA symmetry.
Ž .Using 3.1 , we obtain 2.

If for all real measurable functions � defined on � there exists a realX
Ž . Ž .measurable function � defined on � such that, almost surely, � X � � Y ,Y

Ž .then H is included in H . Since � � �, we have r X, Y � 1.X Y �

Ž . Ž .Property 4 comes from the fact that, putting U � � X and V � � Y and
considering H and H the analogues of H with respect to U and V,U V X
respectively, we have H � H and H � H .U X V Y

Ž .When X, Y has the bivariate standard normal distribution with correla-
� Ž .�tion coefficient �, then see Dauxois and Pousse 1975 the NLCA of X and Y

is the triple

� i , � X , � Y ,Ž . Ž .� 4Ž . Ž .Ž . i ii�� i�� i��

where the � ’s are the Hermite polynomials. Hencei

r X , Y � � � 2 , � 4 , � 6 , . . . � h � 2 ,Ž . Ž . Ž .� �

Ž . Ž � � � � 2 � � 3 .where h x � � x , x , x , . . . defines a nondecreasing function from�

� �0, �� to itself. �

Ž .REMARK 3.1. The previous properties of r X, Y are very close to condi-�

Ž .tions proposed by Renyi 1959 for good measures of dependence. In particu-´
lar, property 2 shows that the measures of association considered here are
appropriate to evaluate independence without any assumption about the

Ž .distribution of the pair X, Y .

We now provide some examples of measures of association which can be
constructed using centered NLCA.

ŽEXAMPLE 3.2. Let � be the symmetric nondecreasing function with
p. Ž . Ž �� � � p.definition domain l given by � x � 1 � exp �Ý x . One hasn�1 n

Ž .� � � 1. It leads to the measure of association

��
2 pr X , Y � 1 � exp � � .Ž . Ý1, p nž /

n�1

EXAMPLE 3.3. Putting

p�� � �Ý xn�1 n
� x � ,Ž . p( �� � �1 � Ý xn�1 n

we obtain the measure of association

�� 2 pÝ �n�1 n
r X , Y � .Ž . )2, p �� 2 p1 � Ý �n�1 n
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Ž .EXAMPLE 3.4. The symmetric nondecreasing function � x ��

� �max x permits us to obtain, as a measure of association, the Renyi' ´n� �* n
Ž . Ž . � �maximal coefficient. Indeed, one has r X, Y � � � � max � � � .� � n� �* n 1

Ž .EXAMPLE 3.5. If X, Y has the bivariate standard normal distribution
n � �with correlation coefficient �, then one has � � � , � n � �. So, if � � 1,n

we obtain
� 2 p

r X , Y � 1 � exp � ,Ž .1, p 2 pž /1 � �

� � p � �r X , Y � � and r X , Y � � .Ž . Ž .2, p �

4. Approximating measures of association. Although NLCA can be
Ž .determined in the case of X, Y having a bivariate normal distribution and

� Ž . Ž .in other special cases see Lancaster 1969 , Dauxois and Pousse 1975 and
Ž .�Buja 1990 , it is generally impossible to determine and it is the same for

measures of association using NLCA coefficients. Nevertheless, since there
exist convergent approximations for NLCA, it is possible to deduce approxi-
mations for the measures of association.

4.1. A general approach to approximating NLCA. For all n � �, we
n Ž n.denote by VV resp. VV the subspace spanned by a linearly independentX Y

Ž n. � Ž n. � 2Ž . � 2Ž .�system � resp. � in L P resp. L P .i 1� i� p i 1� i� q X Yn n
Ž n. Ž n.We assume that the sequences VV and VV are nondecreasing,X n� � Y n� �

that is
� n � �, VV n  VV n�1, VV n  VV n�1,X X Y Y

n n 2Ž . 2Ž .and that their unions � VV and � VV are dense in L P and L P ,n X n Y X Y
� Ž .respectively. Then see Dauxois and Pousse 1977 and Lafaye de Micheaux

Ž .� Ž .1978 the canonical analysis of the subspaces cf. Remark 2.2

WW n � span � n X , . . . , � n XŽ . Ž .Ž .X 1 pn

and
WW n � span � n Y , . . . , � n YŽ . Ž .Ž .Y 1 qn

converges, as n � ��, to the NLCA of X and Y; that is, the sequence of
operators 
 n 
 n converges uniformly to � X �Y. Clearly, this canonicalWW WWX Y

analysis is the LCA of random vectors

� n X � � n X , . . . , � n X �Ž . Ž . Ž .Ž .1 pn

and
� n Y � � n Y , . . . , � n Y �.Ž . Ž . Ž .Ž .1 qn

Considering the operators

V n � � � n X 
 � n X , V n � � � n Y 
 � n YŽ . Ž . Ž . Ž .Ž . Ž .1 2

and
V n � � � n Y 
 � n X � V n *,Ž . Ž .Ž . Ž .12 21
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this LCA is obtained from the spectral analysis of
�1	2 �1 �1	2n n n n nR � V V V V V .Ž . Ž . Ž .n 1 12 2 21 1

� nŽ . n Ž .4 � nŽ . nŽ .4Let us remark that since � X , . . . , � X and � Y , . . . , � Y are1 p 1 qn n

systems consisting of linearly independent random variables, V n and V n are1 2
invertible and R is well defined.n

n Ž n n .From now on we assume that there exist vectors � � � , . . . , � � and1 pnn Ž n n .� � � , . . . , � � such that1 qn
pn

n n n n
p² :� x , y �� � � , � , � x � � � x � 1,Ž . Ž . Ž .n Ý�X Y i i

i�1
qn

n n n n
q² :� , � x � � � x � 1,Ž . Ž .n Ý� i i

i�1

4.1Ž .

² : p
pwhere, for all p � �*, 	 , 	 stands for the usual inner product of � . This�

means that � belongs to WW n � WW n and thus, the greatest eigenvalue of T� X Y n
Ž n.2 Ž n n. nis � � 1, and it is associated with the canonical pair f , g , where f0 0 0 0

and g n are both equal to � . Hence, the vector en � � n is an obvious0 � 0
Ž n.2eigenvector of R associated with � � 1, and it is easily seen that it is an 0

pn�1 Ž n.2 n nunit eigenvector. From the spectral decomposition R � Ý � e 
 e ,n i�0 i i i
we deduce that, in order to approximate the centered NLCA, we may consider
the spectral analysis of S � R � � n 
 � n.n n

Finally, the centered NLCA of X and Y is approximated by a sequence of
suitable LCA’s. To define this sequence, for each n � � we first choose

n n 2Ž . 2Ž .functions � , 1 � i � p , and � , 1 � i � q , belonging to L P and L P ,i n i n X Y
respectively, such that the spaces VV n and VV n spanned by those functionsX Y
have the previously mentioned properties; then we consider the nontrivial

nŽ . nŽ .terms of the LCA of the random vectors � X and � Y .
The functions � n and � n can be obtained from nondecreasing sequences ofi i

partitions, say  n and  n, of � and � , respectively.X Y X Y
We now exhibit examples of such constructions. The first example comes

Ž .from Dauxois and Pousse 1975 and the second from Lafaye de Micheaux
Ž .1978 ; the case of random vectors may be easily given.

Ž . n � n n 4 nEXAMPLE 4.1 Step functions . Let  � J , . . . , J and  �X 1 p Yn
� n n 4K , . . . , K define nondecreasing sequences of partitions of � and � ,1 q X Yn n Ž n. n Ž n.respectively. Putting p � P X � J and p � P Y � K , let us consideri	 i 	 j j

n Ž n.�1	2 n Ž n.�1	2
n nthe functions � � p � and � � p � , where, for all setsi i	 J j 	 j Ki j

Ž n.A, � stands for its characteristic function. The sequences VV andA X n� �

Ž n. 2Ž .VV are nondecreasing and their unions are dense in L P andY n� � X
2Ž .L P , respectively. The operator R admits the matricial expressionY n

q n nn1 p pik jkÝ nn nž /pp p' 	ki	 j	 k�1 1� i , j�pn

n Ž n n.with p � P X � J ; Y � K . Thus, the related NLCA approximation is thei j i j
Ž n .sequence of correspondence analyses of the contingency tables p . Sincei j
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Ž .4.1 is satisfied with

n n n n n n� � p , . . . , p and � � p , . . . , p ,' '' 'ž / ž /1	 p 	 	1 	qn n

the operator S admits the matricial expressionn

q n nn1 p pik jkn n ns � � p p ;'Ýi j i	 j	nn n pp p' 	ki	 j	 k�1

by a simple calculation, we obtain

q n n n n n nn1 p � p p p � p pŽ . Ž .ik i	 	k jk j	 	kn4.2 s � .Ž . Ýi j nn n pp p' 	ki	 j	 k�1

Ž .EXAMPLE 4.2 B-splines . Let X and Y be two real random variables. For
� .all n � �*, let us consider dyadic subdivision of the interval �n, n . We

n Ž n. Ž .obtain a partition  �  of � consisting of the intervals ��, �n ,X Y
� . � �n Ž . �n .n, �� and all the dyadic intervals 2 k � 1 , 2 k which subdivide
� .�n, n . For s � 1, we consider the B-spline functions of order s computed on

n Ž n.the above partition of �. The subspaces VV � VV spanned by theseX Y
� Ž .�functions satisfy the required properties see Lafaye de Micheaux 1978 . So

they can be used for approximating centered NLCA as indicated in this
section.

4.2. Approximation of measures of association. Now, given a symmetric
nondecreasing function �, we want to approximate the measure of associa-

Ž . Ž .tion defined by r X, Y � � � by a suitable numerical sequence. This is�

possible by using the previous results on NLCA approximation.
When subspaces VV n and VV n having the required properties have beenX Y

Ž pn.chosen, we denote by � the sequence regarded as an element of � ofn
eigenvalues of S arranged in decreasing order and repeated according ton
multiplicity.

Moreover, we consider the restriction of � at � pn, that is, the real function
defined as

� x , . . . , x � � x , . . . , x , 0, . . .Ž . Ž .n 1 p 1 pn n

with definition domain

DD � x � � pn ; x , . . . , x , 0, . . . � DD .� 4Ž .� 1 p �n n

nŽ . Ž .Assuming that each � belongs to DD , we put r X, Y � � � . Then wen � � n nn

have the following proposition.

PROPOSITION 4.1. If � is continuous, the numerical sequence
Ž nŽ .. Ž .r X, Y converges, as n � ��, to r X, Y .� n� �* �
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REMARK 4.1. Let us recall that c is a Banach space with norm0

� � � �x � max x .� n
n��

The previous continuity hypothesis of � is relative to this norm. This result
Ž .shows that we obtain an approximation of the measure of association r X, Y�

nŽ .by the sequence r X, Y .�

We now consider an example of such an approximation.

Ž . Ž �� Ž n.2 . ŽEXAMPLE 4.3. Considering r X, Y � 1 � exp �Ý � see Examplei�1 i
. n n3.2 , if the subspaces VV and VV as in Example 4.1 are chosen, we have toX Y

Ž . Ž Ž .. Ž .approximate r X, Y by the sequence r X, Y such that r X, Y �n n� �* n
Ž pn�1 2 . Ž Ž .. Ž .1 � exp �Ý � � 1 � exp �tr S . Using 4.2 , we obtainn�1 n n

2p p n n nn n p � p pŽ .i j i	 	 j
r X , Y � 1 � exp � ;Ž . Ý Ýn n np pž /i	 	 ji�1 j�1

so this measure is based on the usual chi-squared index.

5. Estimating a measure of association. For any fixed sufficiently
Ž . nŽ .large n, we consider an approximation of r X, Y provided by r X, Y� �

obtained as specified in the previous section.
�Ž .4 Ž .Let X , Y be an i.i.d. sample of size m, where each pair X , Yi i 1� i� m i i

Ž .has the same distribution as X, Y . The aim of this section is to show how to
Ž .estimate the approximation of r X, Y and to underline the asymptotic�

properties of the related estimator.

nŽ . nŽ .5.1. An estimator for r X, Y . A natural way to estimate r X, Y is to� �
n, mŽ .take an estimator S of S and to consider the random variable r X, Yn, m n �

Ž . Ž n, m. Ž� � � , where � � � is the sequence regarded as ann n, m n, m i 1� i� pnpn.element of � of eigenvalues of S arranged in decreasing order andn, m
repeated according to multiplicity.

Let us consider the following random operators:
m m1 1

n , m n n n , m n nV � � X 
 � X , V � � Y 
 � YŽ . Ž . Ž . Ž .Ý Ý1 i i 2 i im mi�1 i�1

and
m1

n , m n n n , mV � � Y 
 � X � V *.Ž . Ž . Ž .Ý12 i i 21m i�1

We obtain an estimator of R by puttingn
�1	2 �1 �1	2n , m n , m n , m n , m n , mR � V V V V V .Ž . Ž . Ž .n , m 1 12 2 21 1

n, m Ž n, m n, m.By the law of large numbers, V resp. V , V converges almost1 2 12
n Ž n n . n nsurely, uniformly, as m � ��, to V resp. V , V . Since V and V are1 2 12 1 2

invertible, this shows that R is well defined for a sufficiently large m andn, m
that R converges almost surely, uniformly, as m � ��, to R .n, m n
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REMARK 5.1. In the literature there exist methods which permit us to
estimate the canonical functions � and � associated with the greatest1 1

� Ž .�nontrivial canonical coefficient � see, e.g., Breiman and Friedman 1985 .1
The method introduced here may not be used for this estimation problem.

Ž .Indeed, the fact that a sequence A of operators converges uniformly to ann
operator A does not generally ensure the convergence of the kth eigenvector

� Ž .�of A to that of A see Dunford and Schwartz 1963 . So the canonicaln
functions obtained from the spectral analysis S are not convergent esti-n, m
mators of the � ’s and � ’s.i i

For determining an estimator of S we must first look for a trivialn
eigenvector of R associated with the eigenvalue 1.n, m

Ž n, m.1	2 nLEMMA 5.1. Almost surely, V � is a unit eigenvector of R1 n, m
associated with the eigenvalue 1.

This lemma shows that

1	2 1	2n , m n n , m nS � R � V � 
 V �Ž . Ž .n , m n , m 1 1

may be an estimator of S . From the previous convergence results, it is an
convergent estimator.

n, mŽ . Ž .Putting r X, Y � � � , we obtain the following proposition.� n n, m

PROPOSITION 5.1. If � is a continuous symmetric nondecreasing function,
n, mŽ . nŽ .then, almost surely, r X, Y converges as m � �� to r X, Y .� �

PROOF. Since S converges almost surely and uniformly to S , theren, m n
� Ž .� � 4exists see Dunford and Schwartz 1963 a permutation  of 1, . . . , p suchn

� 4 n, m nthat, for all i � 1, . . . , p , � converges almost surely to � . Let us putn  Ž i. i
n, m Ž n, m.� � � . Then by the continuity of � , which comes from that of  Ž i. 1� i� p nn

Ž n, m. Ž .�, � � converges almost surely as m � �� to � � . By the symmetryn  n n
Ž n, m. Ž .of � , one has � � � � � and the result follows. �n n  n n, m

REMARK 5.2. In practice, for computing an estimate of the measure of
Ž .association when data x , y are observed, one must first transformk k 1� k � m

these data by the chosen functions � n and � n so as to obtain two matricesi i
Ž nŽ .. Ž nŽ ..� x and � y . Then, after centering the columns of these matri-i k k , i i k k , i
ces, one has to calculate the usual canonical analysis from them. So the

Ž .required estimate is � l , where l is the sequence of canonical correlationn
coefficients.

5.2. Asymptotic distribution of the estimators. Here we determine the
n, mŽ .asymptotic distribution of r X, Y , both in the general case and when X�

and Y are independent random variables.
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From now on we assume that the considered symmetric nondecreasing
function � is twice differentiable in an open set OO containing � and each � ,n n
and that there exists a real M 	 0 such that, for any x � OO, the second-order� n2 Ž . � 2 Ž .� Ž � �differential D � x at x satisfies D � x � M of course, 	 is then n � n

.norm of continuous bilinear forms .
Moreover, let �n
, . . . , �n
 be the sequence of eigenvalues of S arranged in1 s nn

Ž n
 n
.strictly decreasing order � 	 			 	 � . For each i � 1, . . . , s we set1 s nnn � n n
4 Ž . Ž .Ž .II � j; � � � ; from the properties of � see Section 7.4 , � �	� x �i j i n k n
n i Ž .is constant for k � II . Let K � be this constant. We assume that therei � nn

� 4 i Ž .exists i � 1, . . . , s such that K � � 0. Then we have the followingn � nn

proposition.

n, m n' Ž Ž . Ž ..PROPOSITION 5.2. m r X, Y � r X, Y converges in distribution,� �
2 Ž .as m � ��, to a centered Gaussian random variable with variance  � �� nnsn sn i Ž . j Ž . n nÝ Ý K � K �  , where  is a real number depending on thei�1 j�1 � n � n i j i jn n

canonical terms provided by the spectral analysis of S .n

n Ž .The entire expression of  can be found in 7.4 .i j
2 Ž .If X and Y are independent random variables, then � � 0 and  � � 0n � nn

n, m n'Ž . Ž Ž . Ž ..see Section 7.6 . So m r X, Y � r X, Y converges in probability, as� �

Ž .Ž .m � ��, to 0. Nevertheless, assuming that the constant K � � �	� x 0� kn

is different from 0, we have the following proposition.

�1 n, mŽ .PROPOSITION 5.3. When X and Y are independent, mK r X, Y con-� �n

verges in distribution, as m � ��, to � 2 .Ž p �1.Žq �1.n n

REMARK 5.3. It is interesting to note that these results hold whatever
type of approximation has been chosen for approximating NLCA. Thus, this
lemma is a generalization of the properties of the chi-squared index estima-
tor.

6. A class of independence tests. These results permit us to construct
a class of tests based on measures of association described above.

6.1. Constructing the test. The independence hypothesis of X and Y,
Ž . Ž .which is denoted by H , is equivalent to the fact that r X, Y � � � � 0,0 �

where � is a suitable symmetric nondecreasing function. Since we have, in
Ž .practice, an approximation of the measure r X, Y , we replace the latter�

nŽ . Ž . Žhypothesis by r X, Y � � � � 0 this new hypothesis is denoted by� n n
n .H , where n is assumed to be sufficiently large. So we can choose0, �

n, mŽ . Ž .r X, Y � � � as a test statistic. Of course, concretely, this test� n n, m
works with � ; so it will be a test with an asymptotic level of significance.n, m

n, mŽ .The limiting distributions of r X, Y under the null hypothesis and its�
nŽ .alternative r X, Y � 0 come from Propositions 5.2 and 5.3, respectively.�
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Ž .The approximated critical region for a significance level � is

Cn , m � � K�1 r n , m X , Y 	 m�1 t n ,Ž . Ž .� 4� � � �n n

n Ž 2 n.where t is such that P � 	 t � � .� Ž p �1.Žq �1. �n n

6.2. Convergence of the test. The following proposition shows that the test
is convergent.

n nŽ .PROPOSITION 6.1. Under hypothesis H : r X, Y 	 0, for each � �1, � �

� � Ž n, mŽ ..0, 1 , one has lim P C � � 1.m��� � n

Ž .EXAMPLE 6.1. Let � be the symmetric nondecreasing function � x �
Ž �� � �.1 � exp �Ý x . Considering the approximation of centered NLCA ob-n�1 n

Ž .tained from step functions see Example 4.2 , an estimator of the related
measure of association is given by

pn
2n , m n , mr X , Y � 1 � exp � � � 1 � exp �tr S .Ž . Ž .Ž . Ž .Ý� k n , mž /

k�1

Ž .By a simple calculation, the expression of tr S may be given and then, m
previous relation becomes

2p q n , m n , m n , mn n p � p pŽ .i j i	 	 jn , mr X , Y � 1 � exp � ,Ž . Ý Ý� n , m n , mp pž /i	 	 ji�1 j�1

n, m n, m n, m Ž .where p , p and p denote the usual estimators frequencies of thei j i	 	 j
probabilities pn , pn and pn, respectively, derived from a sample of size m.i j i	 	 j

So we obtain a test based on the chi-squared independence test statistic.

6.3. Simulations. In this section, we illustrate the previous procedure for
testing independence by applying it to various data sets. In order to evaluate
performance on finite samples, the procedure is applied to simulated data

Ž .from bivariate random variables X, Y with known distributions.
The objective is to estimate the powers of some tests of our class and to

compare these powers to those of classical independence tests. In all the
examples, we considered the symmetric nondecreasing function

� �Ý xi i
� x � .Ž .

� �1 � Ý xi i

The estimates of the related measure of association were computed by
Ž .using the NLCA approximations provided by step functions see Example 4.1

and B-spline functions of orders 2 and 3. All these functions were obtained
from a partition of � using dyadic intervals as in Example 4.2. The induced
independence tests were to be compared in terms of power with the test based
on the empirical correlation coefficient r and the nonparametric Spearman’s
tau and Kendall’s rho tests. In all the examples we used level of significance
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� � 0.05. For computing the power estimates, in each of the following exam-
ples, 100 data sets were generated, each set consisting of a number of
bivariate observations. For the NLCA approximations, we took n � 1 or
n � 2. All the results are given in Table 1.

Ž .Our first example consists of m bivariate observations x , yk k 1� k � m
Ž .generated from the pair X, Y such that X has the standard normal

distribution and Y � X 2. One can see that, for this example, the tests of our
Ž .class step functions, spline 2 and spline 3 are more powerful than others.

Although these results are not surprising because, for the considered model,
X and Y are uncorrelated; the results illustrate that our tests are more
appropriate for testing independence. Indeed, they report on independence

Ž .without any assumption on the distribution of X, Y whereas the tests based
on r, Spearman’s tau and Kendall’s rho detect only the lack of correlation,
which is not generally equivalent to independence. Of course, this first
example is a little extreme because Y depends on X through a function.

As an example where the dependence between X and Y is not functional
Ž .but stochastic, we generated 500 bivariate observations from a pair X, Y

�Ž . 2 2 2having the uniform distribution on the unit disk D � x, y � � ; x � y �
41 . In this example, X and Y are also uncorrelated. Even in this case, our

tests lead to greater values for the power estimates than the classical tests.
The next issue we address is how do our tests perform, relative to the

classical tests, when the data are generated from correlated random vari-
ables. We generated 500 observations from a bivariate random variable
Ž .X, Y having the standard normal distribution with correlation coefficient
� � 0.8. In this example, the classical tests are more powerful, the tests with
B-spline approximations give a good level for the power estimates and the

Ž .chi-squared type test step functions is less interesting. The superiority of
the classical tests does not surprise because one knows that, in the bivariate
normal case, the r-test is uniformly the most powerful. These last results lead
us to research what happens in the nonnormal case.

TABLE 1
2Ž .Power estimates for X, Y having several distributions, level � � 0.05: I, Y � X and

Ž .X � N 0, 1 ; II, uniform distribution on the unit disk; III, bivariate standard normal
distribution with � � 0.8; IV, mixture P with � � 0.50; V, mixture P with � � 0.75� , 0.25 � , 0.25

Powers

n m Step functions Spline 2 Spline 3 r Rho Tau

I 1 200 1.00 1.00 1.00 0.43 0.10 0.23
2 400 0.95 1.00 1.00 0.44 0.14 0.24

II 2 500 0.81 0.99 0.99 0.03 0.03 0.02
III 2 500 0.38 0.99 0.73 1.00 1.00 1.00
IV 2 500 0.41 1.00 1.00 0.51 0.78 0.81
V 2 500 1.00 1.00 1.00 0.39 0.33 0.44
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� �For � � 0, 1 , let P be the mixture� , �

P � � Q � 1 � � Q ,Ž .� , � 1 2, �

Ž 2 .where Q is the distribution of the bivariate random variable X, X such1
that X has the standard normal distribution and Q is the standard2, �

bivariate normal distribution with correlation coefficient �. Our last example
consists of 500 bivariate observations generated from the distribution P� , �

Ž .with � � 0.25. Clearly, a pair X, Y with such a distribution consists of
correlated random variables X and Y and is nonnormal if � � 0. The results
suggest that, for data coming from a nonnormal population, our tests perform
better than the classical tests. They illustrate that, unlike ours, the r-test is
not robust with respect to departures from the normal distribution and shows
the value of our procedures as nonparametric tests for independence. Al-
though the Spearman’s rho and Kendall’s tau are also nonparametric, it
seems that they generally induce smaller values for the power estimates than
ours.

Another fact which emerges from the table is that the tests with B-spline
approximations of NLCA are generally more powerful than the test based on

Ž .the chi-squared index step functions . This raises the possibility to improve
the power of the chi-squared test by using other NLCA approximations.

7. Proofs.

7.1. Proof of Proposition 4.1. The sequence of eigenvalues of 
 n 
 nWW WWX Y

arranged in decreasing order and repeated according to multiplicity is �� �n
Ž n n . X Y Ž 2 .� , . . . , � , 0, . . . and that of � � is � � � . From Lemma XI.9.41 p i i�0, . . . , Nn

Ž .in Dunford and Schwartz 1963 , it follows that,

� n 2 � � X Y �n n� i � 0, . . . , N , � � � � 
 
 � � � ,i i WW WWX Y

� �where 	 denotes the usual operator norm.
Thus

� � � � X Y �n n� � � � 
 
 � � � .�n WW WWX Y

Since 
 n 
 n converges uniformly to � X �Y, the latter inequality showsWW WWX Y
Ž � .that � converges in c to �. We deduce that, for all continuousn n� � 0

nondecreasing functions � having the specified properties, one has
Ž � . Ž .lim � � � � � . �n��� n

n Ž nŽ . nŽ ..7.2. Proof of Lemma 5.1. Let us put u � � X , . . . , � X � andi i 1 i m
n Ž nŽ . nŽ ..v � � Y , . . . , � Y �. For all � � �, the linear mapj j 1 j m

pn
p n mnL � : � � � � � u � � �Ž . Ž .Ýn i i

i�1

admits the adjoint operator
m ² n : m

pnL � *: � � � � . . . , u � , � , . . . � � .Ž . Ž .Ž .�n i
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Ž . Ž . nŽ .Denoting by M � the analogue of L � with respect to the v � ’s,n n j
j � 1, . . . , q , one can verify the following equalities:n

mV n , m � � L � *L � , mV n , m � � M � *M �Ž . Ž . Ž . Ž . Ž . Ž .1 n n 2 n n

and
mV n , m � � M � *L � .Ž . Ž . Ž .12 n n

Putting
�1�1 n , mA � � m V � L � *Ž . Ž . Ž .Ž .n 1 n

and
�1�1 n , mB � � m M � V � M � *,Ž . Ž . Ž . Ž .Ž .n n 2 n

Ž . Ž . n Ž . nsince 4.1 implies L � � � M � � , we haven n

B � L � � n � B � M � � n � M � � n � L � � n ;Ž . Ž . Ž . Ž . Ž . Ž .m n m n n n

thus
�1 �1n , m n , m n , m n , m nV � V � V � V � �Ž . Ž . Ž . Ž .Ž . Ž .1 12 2 21

� A � B � L � � n � A � L � � n � � n .Ž . Ž . Ž . Ž . Ž .n n n n n

Ž n, mŽ ..1	2Premultiplying this last equality by V � , we obtain1

1	2 1	2n , m n n , m nR � V � � � V � � .Ž . Ž . Ž .Ž . Ž .n , m 1 1

The result comes from the equalities
21	2 2n , m n n , m n n �1 n

p p² : � �V � � � V � � , � � m L � �pŽ . Ž . Ž .n nŽ . n � �1 1 n�

Ž . � Ž . n � 2
pand the fact that, from 4.1 , we have L � � � m. �n�n

7.3. Asymptotic distributions of S . Here we determine asymptoticn, m
distributions of the random operator S both in the general case and whenn, m
X and Y are independent random variables.

Ž .In this section, when E and F are two Euclidean spaces LL E, F denotes
the space of linear maps from E to F. When E and F are identical, it is

Ž . Ž .denoted by LL E . For a pair u, v in E � F, the tensor product u 
 v is the
Ž .element of LL E, F defined as,

² :� h � E, u 
 v h � u , h v ,Ž . E

² :where 	 , 	 denotes an inner product in E. The tensor product of operatorsE
˜is denoted by 
 and it is defined as previously, relative to the inner product

Ž . Ž .A � B � tr AB* , where tr denotes the trace operator and B* is the adjoint
of B.

Ž n.Without loss of generality, we can assume that the systems �i 1� i� pn
Ž n. 2Ž . 2Ž .and � are orthonormal in L P and L P , respectively, andi 1� i� q X Yn

that p � q . Hence, one has V n � I , V n � I and R � V n V n , where, forn n 1 p 2 q n 12 21n n

all p � �*, I stands for the identity of � p.p
Ž n.Denoting by r the range of R , we consider � the decreasingn n i 0 � i� r �1n

Ž n.sequence of nonzero eigenvalues of R , e a sequence of orthonor-n i 0 � i� r �1n
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mal eigenvectors of R such that en is associated with �n, and we putn i i
n n �1 n n n nŽ .h � � V e , where � � � .'i i 21 i i i
Completing the above systems so as to obtain orthonormal bases

Ž n. Ž n. pn qne and h of � and � respectively, one hasi 0 � i� p �1 i 0 � i� q �1n n

p �1 q �1n n
n n n n n n7.1 � X � f e and � Y � g h ,Ž . Ž . Ž .Ý Ýi i i i

i�0 i�0

n ² nŽ . n: p
n ² nŽ . n: qwhere f � � X , e and g � � X , h . These last variablesn n� �i i i i

are the canonical variables, so we have f n � g n � � and, for i 	 0 and0 0 �

j 	 0,
� f n � � g n � 0, � f n f n � � ,Ž . Ž . Ž .i j i j i j

� g ng n � � and � f ng n � � � n ,Ž . Ž .i j i j i j i j i

where � denotes the Kronecker symbol.i j
Considering the random variable

n n n n n n n nF � � f f � � � 2 � f g � � �' 'Ž . ž /ik i i k ik i k i i ik

n n n n n� � � g g � � � � f � � ,' Ž . Ž .i k i k ik i0 k k 0

we have the following lemma.

' Ž .LEMMA 7.1. The random operator U � m S � S converges inn, m n, m n
Ž pn.distribution, in LL � , as m � ��, to a centered Gaussian random opera-

tor U with covariance operatorn

1 n n n n˜K � � F F � 
 � ,Ž .Ý Ýn ik jl ik jl4
0�i , j�r �1 0�k , l�p �1n n

where � n � en 
 en � en 
 en.ik i k k i

' 'Ž . Ž .PROOF. We can write m S � S � m R � R � C , withn, m n n, m n n, m

1	2 1	2n , m n n , m n n n'C � � m V � 
 V � � � 
 �Ž . Ž .ž /n , m 1 1

1	2 1	2n , m n n , m n'� � m V � I � 
 V � I �Ž . Ž .ž / ž /1 p 1 pž n n

1	2 1	2n , m n n n n , m n� V � I � 
 � � � 
 V � I � .Ž . Ž .ž / ž /1 p 1 p /n n

Putting

Zn � � n X , � n Y , Zn � � n X , � n Y ,Ž . Ž . Ž . Ž .Ž . Ž .i i i
m

n n �1 n nV � � Z 
 Z and V � m Z 
 Z ,Ž . Ýn n , m i i
i�1

we deduce from the central limit theorem that the random operator
p �qn n' Ž . Ž .H � m V � V converges in distribution, in LL � , as m � ��,n, m n, m n

to a centered Gaussian random operator H having the same covariancen
operator as Zn 
 Zn.
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Ž pn�q n. ŽFor each element S of LL � one can associate a matrix relative to
pn�q n.the canonical basis of � in the form

S S1 12 ,ž /S S21 2

and, identifying each operator with its matrix, let us consider the following
operators:

u : S� LL � pn�q n � S � LL � pn ,Ž . Ž .1 1

u : S� LL � pn�q n � S � LL � qn , � pn ,Ž . Ž .2 12

u : S� LL � pn�q n � S � LL � pn , � qn ,Ž . Ž .3 21

u : S� LL � pn�q n � S � LL � qn .Ž . Ž .4 2

From the equality
�11	2 1	2n , m n , m n , mV � I � V � I V � IŽ . Ž .Ž . ž /1 p 1 p 1 pn n n

n, mŽ . n, mŽ . n, m n, mwe deduce C � B H � B H , where B and B are then, m 1 n, m 2 n, m 1 2
following random operators:

�11	2n , m �1	2 n , m nB S � �m u S V � I �Ž . Ž . Ž .ž /1 1 1 pž n

�11	2n , m n
 u S V � I � ,Ž . Ž .ž /1 1 p /n

�11	2n , m n , m n nB S � � u S V � I � 
 �Ž . Ž . Ž .ž /2 1 1 pn

�11	2n n , m n� � 
 u S V � I � .Ž . Ž .ž /1 1 pn

Almost surely, as m � ��, B n, m converges uniformly to the null operator1
and B n, m converges uniformly to the operator defined as2

B n S � �2�1 S � n 
 � n � � n 
 S � n .Ž . Ž . Ž .Ž .2 1 1

� Ž .�Moreover, one knows cf. Pousse 1992 that we have
6

n , m'm R � R � B H ,Ž . Ž .Ýn , m n j n , m
j�3

where B n, m, 3 � j � 6, is a random operator which converges almost surelyj
uniformly as m � �� to an operator B n, withj

1n n nB S � � u S R � R u S , B S � u S V ,Ž . Ž . Ž . Ž . Ž .Ž .3 1 n n 1 4 2 212

B n S � V n u S , B n S � �V n u S V n .Ž . Ž . Ž . Ž .5 12 3 6 12 4 21

Hence, we have the equality
6

n , m'U � m S � S � B H ,Ž . Ž .Ýn , m n , m n j n , m
j�1
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from which we deduce that U converges in distribution, as m � ��, ton, m
6 nŽ .the centered Gaussian random operator U � Ý B H . The covariancen j�2 j n

6 nŽ n n Ž n n.. Ž .operator of U is that of Ý B Z 
 Z � � Z 
 Z . From relation 7.1n j�2 j
and the spectral decompositions

�� ��
n n n n n n nR � � e 
 e and V � � h 
 e ,'Ý Ýn i i i 12 i i i

i�0 i�0

we obtain
B n Zn 
 Zn � � Zn 
 ZnŽ .Ž .2

r pn�1 n�1
1 n n n n n� � � f � � e 
 e � e 
 e ,Ž .Ý Ý i0 k k 0 i k k i2

i�0 k�0

B n Zn 
 Zn � � Zn 
 ZnŽ .Ž .3
r pn�1 n�1

1 n n n n n n n� � � f f � � e 
 e � e 
 e ,Ž .Ý Ý i i k ik i k k i2
i�0 k�0

and
r pn�1 n�1

n n n n n n n n n n nB Z 
 Z � � Z 
 Z � � f g � � � e 
 e ,Ž . ' 'Ž . Ý Ý ž /4 i k i i ik i k
i�0 k�0
r pn�1 n�1

n n n n n n n n n n nB Z 
 Z � � Z 
 Z � � f g � � � e 
 e ,Ž . ' 'Ž . Ý Ý ž /5 i k i i ik k i
i�0 k�0
r pn�1 n�1

n n n n n n n n n n nB Z 
 Z � � Z 
 Z � � � g g � � e 
 e .Ž . 'Ž . Ž .Ý Ý6 i k i k ik i k
i�0 k�0

From these equalities, we deduce
r p6 n�1 n�1

1n n n n n n nB Z 
 Z � � Z 
 Z � � F � ,Ž .Ž .Ý Ý Ýj ik ik2
j�2 i�0 k�0

where � n � en 
 en � en 
 en. Thus, the covariance operator of U is asik i k k i n
stated in the lemma. �

LEMMA 7.2. When X and Y are independent random variables the follow-
ing hold:

pn' Ž .1. The random operator m S converges in probability in LL � , asn, m
m � ��, to the null operator.

Ž pn.2. The random operator mS converges in distribution, in LL � , asn, m
m � ��, to a random operator WW having the Wishart distributionn

Ž . pn�1W q � 1, I , where I is the identity map of � .p �1 n p �1 p �1n n n

PROOF. When X and Y are independent, we have
V n , m � � � n Y 
 � n X � � � n Y 
 � � n X .Ž . Ž . Ž . Ž .Ž . Ž . Ž .12

Ž . Ž nŽ .. n n Ž nŽ .. nFrom 7.1 , � � X � e � � and � � Y � h ; hence0 0

S � V n , mV n , m � � n 
 � n
n 12 21

� � n 
 � n � n 
 � n � � n 
 � n � � n 
 � n � � n 
 � n � 0.Ž . Ž .0 0 0 0 0 0
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Ž n .Moreover, since r � 1 thus, for i � 1, � � 0 , we deduce that, for alln i
Ž . npairs i, k , the random variable F is almost surely null. So K is null andik n

thus U is the constant random operator equal to 0. From Lemma 7.1 itn
pn' Ž . Ž .follows that m S converges in distribution thus, in probability in LL � ,n, m

as m � ��, to the null operator.
Considering the operator u introduced in the proof of Lemma 7.1, we have2

�1	2 �1 �1	2n , m n , m n , m n , m n , mmS � m V V V V VŽ . Ž . Ž .n , m 1 12 2 21 1

�1	2 �1 �1	2n , m n , m n , m� V u H V u H * V .Ž . Ž .Ž . Ž . Ž .1 2 n , m 2 2 n , m 1

Hence, mS converges in distribution, as m � ��, to the randomn, m
Ž . Ž .operator WW � u H u H *. Since H is a centered Gaussian operator,n 2 n 2 n n

Ž . Ž n nso is u H . Its covariance operator is equal to that of u Z 
 Z �2 n 2
Ž n n.. Ž .� Z 
 Z . Using 7.1 we obtain

p �1 q �1n n
n n n n n n n nu Z 
 Z � � Z 
 Z � f g h 
 e .Ž .Ž . Ý Ý2 i j j i

i�1 j�1

Ž . pn�1 qn�1 n n n nThus we can write u H � Ý Ý z h 
 e , where z is a real2 n i�1 j�1 i j j i i j
random variable which satisfies

� z n z n � � f n f ng ng n � � f n f n � g ng n � � � .Ž .Ž . Ž . Ž .i j k l i k j l i k j l ik jl

This last equality shows that the q � 1 column vectors of the matrix relativen
Ž .to u H are independent centered Gaussian random vectors having a2 n

covariance operator equal to I . Hence, WW has the Wishart distributionp �1 nn
Ž .W q � 1, I . �p �1 n p �1n n

7.4. A property of symmetric nondecreasing functions. In Section 5.2 we
Ž .Ž . nhave stated that � � 	� x � is constant when k belongs to II and thatn k n i

Ž .Ž . � 4� � 	� x 0 is equal to a constant whatever is the value of k in 1, . . . , p .n k n
Here we prove a property of symmetric nondecreasing functions from which
these assertions are deduced.

Let � be a symmetric nondecreasing function defined on � p. For any
Ž . pvector x � x , . . . , x � � , the x ’s are valued in a set which will be1 p i

� � �4 � � �enumerated in the form x , . . . , x , r � p, where x 	 x 	 			 	 x . For1 r 1 2 r
Ž . � �4i � 1, . . . , r, we set E x � k; 1 � k � p, x � x .i k i

LEMMA 7.3. If � admits first partial derivatives at x � � p, then there
i Ž . Ž .exists a real K x , i � 1, . . . , r, such that, for any k � E x , one has� i

Ž .Ž . i Ž .� �	� x x � K x .k �

PROOF. Let � be the kth partial map of � at x, that is, the mapk , x
p Ž . Ždefined on a suitable subset A of � by � t � � x , . . . , x , t,x k , x 1 k�1

. Ž .x , . . . , x . Let s be the cardinality of E x ; since � is a symmetrick�1 n i i
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Ž . Ž .function, for h � �, k � E x and j � E x with j � k, one hasi i

� x � h � � x� , . . . , x� , . . . , x� � h , x� , . . . , x� , . . . , x� , . . . , x�Ž .k , x k 1 1 i i i r rž /� � � � � � � � �
s terms s terms s terms1 i r

� � x � h ,Ž .j , x j

from which it follows that
� � � x � h � � xŽ . Ž .k , x k k , x k

x � limŽ .
� x hh�0k

� x � h � � x � �Ž .Ž .j , x j j , x j� lim � x . �Ž .
h � xh�0 j

As a consequence of the previous lemma, we have that, if � admits first
p Ž . � 4partial derivatives at the null vector of � , since E 0 � 1, . . . , p ,1

Ž .Ž . � 4� � 	� x 0 is constant when k belongs to 1, 			 , p .n k

n,mŽ .7.5. Asymptotic distribution of r X, Y in the general case. Here we�

consider notation and assumptions introduced in Section 5.2. Almost surely,
we can write

� � � � � � D� � � � � � R � , � .Ž . Ž . Ž . Ž . Ž .n n , m n n n n n , m n � n , m nn

By Taylor’s formula we have, almost surely,
M� 2n

p� � � �7.2 R � , � � � � � ,Ž . Ž . n�� n , m n n , m nn 2
� � p

pwhere 	 is the usual Euclidean norm of � .�

' Ž .LEMMA 7.4. The random variable m R � , � converges in probabil-� n, m nn

ity, as m � ��, to 0.

' Ž .PROOF. Let us put U � m S � S . From Lemma 7.1, we known, m n, m n
that U converges in distribution, as m � ��, to a centered Gaussiann, m
random operator U . Considering the orthogonal projector Qn, m onto then i
eigenspace of S associated with �n, m, and the random operatorn, m i

�n , m n , m n , m n n , m'� U � m Q S Q � � Q ,Ž . Ž .i n , m i n , m i i i

� Ž .�one knows that see Dossou-Gbete and Pousse 1991 that the sequence
�n, m n n, m'Ž Ž .. Ž .nm � � � consists of all the eigenvalues of � U . Hencek i k � II i n, mi

pn
22 n , m n' 'p� �m � � � � m � � �Ž . n Ž .Ž .Ý�n , m n i i

i�1
sn

2n , m n'� m � � � *Ž .Ž .Ý Ý k i
ni�1 k�IIi

sn
n , m n , m� tr � U � U * ,Ž . Ž .Ž .Ý i n , m i n , m

i�1
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Ž n, mŽ ..where tr denotes the trace operator. Since � U converges ini n, m 1� i� sn

distribution, as m � ��, to the centered Gaussian random variable
Ž nŽ .. nŽ . n n n� U , where � U � Q U Q and Q is the orthogonal projectori n 1� i� s i n i n i in n� �onto the eigenspace of S associated with � see Dossou-Gbete and Poussen i

2' pŽ .� � Ž .�1991 , the random variable m � � � converges in distribution ton�n, m n
sn Ž nŽ . nŽ . . Ž .Ý tr � U � U * . From 7.2 it follows thati�1 i n i n

M� 2n' ' p� � � �m R � , � � m � � � ,Ž . Ž . n�� n , m n n , m nn '2 m

and the assertion follows. �

PROOF OF PROPOSITION 5.2. From the previous lemma, we deduce that the
' 'Ž Ž . Ž .. Ž .Ž .random variables m � � � � � and m D� � � � � haven n, m n n n n n, m n

the same asymptotic distribution. Moreover, we have
pn � �n n , m n' 'm D� � � � � � � m � � �Ž . Ž . Ž . Ž .Ýn n n , m n n i i� xii�1
sn � �n �n , m n'� � m � � �Ž . Ž .Ý Ý n k i� xn ki�1 k�IIi

sn
i n , m� K � tr � U ,Ž . Ž .Ž .Ý � n i n , mn

i�1

this random variable converges in distribution, as m � ��, to the random
sn i Ž . Ž nŽ .. Ž nŽ ..variable � � Ý K � tr � U . As � U is centered Gauss-n i�1 � n i n i n 1� i� sn n

ian, so is � . The variance isn

s sn n
2 i j n n7.3  � � K � K � � tr � U tr � U .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ž .� n � n � n i n j nn n n

i�1 j�1

Ž . Ž .Let us introduce the usual inner product A � B � tr AB* of rank finite
operators. We can write

� tr � n U tr � n UŽ . Ž .Ž . Ž .Ž .i n j n

n ˜ n� � � U 
 � U I � IŽ . Ž . Ž . Ž .ž /ž /i n j n p pn n

n ˜ n n ˜ n�� � tr � U 
 � U I � � tr � U 
 U � IŽ . Ž . Ž . Ž .Ž .ž / ž /ž / ž /i n j n p j n n i pž / ž /n n

� � � nK � n� I � tr � n K Qn .Ž .Ž .Ž .Ž . Ž .Ž . ž /j n i p j n in

From the expression of K and the equality Qn � Ý n en 
 en wen i k � II k ki

deduce

K Qn � 2�1 � F n F n � n ;Ž . Ž .Ý Ý Ýn i p p k l k l
n 0�k�r �1 0�l�p �1p�II n ni
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hence

1
n n n n n n n n� K Q � Q K Q Q � � F F � ,Ž . Ž .Ž . Ž . Ž .Ý Ýj n i j n i j p p ql ql2 n n 2p�II Ž . Ž .q , l � IIi j

and it follows that

tr � n K Qn � � F n F n .Ž .Ž . Ž .Ž . Ý Ýž /j n i p p qq
n np�II q�IIi j

Consequently, the variance is

 2 � � K i � K j �  n ,Ž . Ž . Ž .Ý� n � n � n i jn n n
1�i , j�sn

with

7.4  n � � F n F n . �Ž . Ž .Ý Ýi j p p qq
n np�II q�IIi j

n, mŽ .7.6. Asymptotic distribution of r X, Y in case X and Y are indepen-�

dent. When X and Y are independent, one has � � 0 and since for all pairsn
Ž . n Ž . Ž . 2 Ž .i, j we have F � 0 almost surely we deduce from 7.4 that  � � 0.i j � nn

Ž . Ž .Ž . Ž .Otherwise, almost surely, we can set � � � D� 0 � � R � , 0 ,n n, m n n, m � n, mn

and we have

M� 2n
p� � � �7.5 R � , 0 � � .Ž . Ž . n�� n , m n , mn 2

Ž .LEMMA 7.5. The random variable m R � , 0 converges in probability,� n, mn

as m � ��, to 0.

PROOF. Let � be the continuous function which associates with each
' Ž .operator the decreasing sequence of its eigenvalues. Since m S con-n, m

Ž .verges in distribution m � �� to 0, using Theorem 5.1 in Billingsley
Ž . Ž1968 , we obtain the following convergence in distribution thus, in prob-

.ability :

' 'p p� � � �lim m � � lim � m S � 0.Ž .n nŽ .� �n , m n , m
m��� m���

Ž .In consequence, Lemma 7.5 is deduced from the fact that, using 7.5 , we
have almost surely

2�1 ' p� � � �mR � , 0 � 2 M m � . �Ž . n�� n , m � n , mn n

PROOF OF PROPOSITION 5.3. We deduce from the preceding lemma that
Ž . Ž .Ž .m� � has the same limit distribution as mD� 0 � . Since we haven n, m n n, m

pn � �n n , mmD� 0 � � 0 m� � K tr mS ,Ž . Ž . Ž . Ž .Ýn n , m i � n , mn� xii�1
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�1 Ž . Ž .the limit distribution of mK � � is that of tr mS . The latter is� n n, m n, mn
Ž . Ž .the distribution of tr WW , that is, the chi-squared distribution with p � 1 �n n

Ž .q � 1 degrees of freedom. �n

n � Ž . �7.7. Proof of Proposition 6.1. Under H , one has � � 	 0. Let � be1, � n n
� Ž . �a real number such that the inequality 0 � � � � � holds. Thenn n

� � � � � � � �7.6 P � � � � � � � � P � � � � � � � � 1.Ž . Ž . Ž . Ž . Ž .Ž .Ž .n n , m n n n n , m n n

� Ž . � � Ž . �Since � � converges in probability, as m � ��, to � � , one hasn n, m n n
Ž � � Ž . � � Ž . � � . Ž .the convergence of P � � � � � � � to 1. Then from 7.6 wen n, m n n

deduce that

� �1 � � �1 � � �P K � � � K � � � �Ž . Ž .Ž .Ž .� n n , m � n nn n

converges, as m � ��, to 1. Moreover, for a sufficiently large m, one has
�1 n � �1 � � �m t � K � � � � .Ž .Ž .� � n nn

It follows that, for some m , if m 	 m , then we have0 0

� �1 � � �1 � � �P K � � � K � � � �Ž . Ž .Ž .Ž .� n n , m � n nn n

� �1 � �1 n� P K � � 	 m t � 1.Ž .Ž .� n n , m �n

From this inequality, we deduce the equality

� �1 � nlim P m K � � 	 t � 1. �Ž .Ž .� n n , m �nm���
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