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1 Introduction

Hydrodynamics [1, 2] is an effective low energy description of many interacting QFTs

near thermal equilibrium. Historically, hydrodynamics has been always associated with

a long wavelength limit of the underlying microscopic theory, while over the last decade

or so there is an increased number of works addressing “hydronization” relaxing the long

wavelength approximation. Rather, hydrodynamics is defined as an effective theory of

conserved currents, such as stress tensor and/or charge currents, assuming their algebra is

closed on a relevant set of near-equilibrium states.

Dynamics of the theory is governed by conservation equations (continuity equations) of

the currents. The simplest example is ∂tρ = −~∇· ~J , which is a time evolution equation for

the charge density ρ sourced by three-current ~J . However, this equation cannot be solved

as an initial value problem without additional input, the current ~J . In hydrodynamics, ~J

has to be expressed in terms of thermodynamical variables, such as ρ itself, temperature,

and possibly external fields if present. This is known as constitutive relation. Traditionally,

in the long wavelength limit, constitutive relations are presented as a (truncated) gradient

expansion. At any given order, this expansion is fixed by thermodynamic considerations

and symmetries, up to a finite number of transport coefficients (TCs). The latter should be

either computed from underlying microscopic theory or deduced experimentally. Diffusion

constant, DC conductivity or shear viscosity are examples of the lowest order TCs.

It is well known, however, that in relativistic theory truncation of the gradient expan-

sion at any fixed order leads to serious conceptual problems such as violation of causality.
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Beyond conceptual issues, causality violation results in numerical instabilities rendering

the entire framework unreliable. Causality is restored when all order gradient terms are

included, in a way providing a UV completion to the “old” hydrodynamic effective theory.

Below we will refer to such case as all order resummed hydrodynamics [3–8]. The first

completion of the type was originally proposed by Müller, Israel, and Stewart (MIS) [9–12]

who introduced retardation effects in the constitutive relations for the currents. The MIS

formulation [9–12] is the most popular scheme employed in practical simulations. Recent

ideas on the nature of the hydrodynamic expansion, gradient resummation and attractor

behavior, etc. could be found in [4, 13–23].

In this paper we continue exploring hydrodynamic regime of relativistic plasma with

chiral asymmetries. We closely follow previous works [24, 25] focusing on massless fermion

plasma with two Maxwell gauge fields, U(1)V × U(1)A. As a result of chiral anomaly,

which appears in relativistic QFTs with massless fermions, global U(1)A current coupled

to external electromagnetic fields is no longer conserved. The continuity equations turn into

∂µJ
µ = 0, ∂µJ

µ
5 = 12κ~E · ~B, (1.1)

where Jµ/Jµ5 are vector/axial currents and κ is an anomaly coefficient (κ = eNc/(24π2) for

SU(Nc) gauge theory with a massless Dirac fermion in fundamental representation and e is

electric charge, which will be set to unit from now on). ~E and ~B are vector electromagnetic

fields. Non-conservation of the axial current in (1.1) receives extra contribution if external

axial electromagnetic fields are turned on. Throughout this work, however, we will not

consider external axial fields (they were considered in ref. [24]). Chiral plasma plays a

major role in a number of fundamental research areas, historically starting from primordial

plasma in the early universe [26–30]. During the last decade, macroscopic effects induced by

the chiral anomaly were found to be of relevance in relativistic heavy ion collisions [31–33],

and have been searched intensively at LHC [34–38]. Finally, (pseudo-)relativistic systems

in condensed matter physics, such as Dirac and Weyl semimetals, display anomaly-induced

phenomena, which were recently observed experimentally [39–45] and can be studied via

similar theoretical methods [46–49].

A hydrodynamic description of (chiral) plasma amounts to solving a set of coupled

equations. As has been mentioned earlier, the continuity equations (1.1) have to be sup-

plemented by constitutive relations describing plasma medium effects. Generically, these

are of the type
~J = ~J [ρ, ρ5, T, ~E, ~B]; ~J5 = ~J5[ρ, ρ5, T, ~E, ~B], (1.2)

where ρ5 is the axial charge density and T stands for the temperature.1

In a sense, the constitutive relations (1.2) are “off-shell” relations, because they treat

the charge density ρ (ρ5) as independent of ~J ( ~J5). Employing (1.1), the currents (1.2)

are put into “on-shell”. In (1.2), the fields ~E, ~B are assumed to be external. However, the

charges and currents induce e/m fields of their own. Thus, the external electromagnetic

1We prefer to parameterise the currents (1.2) in terms of the charge densities ρ, ρ5 because it is more

natural and straightforward within the holographic framework. Yet, we could switch to a more traditional

representation with the chemical potentials µ, µ5 as hydrodynamical variables (see section 2.2 for details).
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fields ~E, ~B have to be promoted into dynamical ones, satisfying Maxwell equations (in

Gaussian units),2

~∇ · ~E = 4πρtot, ~∇× ~B =
1

c

(
4π ~J tot + ∂t ~E

)
, (1.3)

~∇ · ~B = 0, ~∇× ~E = −∂t ~B, (1.4)

where ρtot and ~J tot are the total charge density and total current, a sum of external

sources (ρext, ~J ext) and induced part (ρ, ~J), which is the one that enters the constitutive

relations (1.2). The external sources could be absent when a fully isolated system is con-

sidered. A typical example would be primordial plasma in the early Universe frequently

studied using magneto-hydrodynamics (MHD). MHD, along with many other effective

theories of the type, also involves neutral flow dynamics. That is, in addition to the charge

current sector discussed above, one has to simultaneously consider energy-momentum con-

servation. Generically, the two dynamical sectors are coupled. However, in the discussion

below, we will consider the probe limit, under which one ignores back-reaction of the charge

sector on the energy-momentum conservation. This implies ε + p � µρ + µ5ρ5 with ε, p

being the fluid’s energy density and pressure.

A self-consistent evolution of the system is determined by solving together (1.1), (1.2),

(1.3) given some initial conditions. While the equations (1.1), (1.3) are exact, the constitu-

tive relations (1.2) are the ones where various hydrodynamic approximations are applied.

A great deal of modelling normally enters (1.2), such as truncated gradient expansion, weak

field approximation, etc. As a result of a full simulation, one sometimes finds instabilities

leading to exponential growths of some quantities, such as of dynamical magnetic fields. It

thus becomes mandatory to check if the original approximations made for the constitutive

relations are consistent with the solutions found. If not, the hydrodynamical model has to

be revised.

We just outlined a general setup for a hydrodynamical problem, but it is not our goal

here to carry it over for any realistic system. Instead, motivated by the discussion above

we would like to focus on the nature of the constitutive relations (1.2), which are well

known to receive contributions induced by the chiral anomaly. The most familiar example

is the chiral magnetic effect (CME) [50, 51]: a vector current is generated along an external

magnetic field when a chiral imbalance between left- and right-handed fermions is present

( ~J ∼ ρ5
~B). There is a vast literature on CME, which we cannot review here in full. The

chiral magnetic conductivity was computed in perturbative QCD in [52–57]. In [58–74]

it was evaluated for the strong coupling regime using AdS/CFT correspondence [75–77].

CME emerged via arguments based on the second law of thermodynamics, that is positivity

of entropy production [78, 79], and also within the chiral kinetic theory (CKT) [80–84].

Finally, numerical evidence based on lattice gauge theory for CME can be found in [85–90].

We would like to comment by passing that CME is believed to be a strict non-equilibrium

2In principle, the axial sources (ρ5, ~J5), through another set of chiral anomaly-modified Maxwell’s equa-

tions, would also generate classical axial e/m fields. In their turn, the axial e/m fields would enter and

modify the constitutive relations (1.2), see e.g. [24].
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phenomenon. In other words, different arguments indicate that CME must vanish in equi-

librium [32, 46, 91, 92].3

Another important transport phenomenon induced by the chiral anomaly is the chiral

separation effect (CSE) [93, 94]: left and right charges get separated along applied external

magnetic field ( ~J5 ∼ ~B). Combined, CME and CSE lead to a new gapless excitation called

chiral magnetic wave (CMW) [95]. This is a propagating wave along the magnetic field.

While signature of CME/CSE has not yet been confirmed in heavy ion collision exper-

iments [34–37], a large negative longitudinal magneto-resistance observed in Dirac/Weyl

semimetals can be attributed to CME [43–45].

Just like in refs. [24, 25], our playground will be a holographic model, namely U(1)V ×
U(1)A Maxwell-Chern-Simons theory in Schwarzschild-AdS5 [59, 64] to be introduced in

detail in section 3. For some sort of universality, we hope to learn from this model about

both generic structures of the currents and relative strengths of various effects.

Recently, transport phenomena nonlinear in external fields were realised [102] to be

of critical importance in having self-consistent evolution of chiral plasma. Combined with

the causality arguments mentioned earlier, the conclusion is that the constitutive rela-

tions (1.2) should contain some “nonlinear” transport coefficients so to guarantee their

applicability in a broader regime. Particularly, traditional MHD is strongly affected by

anomalous transports [97–101], which necessitates a development of a fully self-consistent

chiral MHD. This triggered strong interest in nonlinear chiral transport phenomena within

CKT [103–106], to which we will compare some of our findings below. Previous works on

the subject of nonlinear anomalous transports include [107] based on the entropy current

approach and [108] based on the fluid-gravity correspondence.

The main objective of the series of publications [24, 25, 96] and the present work is to

explore the constitutive relations (1.2) under various approximations, primarily zooming

on transport phenomena induced by the chiral anomaly. In the present publication, the

following new directions are explored. First, we derive general expressions for the vector and

axial currents, see (2.11), (2.12), which do not involve any approximations. This clarifies

the concept of “non-renormalisation” of CME/CSE [24, 25, 109, 110] when electromagnetic

fields can be both strong and inhomogeneous in spacetime. Second,within the holographic

model, we complete the calculation of all second order nonlinear transport coefficients and

compare with those obtained in CKT [104]. Finally, and this is the main novel part in

this publication, all third order transport coefficients are computed analytically, including

relaxation time corrections to some second order transport terms (see section 4). This

paves a way for the gradient resummation project released in [96]: some of the third order

transport coefficients become all order frequency/momentum-dependent functions.

In the next section, we will review our results including connections to the previous

works [24, 25] and the forthcoming publication [96]. The remaining sections present details

of the calculations.

3We thank Mikhail Zubkov for bringing this issue to our attention. We also thank Dmitri Kharzeev,

Shu Lin, Andrey Sadofyev, and Ho-Ung Yee for stimulating discussions about this point.
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2 Summary of the results

2.1 Generalities

This subsection briefly summarises the series of works [24, 25, 96, 111] including the present

one, so to help the reader to navigate between various studies and results. We write down

the most comprehensive constitutive relation and indicate specific approximations applied

in each individual work.

Following [24, 25], the charge densities and external fields are split into constant back-

grounds and space-time dependent fluctuations

ρ(xα) = ρ̄+ εδρ(xα), ρ5(xα) = ρ̄5 + εδρ5(xα),

~E(xα) = ~E + εδ ~E(xα), ~B(xα) = ~B + εδ ~B(xα),
(2.1)

where ρ̄, ρ̄5, ~E and ~B are the backgrounds, while δρ, δρ5, δ ~E and δ ~B stand for the

fluctuations. Here ε is a formal expansion parameter to be used below. Furthermore, being

unable to perform calculations for arbitrary background fields for most of the time, we

introduce an expansion in the field strengths

~E→ α~E, ~B→ α~B, (2.2)

where α is a corresponding expansion parameter. Below we will introduce yet another

expansion parameter λ, which will correspond to the hydrodynamical gradient expansion.

For the purpose of gradient counting, e/m fields will be frequently considered as O(λ1).

The constitutive relations (1.2) can be formally Taylor expanded in all its arguments.

This includes the gradient (λ), ε, and α expansions. Parametrically, a generic term enter-

ing (1.2) looks like

ρ̄ k ρ̄ k55
~E nE ~B nB ∂ mt

t
~∇ mx

(
δρ l δρ l55 δ ~E lE δ ~B lB

)
, (2.3)

which is multiplied by a transport coefficient.4 k, k5, nE , nB, mt, mx, l, l5, lE , lB are

integers. The most general constitutive relations correspond to a sum of all possible terms

like (2.3).5

Obviously, we do not intend to consider all possible terms in (2.3). Instead, most of

the results obtained in the present and early works [24, 25] can be combined in a compact

constitutive relation (focusing on the vector current ~J ),

~J = γ1
~∇ρ+γ2

~∇ρ5+γ3
~E+γ4(ρ5

~B)+γ5
~∇× ~B+γ6( ~E×~∇ρ)+γ7

~B×(ρ~∇ρ)

+γ18
~B×(ρ5

~∇ρ5)+γ8( ~E×~∇ρ5)+γ9(ρ ~E× ~B)+γ10
~∇
(
~B ·~∇ρ5

)
+γ11

~∇
(
~B ·~∇ρ

)
+γ12(ρ~∇B2)+γ13(ρ ~B)+γ14

~∇( ~E ·~∇ρ)+γ15(ρ ~E)+γ16
~∇( ~E ·~∇ρ5)+γ17(ρ5

~E). (2.4)

4In fact, each term in (2.3) corresponds to a large number of terms obtained by different actions of the

derivatives and index contractions.
5The asymptotic nature of the gradient expansion and problems related to resummation of the series

have been a hot topic over the last few years, see recent works [13, 14, 112]. In our approach, however, we

never attempt to actually sum the series and thus these discussions are of no relevance to our formalism.
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The coefficients γi are most general O(3) scalars which could be constructed from three

vectors ~∇, ~E, and ~B. That is, γi are scalar functions of E2 and B2, and pseudo-scalar

functions of ~E · ~B. Furthermore, γi are scalar functionals of derivative operators ∂t, ~∇2,
~E · ~∇, and pseudo-scalar functionals of ~B · ~∇,

γi = γi

(
∂t, ~∇2, ~E · ~∇, ~B · ~∇;E2, B2, ~E · ~B

)
, (2.5)

which correspond to all order gradient resummation, as mentioned in Introduction. γi
themselves are rich in structure and contain information about non-linear corrections in

the fields. Taylor expanding γi in all their arguments (all the derivatives are assumed to act

on the right of γi) gives rise to each individual gradient term like (2.3). Admittedly, (2.4)

does not contain all the possible terms like in (2.3). Particularly, while the constitutive

relation (2.4) does contain some nonlinear in ρ, ρ5 terms, it excludes most of the nonlinear

terms of the third order, which are collected in (4.6), (4.7). Some of the terms in (2.4) are

well recognisable, such as diffusion (γ1), electrical conductivity (γ3), or CME (γ4). Some

other terms might be less familiar and we will discuss them below in detail.

As explained in the Introduction, the purpose of [24, 25, 96] and the present work is

to systematically explore (2.3) under different approximations. We first briefly summarise

them using both the notations of (2.3) and (2.4), and then deepen our presentation of the

current study.

• Ref. [24], study 1. No background fields, ~E = ~B = 0; all order gradient terms that are

linear in the inhomogeneous fluctuations δρ, δρ5, δ ~E, δ ~B are resummed.6 This corresponds

to calculating currents up to O(ε1α0). Using the notations (2.3) and (2.4) this study

corresponds to

[24]-1a : nE = nB = 0, l + l5 + lE + lB = 1, ∀(k, k5), mt +mx ≤ 3 ⇒ (analytic)

[24]-1n : nE = nB = 0, l + l5 + lE + lB = 1, ∀(k, k5), ∀(mt,mx) ⇒ (numeric)

γi = γi(∂t, ~∇, 0, 0; 0, 0, 0), i = 1, 3, 4, 5. (2.6)

The remaining γi have not been probed in the study. γi(∂t, ~∇) correspond to the gradient

resummation. Thanks to the linearisation, the constitutive relations could be conveniently

expressed in Fourier space. Then, the functionals of the derivatives are turned into functions

of frequency and space momenta, (∂t, ~∇) → (−iω, i~q). We refer to γi(−iω, q2) as trans-

port coefficients functions (TCFs) [6]. TCFs contain information about infinitely many

derivatives and associated transport coefficients. In practice, TCFs are not computed as a

series resummation of order-by-order hydrodynamic expansion, and are in fact exact to all

orders. TCFs go beyond the hydrodynamic low frequency/momentum limit and contain

collective effects of non-hydrodynamic modes. Fourier transformed back into real space,

TCFs become memory functions. Diffusion and shear viscosity memory functions were

previously computed in [7, 111].

6In [24] we also considered transports related to axial external electromagnetic fields.
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• Ref. [24], study 2. Nonlinear in ~E and ~B corrections to the vector/axial currents. The

currents are derived up to O(ε0α3).

[24]-2 : nE + nB ≤ 3, l = l5 = lE = lB = mt = mx = 0, ∀(k, k5) ⇒ (analytic)

γi = γi(0, 0, 0, 0;E2, B2, ~E · ~B), i = 3, 4, 9. (2.7)

• Ref. [25], study 1. Nonlinear corrections to vector/axial currents due to static but

spatially-inhomogeneous magnetic field.

[25]-1a : nE = lE = 0, ∀(l, l5, k, k5), nB +mt +mx + lB ≤ 2 ⇒ (analytic)

[25]-1a : nE = lE = 0, ∀(l, l5, k, k5), nB +mt +mx + lB = 3, l + l5 + k + k5 = 1

⇒ (analytic)

γ1,4 = γ1,4(∂t, 0, 0, 0;E2, 0, 0), γ5 = γ5(0, 0, 0, 0; 0, 0, 0),

γ7,18 = γ7,18(0, 0, 0, 0; 0, 0, 0), γ10,11,12 = γ10,11,12(0, 0, 0, 0; 0, 0, 0).

• Ref. [25], study 2. Dependence of longitudinal electric conductivity on arbitrary strong

constant magnetic field. A time-varying electric field is assumed to be weak.

[25]-2a : nE = lB = l = k = k5 = mx = 0, ∀(nB, l5, lE), mt + nB + lE ≤ 3, ⇒ (analytic)

[25]-2n : nE = lB = l = k = k5 = mx = 0, lE + l5 = 1, ∀nB, ∀mt ⇒ (numeric).

γ3 = γ3(∂t, ~∇, 0, 0; 0, 0, ~E · ~B), γ4 = γ4(∂t, ~∇, 0, 0;E2, 0, 0) (2.8)

• In the present work, we relax some of the approximations made in [24, 25] and derive

constitutive relations for the currents, up to third order in the gradient expansion.

nE + nB + lE + lB +mt +mx ≤ 3, ∀(l, l5, k, k5)⇒ (analytic)

γ1,4 = γ1,4(∂t, 0, 0, 0;E2, 0, 0), γ2 = γ2(0, 0, 0, ~B · ~∇; 0, 0, 0),

γ3 = γ3(∂t, ~∇, 0, 0; 0, 0, ~E · ~B), γ5,8,9 = γ5,8,9(∂t, 0, 0, 0; 0, 0, 0),

γ7,18 = γ7,18(∂t, 0, 0, 0; 0, 0, 0), γ10,11,12 = γ10,11,12(0, 0, 0, 0; 0, 0, 0). (2.9)

• In the forthcoming paper [96], we will primarily focus on those TCFs associated with

nonlinear terms at O(ε1α1).

[96]-1a : lE = lB = 0, nE + nB = 1, l + l5 = 1, ∀(k, k5), mt +mx ≤ 3 ⇒ (analytic)

[96]-1n : lE = lB = 0, nE + nB = 1, l + l5 = 1, ∀(k, k5,mt,mx) ⇒ (numeric) (2.10)

γ1,2 = γ1,2(∂t, ~∇, ~E · ~∇, ~B · ~∇; 0, 0, 0),

γi = γi(∂t, ~∇, 0, 0; 0, 0, 0), i = 4, 6− 8, 15, 17, 18.

In the next subsection, we summarise the main results of the present work, leaving all the

technical details in the main text and appendix.
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2.2 Main results

This subsection is further split into three parts. The first one contains the general form

of the currents. The second part focuses on the second order nonlinear transport and

comparison with similar results obtained in the CKT. The third order terms constituting

the bulk of our new results are presented towards the end of this subsection.

2.2.1 General form of the currents

A formal expression for the constitutive relations for the vector and axial currents is derived

in section 4, having the following form

J t = ρ, ~J = −D0
~∇ρ+ σ0

e
~E + σ0

χµ5
~B + δ ~J, (2.11)

J t5 = ρ5, ~J5 = −D0
~∇ρ5 + σ0

χµ~B + δ ~J5, (2.12)

where ρ, ρ5 are generic vector/axial charge densities and µ, µ5 are corresponding chemical

potentials. The external e/m fields ~E, ~B are generic as well, that is none of the approxima-

tions introduced in [24, 25] is assumed. The lowest order TCs — charge diffusion constant

D0, DC electrical conductivity σ0
e and DC CME/CSE conductivity σ0

χ are [24, 111]

D0 =
1

2
, σ0

e = 1, σ0
χ = 12κ, (2.13)

where from here on we set πT = 1 for convenience. Proper powers of πT for dimensionfull

quantities could be easily recovered given their physical dimensions.

The σ0
χ-terms in ~J and ~J5 are standard CME and CSE, respectively, in agreement

with “non-renormalisability” of CME [95, 109, 110]. The new element here, which we find

important to emphasise, is that (2.11), (2.12) are exact, that is they are derived relaxing all

the approximations undertaken in [24, 25, 109, 110]. Nonlinearity of CME/CSE in external

fields ~E and ~B is completely absorbed into the chemical potentials µ, µ5.

The corrections δ ~J and δ ~J5 are formally defined in (A.7), which consist of higher

derivative terms starting from the second order only. These terms are built from powers

and derivatives of ~E, ~B, µ and µ5. δ ~J and δ ~J5 are not known analytically, but could

be worked out perturbatively. δ ~J and δ ~J5 introduce new effects, particularly additional

contributions to the currents along the direction of ~B proportional to derivatives of the

chemical potentials. These effects introduce very important modifications to the original

CME/CSE. As will be clear later, external e/m fields make corrections to D0 and σ0
e , and

even generalise them into tensor-type TCs. While in principle an axial analogue of σ0
e (i.e.,

a term proportional to ~E-term) in ~J5 is also possible, it does not appear in our calculations

due to the probe limit [113].

We have mentioned earlier a discussion about vanishing equilibrium CME, which might

appear in tension with (2.11). In principle, since U(1)A is not a symmetry, axial gauge

potential Aµ itself could be regarded as another external field. Our calculations, how-

ever, are performed assuming vanishing Aµ. Had we introduced a non-vanishing constant

background for the time component, At 6= 0, CME conductivity σ0
χ would be shifted

~JCME = 12κ(µ̄5 −At) ~B, (2.14)

– 8 –
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due to a Chern-Simons contribution [24, 64]. In order to have CME vanish, it suffices to

impose At = µ̄5 [46, 64]. In [46] it was indeed argued that the equality At = µ̄5 must be

satisfied in equilibrium. While we do not have much to add to this discussion, we notice

that a constant At does not lead to any new effect beyond the shift (2.14) in CME. This

is because the bulk dynamics underlying our model is expressed entirely in terms of the

vector and axial field strengths.

2.2.2 Second order results: comparison with the CKT

At second order, the results read

δ ~J =
1

4
σ0
m

(
ρ2 + ρ2

5

)
~∇× ~B − 1

4
D0
H
~B ×

(
ρ~∇ρ+ ρ5

~∇ρ5

)
− 1

2
σ0
aχH

~E × ~∇ρ5

− τeσ0
e∂t

~E − 1

2
σ0
χH ρ ~B × ~E − 1

2
τχρ5∂t ~B + τD∂t~∇ρ+ τχ̄(∂tρ5) ~B +O(∂3),

(2.15)

δ ~J5 =
1

2
σ0
mρρ5

~∇× ~B − 1

4
D0
H
~B ×

(
ρ~∇ρ5 + ρ5

~∇ρ
)
− 1

2
σ0
aχH

~E × ~∇ρ

− 1

2
σ0
χHρ5

~B × ~E − 1

2
τχρ∂t ~B + τD∂t~∇ρ5 + τχ̄(∂tρ) ~B +O(∂3),

(2.16)

where the TCs take the following values

σ0
m = 72(2 log 2− 1)κ2, D0

H = 72(3 log 2− 2)κ2, σ0
aχH = 6 log 2κ, (2.17)

σ0
χH = 72 log 2κ2, τe =

log 2

2
, τχ = 12 log 2κ, (2.18)

τD =
π

8
, τχ̄ = −

(
3

2
π + 3 log 2

)
κ. (2.19)

The TCs in (2.15), (2.16) could be related to Taylor expansion of some γi’s in (2.4),

schematically indicated as follows

σ0
m ∈ γ5, D0

H ∈ γ8, σ0
aχH ∈ γ9, σ0

χH ∈ γ11, τe ∈ γ3,

τχ, τχ̄ ∈ γ4, τD ∈ γ1.
(2.20)

To the best of our knowledge, in a holographic model, σ0
aχH is computed here for the first

time. The rest of the TCs in (2.15), (2.16) have been previously computed in [24, 25].

While in the constitutive relations these terms were already introduced in [24, 25], they

did not contribute to dynamics (continuity equations) due to the static/homogeneous field

approximations assumed in these earlier publications. For instance, to O(ε0) considered

in [24], the currents do not contain any gradient terms, resulting in dynamical instability

(linear growth of ρ5 with time). Inclusion of the external e/m field fluctuations (i.e., δ ~E

and δ ~B) and associated gradient terms in (2.15), (2.16) regularizes the instability. Our

results (2.15), (2.16) reveal new dynamical effects and thus are novel in a sense of a much

broader range of applicability. Physical interpretation of the terms in (2.15), (2.16) and

their dissipative properties are discussed below.

Our second order results could be compared with similar results obtained in

CKT [103, 104]. To this goal, we first put the currents on-shell eliminating ∂tρ and ∂tρ5
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using the continuity equations (1.1). Second, we replace the densities by the corresponding

chemical potentials. In the holographic model, the chemical potentials µ, µ5 are computed

analytically in the hydrodynamic limit. At second order in the gradient expansion,

µ =
1

2
ρ+

1

16
(π − 2 log 2)~∇2ρ− 3

4
(π − 2 log 2)κ( ~B · ~∇ρ5) + 18(1− 2 log 2)κ2ρB2

− 1

8
(π + 2 log 2)(~∇ · ~E) +O(∂3), (2.21)

µ5 =
1

2
ρ5 +

1

16
(π − 2 log 2)~∇2ρ5 −

3

4
(π − 2 log 2)κ( ~B · ~∇ρ) + 18(1− 2 log 2)κ2ρ5B

2

+
3

2
(π − 2 log 2)κ( ~E · ~B) +O(∂3). (2.22)

Eventually, the on-shell currents are

~Jon−shell =σ0
χµ5

~B−τχµ5∂t ~B+σ0
e( ~E−~∇µ)−τeσ0

e∂t ~E+σ0
χH µ~E× ~B (2.23)

−D0
H
~B×(µ~∇µ+µ5

~∇µ5)−σ0
aχH

~E×~∇µ5+σ0
m

(
µ2+µ2

5

)
~∇× ~B+O(∂3),

~Jon−shell
5 =σ0

χµ~B−τχµ∂t ~B−σ0
e
~∇µ5+σ0

χH µ5
~E× ~B−D0

H
~B×(µ~∇µ5+µ5

~∇µ)

−σ0
aχH

~E×~∇µ+2σ0
mµµ5

~∇× ~B+O(∂3). (2.24)

Now lets discuss the physics of each term in (2.23), (2.24), primarily focusing on ~J on−shell.

The first term in (2.23) is CME. The next one introduces relaxation into CME induced by

time variation of the magnetic field, with τχ being a relaxation time originally computed

in [24]. τχ was recently re-examined numerically in [114] within a quite similar holographic

model but beyond probe limit. The third and fourth terms are just the classic Ohm’s and

diffusion currents accompanied by another relaxation effect associated with time varying

electric field. The corresponding relaxation time τe was originally computed in [115]. Note

that in (2.15), (2.16) there are two additional relaxation time terms. The first one with

τD enters the diffusion current [111]. Finally, τχ̄ is yet another relaxation time associated

with generalised CME. Note the difference between τχ and τχ̄: while the former is a TC

responding to time varying external magnetic field, the latter is related to relaxation of the

axial charge density. In (2.23), (2.24) both terms appear as O(∂3).

σ0
χ and τχ̄ are the first two coefficients in the gradient expansion of a resummed TCF

σχ̄ [96]. Instead of a full resummation, which is a complicated numerical problem, one

could use the relaxation time τχ̄ in order to build a causal model for σχ̄ in a spirit of MIS.

In this sense, the relaxation times, such as τχ and τχ̄, are of special importance.

The ~E × ~B-term in (2.23), (2.24) looks very similar to the usual Hall effect, which

is, however, absent in our holographic model because of the probe limit. The term that

we do find is induced by the chiral anomaly. To distinguish it from the normal Hall

effect, it is referred to as chiral Hall effect [116] with σ0
χH being its TC. Notice that

σ0
χH ∝ κ2. Contrary to purely anomaly-induced effects, which are normally odd in κ,

the terms even in κ appear as anomaly-induced corrections to normal transports [107].

The D0
H -term generates current perpendicular to both the magnetic field and gradients

of chemical potentials. In [104] this effect was called Hall diffusion. This term can be
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regarded as an example (we will expand on this below) in which the diffusion constant is

turned into a non-trivial diffusion tensor depending on the magnetic field.

The σ0
aχH -term in (2.23) induces flow perpendicular to both the electric field and

gradient of the axial chemical potential. It was referred to as anomalous chiral Hall effect

in [104].7

Finally, the last term in (2.23) corresponds to another anomaly-induced correction to a

normal current. Normal transport due to rotor of magnetic field was first analysed in [111].

At second order in the gradient expansion under discussion now, the “normal” transport

coefficient was found to be identically zero. Thus, the entire effect at this order arises from

the anomaly alone.

Dissipative nature of each term entering (2.23), (2.24) is of interest. While we do not

intend to dwell in this question here, we note in passing that the TCs σ0
χ, τe, σ

0
χH , D0

H ,

σ0
m, and τD are all time reversal T -even and thus non-dissipative. The remaining terms

in (2.23), (2.24) are dissipative.

Starting from CSE, the various terms in ~Jon−shell
5 could be simply understood as axial

analogues of those in ~Jon−shell.

For the sake of a more detailed comparison of our results with parallel ones in CKT,

we quote here the expression for the vector current as appears in [104]

~JCKT =
1

2π2
µ5
~B − τµ5

6π2
∂t ~B + σCKT

e ( ~E − ~∇µ)− τσCKT
e ∂t ~E + σCKT

H µ~E × ~B

−DCKT
H

(
µ~∇µ+ µ5

~∇µ5

)
× ~B − σCKT

aχH
~E × ~∇µ5 −DCKT

χ µµ5
~∇µ5,

(2.25)

where

σCKT
e =

τ

9π2

[
1 + 3(µ2 + µ2

5)
]
, σCKT

H =
τ2

3π2
, DCKT

H =
τ2

3π2
,

σCKT
aχH =

τ

6π2
, DCKT

χ =
2τ

3π2
.

(2.26)

Here τ is a parameter of dimension of time introduced in relaxation time approximation

(RTA) of CKT. Confronting with (2.23) we notice absence of ~∇µ5 term in ~J on−shell.

Similarly, there are no terms proportional to ~∇µ, ~E, ∂t ~E in ~J on−shell
5 . All these terms are

expected to arise beyond the probe limit. On the other hand, the magnetic conductivity

term ~∇× ~B is missing in (2.25). All the remaining terms appear in perfect agreement, at

least as far as general structures are concerned.

Because in principle the two models describe two different regimes (strong vs weak

coupling), the transport coefficients are not expected to agree. It is nevertheless instructive

to pursue such a comparison. For this goal, we need to fix the parameter τ of the CKT.

Obviously, there is no unique way to fix τ . We chose to set CME as a benchmark. That

is, we equate the CME conductivities and the associated relaxation times in two models.

This results in

κ =
1

24π2
, τ = 3 log 2. (2.27)

7Indeed, the τχ-,σ0
χH -terms in (2.23) could be reorganised as −σ0

aχH( ~E × ~∇µ5 + µ5∂t ~B)− σ0
aχHµ5∂t ~B.

More precisely it is ( ~E × ~∇µ5 + ∂t ~B)-term that was called anomalous chiral Hall effect in [104].
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Then, the transport coefficients in (2.23) are compared to those in (2.25)

σ0
e/σ

CKT
e ∼ O(102), τe/τ

CKT ∼ O(10−1), σ0
χH/σ

CKT
H ∼ O(10−3),

D0
H/DCKT

H ∼ O(10−3), σ0
aχH/σ

CKT
aχH ∼ O(1). (2.28)

While some of the coefficients came out to be of the same order, the electrical conductivity

σCKT
e in CKT is strongly suppressed (by order 10−2) compared to the holographic model.

On the other hand, the anomaly-induced coefficients σ0
χH and D0

H are highly suppressed

(by order 10−3) in holography.8

A complimentary way of looking at (2.11), (2.12), (2.15), (2.16) is by separately col-

lecting terms proportional to ~∇ρ and ~∇ρ5. All these terms constitute a diffusive current,

which to the lowest order in the gradients is

J idiff = −D0
ij∇jρ− (D0

χ)ij∇jρ5, (2.29)

where

D0
ij =

1

4
(4D0δij +D0

HεikjBkρ), (D0
χ)ij =

1

4
(2σ0

aχHεikjEk +D0
HεikjBkρ5). (2.30)

Much like in MHD, the diffusion constants are turned into tensors, which in fact depend

non-linearly on the external e/m fields E and B. Furthermore, when higher order gradients

are resummed, these diffusion tensors become momenta dependent tensor functions [96].

2.2.3 The third order results and collective excitations

Third order corrections in δ ~J and δ ~J5 contain a few dozens of new terms with corresponding

TCs, all of which are computed analytically (see section 4 for more details). Since the

complete set of the results for δ ~J [3] and δ ~J
[3]

5 is very large, in this Summary section we

focus only on the most interesting terms, the ones which are linear in ρ, ρ5, while the

remaining nonlinear in ρ, ρ5 corrections are flashed in section 4.

Denoted as δ ~J [3] l and δ ~J
[3] l

5 , the linear in ρ, ρ5 terms at third order are

δ ~J [3] l = τ1∂
2
t (~∇ρ) + τ2

~∇2(~∇ρ) + τ3∂
2
t
~E + τ4

~∇2 ~E + τ5∂t(~∇× ~B) + τ6(∂2
t ρ5) ~B

+ τ7∂tρ5∂t ~B + τ8ρ5∂
2
t
~B + τ9(~∇2ρ5) ~B + τ10ρ5

~∇2 ~B + τ11

(
~∇ρ5 · ~∇

)
~B

+ τ12

(
~B · ~∇

)
~∇ρ5 + τ̃12

~∇
(
~B · ~∇

)
ρ5 + τ13

~∇(ρB2) + τ14
~E × ( ~E × ~∇ρ)

+ τ15∂t( ~E × ~∇ρ5) + τ16∂t ~E × ~∇ρ5 + τ17ρ ~E × ∂t ~B + τ18∂t(ρ ~B × ~E)

+ τ19ρ5
~E × ( ~E × ~B) + τ20

~E × ∂t(ρ ~B), (2.31)

8In the presented comparison, we have expressed the constitutive relations in terms of the chemical

potentials, so to have them in the same form as in [104]. We could have done oppositely and that is to

compare the results expressed in terms of the charge densities. To this goal we could use the relation

between the charge densities and the chemical potentials of [104], which remarkably are quite similar

to (2.21), (2.22). While on both sides of the comparison the TCs get modified, we have checked that the

ratios (2.28) remain intact.
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δ ~J
[3] l

5 = τ1∂
2
t (~∇ρ5) + τ2

~∇2(~∇ρ5) + τ6(∂2
t ρ) ~B + τ7∂tρ∂t ~B + τ8ρ∂

2
t
~B + τ9(~∇2ρ) ~B

+ τ10ρ~∇2 ~B + τ11

(
~∇ρ · ~∇

)
~B + τ12

(
~B · ~∇

)
~∇ρ+ τ̃12

~∇
(
~B · ~∇

)
ρ

+ τ13
~∇(ρ5B

2) + τ14
~E × ( ~E × ~∇ρ5) + τ15∂t( ~E × ~∇ρ) + τ16∂t ~E × ~∇ρ

+ τ17ρ5
~E × ∂t ~B + τ18∂t(ρ5

~B × ~E) + τ19ρ ~E × ( ~E × ~B) + τ20
~E × ∂t(ρ5

~B)

+ τ21
~E × (~∇× ~B) + τ22

~∇( ~B · ~E), (2.32)

where

τ̃12 = τ12 + τ10 − τ9. (2.33)

In (2.31), (2.32) we have made use of the Bianchi identity (1.4) and eliminated ~∇ × ~E.

The values of TCs τ1−22 are collected in appendix A, see (A.28)–(A.50). Apart from the

τ3, τ4, τ5, τ21, τ22 terms, one can obtain δ ~J
[3] l

5 from δ ~J [3] l via exchange of ρ and ρ5. It is

important to give physical interpretation for τi in (2.31), (2.32).

The TCs τ1−5 represent the second order gradient expansion of the charge diffusion

function D, electric and magnetic conductivity functions σe, σm, and were first computed

in [111] by employing weak field approximation. The τ8, τ10-terms are second order gra-

dient expansion of CME conductivity σχ [24]. The τ19-term was first obtained in [24] for

constant electromagnetic fields, which, once expanded, contains nonlinear corrections to

the original CME/CSE.

The underlined terms τ13, τ14 include anomaly-induced B2-, E2-corrections to the

charge diffusion constant D0:

D0 =
1

2
− 18(2 log 2− 1)κ2B2 − 3

4
π2κ2E2 + · · · . (2.34)

We note that both corrections are negative, see (2.34). E2-correction is new whereas B2-

correction was first calculated in [25]. Obviously, there will be higher powers in E2, B2

corrections to D0. In the forthcoming publication [117], we will compute the charge diffu-

sion constant, as a function of constant e/m fields relaxing the weak field approximation.

The transport coefficients τ6, τ7, τ9 are due to spacetime inhomogeneity of ρ, ρ5. τ6, τ9

correspond to second order expansion of the generalised CME/CSE conductivity function

σχ̄ to be computed in the forthcoming paper [96].

The terms τ11, τ12, τ̃12 represent mixing effect between magnetic field and spatial gradi-

ents of ρ, ρ5. They were first considered in [25]. The TCs τ15−18, τ20 have similar structure

as the Hall diffusion and Hall effect, but the former are induced by time-varying densities

and electromagnetic fields. Thus, the τ15−18, τ20-terms are relaxation times corrections to

the Hall diffusion and Hall effect.

The τ21, τ22-terms are due to spatial inhomogeneity of electromagnetic fields. Vector

analogs of τ21, τ22 will emerge as nonlinear in ρ, ρ5 terms, see τ30, τ34-terms in (4.6).

Via the criterion for dissipative/non-dissipative transports based on T -symmetry ar-

guments, the TCs τ6−12, τ̃12, τ15, τ16,τ19, τ21 and τ22 are T -even and thus correspond to

non-dissipative TCs, while the rest of the terms are dissipative.

The third order gradient corrections (2.31), (2.32) contribute to various collective exci-

tations of the holographic chiral medium, particularly they modify the dispersion relation
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of CMW [95]. For constant electromagnetic fields,

ω = ±
[
1− 36(2 log 2− 1)κ2B2 − 3π2

2
κ2E2

]
6κ(~q · ~B)± 9π2(~E · ~B)κ3(~q · ~E)

+ (36 log 2)κ2(~q · ~S)−
[

1

2
+ 18(1− 2 log 2)κ2B2 − 3π2

4
κ2E2

]
iq2 (2.35)

± 9

2
log 2κ(~q · ~B)q2 − i

8
q4 log 2− i3

4
π2κ2(~q · ~E)2 + i(36 log 2)κ2(~q · ~B)2 + · · · .

When ~E = 0, the dispersion relation (2.35) reduces to the one obtained in [25]. The first

term (∼ ~q · ~B) in (2.35) represents nonlinear corrections to the speed of CMW, which are

negative making the wave to propagate slower. The second term (∼ ~q · ~E) in (2.35) corre-

sponds to a wave mode propagating along the electric field. It is called density wave [33] or

chiral electric wave [116]. Since the chiral electric separation effect vanishes in the probe

limit, here this effect is mimicked by the second term in (2.35) which is induced by the chi-

ral anomaly as a nonlinear correction. Its presence is conditional to ~E not being orthogonal

to ~B. We find the third term (∼ ~q · ~S) of special interest because it corresponds to a new

phenomenon. It corresponds to a wave propagating along the direction of the energy flux
~S = ~E× ~B, which can be referred to as chiral Hall density wave (CHDW). The remaining

terms in (2.35) are decay rates of various wave modes.

The rest of this paper is structured as follows. Section 3 is about the holographic

model. Section 4 is devoted to the main part of our study. Section 5 contains some closing

remarks. Appendix A collects more technical details.

3 Holographic setup: U(1)V × U(1)A

The holographic model is Maxwell-Chern-Simons theory in the Schwarzschild-AdS5. The

bulk action is

S =

∫
d5x
√
−gL+ Sc.t., (3.1)

where

L =− 1

4
(F V )MN (F V )MN − 1

4
(F a)MN (F a)MN +

κ εMNPQR

2
√
−g

×
[
3AM (F V )NP (F V )QR +AM (F a)NP (F a)QR

]
,

(3.2)

and the counter-term action Sc.t. is

Sc.t. =
1

4
log r

∫
d4x
√
−γ
[
(F V )µν(F V )µν + (F a)µν(F a)µν

]
. (3.3)

The gauge Chern-Simons terms (∼ κ) in the bulk action mimic the chiral anomaly of

the boundary field theory. Note εMNPQR is the Levi-Civita symbol with the convention

εrtxyz = +1, while the Levi-Civita tensor is εMNPQR/
√
−g. The counter-term action (3.3) is

specified based on minimal subtraction, which excludes finite contribution to the boundary

currents from the counter-term.
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In the ingoing Eddington-Finkelstein coordinate, the Schwarzschild-AdS5 is

ds2 = gMNdx
MdxN = 2dtdr − r2f(r)dt2 + r2δijdx

idxj , (3.4)

where f(r) = 1 − 1/r4. Thus, the Hawking temperature (identified as temperature of the

boundary theory) is normalised to πT = 1. On the hypersurface Σ of constant r, the

induced metric γµν is

ds2|Σ = γµνdx
µdxν = −r2f(r)dt2 + r2δijdx

idxj . (3.5)

It is convenient to split the bulk equations into dynamical and constraint components,

dynamical equations : EVµ = EAµ = 0, (3.6)

constraint equations : EVr = EAr = 0, (3.7)

where

EVM ≡ ∇N (F V )NM +
3κεMNPQR

√
−g

(F a)NP (F V )QR, (3.8)

EAM ≡ ∇N (F a)NM +
3κεMNPQR

2
√
−g

[
(F V )NP (F V )QR + (F a)NP (F a)QR

]
. (3.9)

The boundary currents are defined as

Jµ ≡ lim
r→∞

δS

δVµ
, Jµ5 ≡ lim

r→∞

δS

δAµ
, (3.10)

which, in terms of the bulk fields, are

Jµ = lim
r→∞

√
−γ

{
(F V )µMnM +

6κεMµNQR

√
−g

nMAN (F V )QR − ∇̃ν(F V )νµ log r

}
,

Jµ5 = lim
r→∞

√
−γ

{
(F a)µMnM +

2κεMµNQR

√
−g

nMAN (F a)QR − ∇̃ν(F a)νµ log r

}
,

(3.11)

where nM is the outpointing unit normal vector with respect to the slice Σ, and ∇̃ is

compatible with the induced metric γµν .

The radial gauge Vr = Ar = 0 will be assumed throughout this work. As a result, in

order to determine the boundary currents (3.11) it is sufficient to solve dynamical equa-

tions (3.6) only, leaving the constraints aside. Indeed, the constraint equations (3.7) give

rise to continuity equations (1.1)

∂µJ
µ = 0, ∂µJ

µ
5 = 12κ~E · ~B. (3.12)

In this way, the currents’ constitutive relations to be derived below are off-shell.

Practically, it is more instructive to relate the currents (3.11) to the coefficients of near

boundary asymptotic expansion of the bulk gauge fields. Near r =∞,

Vµ = Vµ +
V

(1)
µ

r
+
V

(2)
µ

r2
−

2V L
µ

r2
log r +O

(
log r

r3

)
, Aµ =

A
(2)
µ

r2
+O

(
log r

r3

)
, (3.13)
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where

V (1)
µ = FVtµ, 4V L

µ = ∂νFVµν . (3.14)

A possible constant term for Aµ in (3.13) has been set to zero, in accordance with the fact

that no axial external fields is assumed to be present in the current study. Vµ is the gauge

potential of external electromagnetic fields ~E and ~B,

Ei = FVit = ∂iVt − ∂tVi, Bi =
1

2
εijkFVjk = εijk∂jVk. (3.15)

Dynamical equations (3.6) are sufficient to derive (3.13), (3.14), where the near-boundary

data V
(2)
µ and A

(2)
µ have to be determined by completely solving (3.6) from the horizon to

the boundary. The currents (3.11) become

Jµ = ηµν
(

2V (2)
ν + 2V L

ν + ησt∂σFVtν
)
, Jµ5 = ηµν2A(2)

ν . (3.16)

As the remainder of this section, we outline the strategy for deriving the constitutive

relations for Jµ and Jµ5 . To this end, we turn on finite vector/axial charge densities for the

dual field theory, which are also exposed to external electromagnetic fields. Holographically,

the charge densities and external fields are encoded in asymptotic behaviors of the bulk

gauge fields. In the bulk, we will solve the dynamical equations (3.6) assuming the charge

densities and external fields as given, but without specifying them explicitly.

Following [111] we start with the most general static and homogeneous profiles for the

bulk gauge fields satisfying the dynamical equations (3.6),

Vµ = Vµ −
ρ

2r2
δµt, Aµ = − ρ5

2r2
δµt, (3.17)

where Vµ, ρ, ρ5 are all constants for the moment. Regularity at r = 1 has been used to fix

one integration constant for each Vi and Ai. As explained below (3.14), the constant term

in Aµ is set to zero. Through (3.16), the boundary currents are

J t = ρ, J i = 0; J t5 = ρ5 , J i5 = 0. (3.18)

Hence, ρ and ρ5 are identified as the vector/axial charge densities.

Next, following the idea of fluid/gravity correspondence [118], we promote Vµ, ρ, ρ5

into arbitrary functions of the boundary coordinates

Vµ → Vµ(xα), ρ→ ρ(xα), ρ5 → ρ5(xα). (3.19)

As a result, (3.17) ceases to solve the dynamical equations (3.6). To have them satisfied,

suitable corrections in Vµ and Aµ have to be introduced:

Vµ(r, xα) = Vµ(xα)− ρ(xα)

2r2
δµt + Vµ(r, xα), Aµ(r, xα) = −ρ5(xα)

2r2
δµt + Aµ(r, xα),

(3.20)

where Vµ,Aµ will be determined by solving (3.6). Appropriate boundary conditions are

classified into three types. First, Vµ and Aµ are regular over the domain r ∈ [1,∞). Second,

at the conformal boundary r =∞, we require

Vµ → 0, Aµ → 0 as r →∞, (3.21)
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which amounts to fixing external gauge potentials to be Vµ and zero (for the axial

fields). Additional integration constants will be fixed by the Landau frame convention

for the currents,

J t = ρ(xα), J t5 = ρ5(xα). (3.22)

The Landau frame convention corresponds to a residual gauge fixing for the bulk fields.

The vector/axial chemical potentials are defined as

µ = Vt(r =∞)− Vt(r = 1) =
1

2
ρ− Vt(r = 1),

µ5 = At(r =∞)−At(r = 1) =
1

2
ρ5 − At(r = 1).

(3.23)

Generically, µ, µ5 are nonlinear functionals of densities and external fields.

In terms of Vµ and Aµ, the dynamical equations (3.6) are

0 = r3∂2
rVt + 3r2∂rVt + r∂r∂kVk + 12κεijk [∂rAi (∂jVk + ∂jVk) + ∂rVi∂jAk] , (3.24)

0 = (r5 − r)∂2
rVi + (3r4 + 1)∂rVi + 2r3∂r∂tVi − r3∂r∂iVt + r2 (∂tVi − ∂iVt)

+ r(∂2Vi − ∂i∂kVk)−
1

2
∂iρ+ r2 (∂tVi − ∂iVt) + r

(
∂2Vi − ∂i∂kVk

)
+ 12κr2εijk

(
1

r3
ρ5∂jVk +

1

r3
ρ5∂jVk + ∂rAt∂jVk + ∂rAt∂jVk

)
− 12κr2εijk∂rAj

[
(∂tVk − ∂kVt) + (∂tVk − ∂kVt) +

1

2r2
∂kρ

]
− 12κr2εijk

{
∂rVj

[
(∂tAk − ∂kAt) +

1

2r2
∂kρ5

]
− ∂jAk

(
∂rVt +

1

r3
ρ

)}
,

(3.25)

0 = r3∂2
rAt + 3r2∂rAt + r∂r∂kAk + 12κεijk [∂rVi (∂jVk + ∂jVk) + ∂rAi∂jAk] , (3.26)

0 = (r5 − r)∂2
rAi + (3r4 + 1)∂rAi + 2r3∂r∂tAi − r3∂r∂iAt + r2 (∂tAi − ∂iAt)

+ r(∂2Ai − ∂i∂kAk)−
1

2
∂iρ5 + 12κr2εijk (∂jVk + ∂jVk)

(
∂rVt +

1

r3
ρ

)
− 12κr2εijk∂rVj

[
(∂tVk − ∂kVt) + (∂tVk − ∂kVt) +

1

2r2
∂kρ

]
− 12κr2εijk

{
∂rAj

[
(∂tAk − ∂kAt) +

1

2r2
∂kρ5

]
− ∂jAk

(
∂rAt +

1

r3
ρ5

)}
.

(3.27)

In the next section we will present solutions to (3.24)–(3.27) under approximation discussed

in the Introduction.

4 Nonlinear chiral transport

In this section, we initially explore generic structure of the vector and axial currents (1.2) as

emerges within the holographic model of section 3. No assumptions will be made regarding

the charge densities ρ, ρ5 and external fields ~E, ~B. While we are not able to solve the dy-

namical equations (3.24)–(3.27) analytically, we can advance by rewriting them in integral
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forms and extract near-boundary asymptotic expansion for the corrections Vµ and Aµ. The

procedure is rather tedious. Hence all the details are moved to appendix A. Via (3.16), the

near-boundary asymptotic behaviors (A.1)–(A.4) yield the results (2.11), (2.12) with δ ~J

and δ ~J5 formally given by (A.7). As is clear from (A.5), (A.6), δ ~J and δ ~J5 are composed

of higher derivative terms involving ~E, ~B and ρ, ρ5.

Now we continue with the gradient expansion of δ ~J and δ ~J5. Within the hydrodynamic

limit, the dynamical equations (3.24)–(3.27) are solved perturbatively. Let us introduce a

formal expansion parameter λ by ∂µ → λ∂µ, which counts order of the gradient expansion.

Then, Vµ and Aµ could be expanded in powers of λ,

Vµ =
∞∑
n=1

λnV[n]
µ , Aµ =

∞∑
n=1

λnA[n]
µ . (4.1)

We remind the reader that for this study, ~E and ~B are considered to be of O(λ1). At each

order in λ, V[n]
µ and A[n]

µ obey a system of ODEs, which could be analytically solved via

direct integration over r. We list the results for V[n]
µ and A[n]

µ up to n = 2 in (A.8)–(A.16).

Inserting the first order results (A.8)–(A.10) into (A.5)–(A.7) produces the second order

results for δ ~J and δ ~J5, as summarised in (2.15), (2.16). The results (A.8), (A.13), (A.14)

also lead to the expressions for the chemical potentials, as summarised in (2.21), (2.22).

With the second order corrections V[2]
µ and A[2]

µ (A.13)–(A.16), we obtain the third order

results δ ~J [3] and δ ~J
[3]

5 . However, nonlinearity makes such calculations rather involved and

the number of various terms is very large. For the sake of presentation, we have split the

third order corrections into terms that are linear in either ρ or ρ5, and the rest.

The linear in the charge densities parts of δ ~J [3] and δ ~J
[3]

5 , denoted as δ ~J [3] l and δ ~J
[3] l

5 ,

are already presented through (2.31), (2.32). These terms are the ones that contribute to

the gapless waves propagating in the chiral medium. We focus on the case with constant

external fields only. Consider a plane wave ansatz for the charge densities

δρ = e−i(ωt−~q·~x)δρ̃, δρ5 = e−i(ωt−~q·~x)δρ̃5. (4.2)

Then, the continuity equations (1.1) with the constitutive relations (2.11), (2.12), (2.15),

(2.16), (2.31), (2.32) turn into

aδρ̃+ bδρ̃5 = 0, bδρ̃+ aδρ̃5 = 12κ(~E · ~B). (4.3)

The explicit expressions for a and b are

a = −iω +
1

2
q2 + 18(1− 2 log 2)κ2q2B2 − 3π2

4
κ2q2E2 + 9(π − 2 log 2)κ2(~q · ~B)2

+
3π2

4
κ2(~q · ~E)2 + i

π

8
ωq2 − π2

48
ω2q2 − 1

16
(π − 2 log 2)q4 + i36 log 2κ2(~q · ~S) (4.4)

−
(

18C +
21π2

8

)
κ2ω(~q · ~S),

b = i6κ(~q · ~B)− i3
4

(π − 2 log 2)κq2(~q · ~B) + i216(1− 2 log 2)κ3B2(~q · ~B)

− 3

2
(π + 2 log 2)κω(~q · ~B)− i1

8
(24C + π2 + 6 log2 2)κω2(~q · ~B) (4.5)

− i3
4

(π − 2 log 2)κq2(~q · ~B) + i9π2κ3[(~B · ~E)(~q · ~E)−E2(~q · ~B)],
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where the Poynting vector ~S = ~E× ~B. For ω, q � 1, the dispersion equation (4.3) can be

solved perturbatively, leading to the B/E-corrected dispersion relation (2.35).

Finally, we turn to terms that are nonlinear in the charge densities in the third order

results δ ~J [3] and δ ~J
[3]

5 . We denote them as δ ~J [3]nl and δ ~J
[3]nl

5 :

δ ~J [3]nl = τ23(ρ2+ρ2
5)∂t~∇× ~B+τ24ρ5(ρ2

5+3ρ2)~∇2 ~B+τ25∂t ~H+τ26(∂tρ5
~∇ρ5+∂tρ~∇ρ)× ~B

+τ27(ρ5∂t~∇ρ5+ρ∂t~∇ρ)× ~B+τ28(ρ5∂tρ5+ρ∂tρ)~∇× ~B+τ29(ρ5
~∇ρ5+ρ~∇ρ)×∂t ~B

+τ3024κρρ5
~∇×~S+τ31(ρ5

~∇ρ+ρ~∇ρ5)×~S+τ32(~∇ρ5×∂t~∇ρ+~∇ρ×∂t~∇ρ5)

+τ332ρρ5
~B×∂t ~B+τ342ρρ5

~E×(~∇× ~B)+τ35[ρ5
~∇×( ~E×~∇ρ5)+(ρ5→ ρ)]

+τ36[~∇ρ×( ~E×~∇ρ)+(ρ→ ρ5)]+τ37[2ρρ5
~∇ρ+(ρ2+ρ2

5)~∇ρ5]×(~∇× ~B)

+τ38(ρ5
~∇× ~H+ρ~∇× ~Ha)+τ39(~∇ρ5× ~H+~∇ρ× ~Ha)+τ40

~E× ~Ha, (4.6)

δ ~J
[3]nl

5 = τ232ρρ5∂t~∇× ~B+τ24ρ(ρ2+3ρ2
5)~∇2 ~B+τ25∂t ~Ha+τ26(∂tρ~∇ρ5+∂tρ5

~∇ρ)× ~B

+τ27(ρ∂t~∇ρ5+ρ5∂t~∇ρ)× ~B+τ28(ρ∂tρ5+ρ5∂tρ)~∇× ~B+τ29(ρ~∇ρ5+ρ5
~∇ρ)×∂t ~B

+τ3012κ(ρ2+ρ2
5)~∇×~S+τ31(ρ~∇ρ+ρ5

~∇ρ5)×~S+τ32(~∇ρ×∂t~∇ρ+~∇ρ5×∂t~∇ρ5)

+τ33(ρ2+ρ2
5) ~B×∂t ~B+τ34(ρ2+ρ2

5) ~E×(~∇× ~B)+τ35[ρ~∇×( ~E×~∇ρ5)+(ρ5↔ ρ)]

+τ36[~∇ρ5×( ~E×~∇ρ)+(ρ↔ ρ5)]+τ37[2ρρ5
~∇ρ5+(ρ2+ρ2

5)~∇ρ]×(~∇× ~B)

+τ38(ρ~∇× ~H+ρ5
~∇× ~Ha)+τ39(~∇ρ× ~H+~∇ρ5× ~Ha)+τ40

~E× ~H, (4.7)

where

~S = ~E × ~B, ~H = ~B × (ρ5
~∇ρ5 + ρ~∇ρ), ~Ha = ~B × (ρ~∇ρ5 + ρ5

~∇ρ). (4.8)

All τi’s in (4.6), (4.7) are computed analytically and the results are deposited in appendix A,

see (A.51)–(A.68). Below we give simple explanation for each term in (4.6), (4.7).

The TC τ23 corresponds to anomalous corrections to the relaxation term in the mag-

netic conductivity σm of [24, 111]. The analytical result for τ23 was unknown in [24]. The

τ28-term is a nonlinear correction to the magnetic current (σm-term of [111]), and relies

on time-varying densities. τ37 corresponds to a mixing effect between the charge diffusion

and magnetic current. The TC τ30 is due to spatial inhomogeneity of e/m energy flux and

is an analog of the magnetic conductivity.

The τ24-term stands for second order expansion of the CME conductivity σχ of [24]

and was first computed there. τ25 is the relaxation term for the second order Hall diffusion

current (see the D0
H -term in (2.23), (2.24)). The τ26, τ27, τ29-terms rely on the time inho-

mogeneity of charge densities or magnetic field and could be thought of as extension of the

Hall diffusion current. The TC τ31 is related to the e/m energy flux and also generalises

the Hall diffusion current.

τ32 is composed of spatial gradient of charge densities and corresponds to nonlinear

charge diffusion process. The τ36, τ39-terms are e/m field corrections to the nonlinear charge

diffusions. The last TC τ40 is a nonlinear in E,B correction to the charge diffusions. The

terms τ33, τ34 are nonlinear in densities corrections to τ21, τ22.
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τ35 is the third order extension of the anomalous chiral Hall effect, i.e., σ0
aχH -term

in (2.23), (2.24). In [96], we will perform a systematic resummation for certain transports

and the term τ35 will be generalised into a TCF. Similarly, τ38 can be simply taken as the

magnetic analogue of τ35 and will be extended to a TCF in [96].

Finally, let us mention the dissipative nature for each term in the third order re-

sults (4.6), (4.7). Via the criterion of T -symmetry, the TCs τ24, τ30−34, τ37−40 are T -even

and are thus non-dissipative. The remaining terms are all dissipative.

5 Conclusion

In this work, we have continued exploration of nonlinear chiral anomaly-induced transport

phenomena based on a holographic model with two U(1) fields interacting via a Chern-

Simons term. For a finite temperature system, we constructed off-shell constitutive rela-

tions for the vector/axial currents. A detailed report on our new results could be found in

the Summary section. Here they are in brief:

• We demonstrated that both CME and CSE get corrected by higher derivative terms,

see (2.11), (2.12). In the hydrodynamic limit, we analytically calculated those gra-

dient corrections up to third order. Comparison with the CKT was presented. New

third order results, particularly (2.31), (2.32), extend those that were initially con-

sidered in [24, 25] and reveal novel effects associated with time-dependence or inho-

mogeneities of the charge densities and external fields.

• Among new results worth highlighting, in weak field approximation the charge dif-

fusion constant D0 was found to receive negative anomaly-induced E2- and B2-

corrections (2.34). It is very interesting to explore the dependence of D0 on the

e/m fields beyond the weak field approximation, that is non-perturbatively. Of par-

ticular interest would be a strong field limit. We are pursuing this line of study in the

forthcoming paper [117] (see also [95] for similar study but in a different holographic

model9).

• Another result we found to be of interest is that the chiral medium is shown to support

three types of collective modes: CMW (propagating along ~B), CEW propagating

along ~E, and a new one, chiral Hall density wave, propagating orthogonal to the

other two, that is, along the energy flux ~E× ~B.

The follow up paper [96] focuses on another set of approximations. Instead of con-

sidering a fixed order gradient expansion adopted here, we compute some TCFs in non-

linear chiral transport phenomena. More specifically, the external electromagnetic fields

are assumed to be constant and weak, while the charge densities are split into constant

backgrounds and small inhomogeneous fluctuations. The setup is similar to that of [24],

but in [96] as opposed to [24], gradient resummation is performed for terms that are linear

both in the charge density fluctuations and external fields.

9In [95] the effect of non-perturbative magnetic field on the speed of CMW and diffusion constant was

induced by nonlinear DBI action, which is quite different from the model in [117].
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We have found a wealth of non-linear phenomena all induced entirely by the chiral

anomaly. An important next step in deriving a full chiral MHD would be to abandon the

probe limit adopted in this paper and include the dynamics of a neutral flow as well. This

will bring into the picture additional effects such as thermoelectric conductivities, normal

Hall current, the chiral vortical effect [119, 120], and some nonlinear effects discussed

in [103]. We plan to address these in the future.

A Supplement for section 4

In this appendix, we collect all calculational details omitted in section 4. Regarding the

general structure of the constitutive relations of the vector/axial currents, we present the in-

tegral versions of the bulk dynamical equations and explore near boundary asymptotics. We

further derive the gradient expansion, and compute analytically all TCs, up to third order.

The dynamical equations (3.24)–(3.27) can be directly integrated over r, resulting in

the following integral forms

Vt =−
∫ ∞
r

dx

x3

∫ ∞
x

dy

{
y∂y∂k

(
Vk+

Ek
y

)
+12κεijk∂yAi (∂jVk+∂jVk)

+12κεijk∂yVi∂jAk
}

+∂kEk

(
logr

2r2
+

1

4r2

)
r→∞−−−→ ∂kEk

(
logr

2r2
+

1

4r2

)
+O

(
logr

r3

)
,

(A.1)

Vi =−
∫ ∞
r

xdx

x4−1

{
−∂tEi logx+

x−1

2x
∂iρ+(x−1)Ei+ε

ijk∂jBk logx−12κBi

×
[
µ5+Ai(x)− ρ5

2x2

]
+Gi(x)

}
r→∞−−−→

(
logr

2r2
+

1

4r2

)
(∂tEi−∂kFik)−

1

4r2
∂iρ+

(
−1

r
+

1

2r2

)
Ei+

6κµ5Bi
r2

−Gi(x=∞)

2r2
+O

(
logr

r3

)
,

(A.2)

At =−
∫ ∞
r

dx

x3

∫ ∞
x

{
y∂y∂kAk(y)+12κεijk∂yVi (∂jVk+∂jVk)+12κεijk∂yAi∂jAk

}
r→∞−−−→O

(
1

r3

)
,

(A.3)

Ai =−
∫ ∞
r

xdx

x4−1

{
x−1

2x
∂iρ5−12κBi

[
µ+Vt(x)− ρ

2x2

]
+Hi(x)

}
r→∞−−−→− 1

4r2
∂iρ5+

6κBiµ

r2
− 1

2r2
Hi(x=∞)+O

(
1

r3

)
,

(A.4)

where µ and µ5 are the chemical potentials defined in (3.23). We have also provided
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asymptotic expansions near the boundary r =∞. The functions Gi(x) and Hi(x) are

Gi(x) =−
∫ x

1
dy

{
2y∂y∂t

[
Vi(y)+

Ei
y

]
+∂t

(
Vi(y)+

Ei
y

)
−y∂y∂iVt−∂iVt

+
1

y
(∂2Vi−∂i∂kVk)+12κεijk

[
1

y3
ρ5∂jVk+∂yAt∂jVk

]
−12κεijk∂yAj

[
(∂tVk−∂kVt)+

1

2y2
∂kρ−Ek

]
−12κεijk∂yVj

[
(∂tAk−∂kAt)+

1

2y2
∂kρ5

]
+12κεijk

(
1

y3
ρ∂jAk+∂yVt∂jAk

)}
,

(A.5)

Hi(x) =−
∫ x

1
dy

{
2y∂y∂tAi−y∂y∂iAt+(∂tAi−∂iAt)+

1

y
(∂2Ai−∂i∂kAk)+12κεijk

×
[
ρ

y3
∂jVk+∂yVt∂jVk

]
−12κεijk∂yVj

[
(∂tVk−∂kVt)+

∂kρ

2y2
−Ek

]
−12κεijk∂yAj

[
(∂tAk−∂kAt)+

1

2y2
∂kρ5

]
+12κεijk

(
1

y3
ρ5∂jAk

+∂yAt∂jAk
)}

.

(A.6)

In deriving (A.1)–(A.4), all three types of the boundary conditions, as summarized in

section 3, were used to fix the integration constants. The formal solutions (A.1)–(A.4) give

rise to the general results (2.11), (2.12) with δJ i and δJ i5 given as

δJ i = ∂tEi −Gi(x =∞), δJ i5 = −Hi(x =∞). (A.7)

For generic profiles of ρ, ρ5, ~E, ~B, we are not able to compute Gi(x =∞) and Hi(x =

∞) analytically. So, we employ the standard hydrodynamic limit and evaluate them up

to third order in the gradient expansion (4.1). Perturbative solutions for Vµ and Aµ are

collected below. At first order, n = 1,

V[1]
t = A[1]

t = 0, (A.8)

V[1]
i = f1(r)∂iρ+ f3(r)Ei + f2(r)ρ5Bi, (A.9)

A[1]
i = f1(r)∂iρ5 + f2(r)ρBi, (A.10)

where

f1(r) =
1

8

[
log

(1 + r)2

1 + r2
+ 2 arctan(r)− π

]
, f2(r) = 3κ log

1 + r2

r2
, (A.11)

f3(r) =
1

4

[
log

1 + r2

(1 + r)2
+ 2 arctan(r)− π

]
. (A.12)
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At second order, n = 2,

V[2]
t = a0∂kEk+a1

(
−1

2
∂2ρ+6κBk∂kρ5

)
+a272κ2B2ρ, (A.13)

A[2]
t = a1

(
−1

2
∂2ρ5+6κBk∂kρ−12κ~E · ~B

)
+a272κ2B2ρ5, (A.14)

V[2]
i = b0ε

ijk∂jBk+b1∂t∂iρ+b2∂tEi+b36κ∂t(ρ5Bi)+b43κρ5ε
ijk∂jEk+b536κ2εijk

×
[
−
(
ρ2+ρ2

5

)
∂jBk+ρ5Bj∂kρ5+ρBj∂kρ

]
+b66κεijk [Ej∂kρ5+12κρBjEk]

−b736κ2εijk (ρBj∂kρ+ρ5Bj∂kρ5) , (A.15)

A[2]
i = b1∂t∂iρ5+b36κ∂t(ρBi)+b43κρεijk∂jEk+b536κ2εijk (−2ρρ5∂jBk+ρBj∂kρ5

+ρ5Bj∂kρ)+b66κεijk (Ej∂kρ+12κρ5BjEk)−b736κ2εijk [ρ5Bj∂kρ+ρBj∂kρ5] ,

(A.16)

where

a0 =
1+2logr

4r2
+

∫ ∞
r

dx

x3

∫ ∞
x

dy
y2+y+1

y(y2+1)(y+1)
, (A.17)

a1 =

∫ ∞
r

dx

x3

∫ ∞
x

ydy

(y2+1)(y+1)
, (A.18)

a2 =

∫ ∞
r

dx

x3

∫ ∞
x

dy

y(y2+1)
, (A.19)

b0 =−
∫ ∞
r

xdx

x4−1

∫ x

1

dy

y
, (A.20)

b1 =−
∫ ∞
r

xdx

x4−1

∫ x

1
dy

{
− y

(y2+1)(y+1)
− 1

8

[
log

(1+y)2

1+y2
+2arctan(y)−π

]}
, (A.21)

b2 =−
∫ ∞
r

xdx

x4−1

∫ x

1
dy

{
− 2y2

(y2+1)(y+1)
− 1

4

[
log

1+y2

(1+y)2
+2arctan(y)−π

]}
, (A.22)

b3 =−
∫ ∞
r

xdx

x4−1

∫ x

1
dy

{
2

y2+1
− 1

2
log

1+y2

y2

}
, (A.23)

b4 =−
∫ ∞
r

xdx

x4−1

∫ x

1
dy

{
− 1

y3

[
log

1+y2

(1+y)2
+2arctan(y)−π

]}
, (A.24)

b5 =−
∫ ∞
r

xdx

x4−1

∫ x

1
dy

1

y3
log

1+y2

y2
, (A.25)

b6 =−
∫ ∞
r

xdx

x4−1

∫ x

1

dy

y(y2+1)
, (A.26)

b7 =−
∫ ∞
r

xdx

x4−1

∫ x

1

dy

y3(y2+1)
. (A.27)

Substituting the first order solutions (A.8), (A.9), (A.10) into (A.5), (A.6) generates

the second order results (2.15), (2.16). The chemical potentials (2.21), (2.22) are obtained

similarly by substituting the results (A.8), (A.13), (A.14) into (3.23). Finally, the solu-

tions (A.8)–(A.16) give rise to the third order corrections (2.31), (2.32) with the transport
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coefficients τ1−40 as

τ1 =

∫ ∞
1

dy [2y∂yb1(y)+b1(y)] =−π
2

48
, (A.28)

τ2 =

∫ ∞
1

dy
1

2
[y∂ya1(y)+a1(y)] =− 1

16
(π−2log2) , (A.29)

τ3 =

∫ ∞
1

dy [2y∂yb2(y)+b2(y)] =−π
2

24
, (A.30)

τ4 =−
∫ ∞

1
dy [y∂ya0(y)+a0(y)] =

1

8
(π+2log2) , (A.31)

τ5 =

∫ ∞
1

dy

[
f3(y)

y
+(y∂y+1)a0(y)+(2y∂y+1)b0(y)

]
=−1

8

(
π−π

2

2
+2log2

)
, (A.32)

τ6 =

∫ ∞
1

dy6κ [2y∂yb3(y)+b3(y)] =
1

8
κ
(
24C+π2+6log2 2

)
, (A.33)

τ7 =

∫ ∞
1

dy3κ(2y∂y+1)[4b3(y)+b4(y)] = 9κC+
5

16
κπ2+

3

2
κ log2 2, (A.34)

τ8 =

∫ ∞
1

dy

{
3κ(2y∂y+1)[2b3(y)+b4(y)]+12κ

b2(y)

y3

}
=κ

(
6C+

1

4
π2

)
, (A.35)

τ9 =

∫ ∞
1

dy
f2(y)

y
=

1

8
κπ2, (A.36)

τ10 =

∫ ∞
1

[
f2(y)

y
−12κ

b0(y)

y3

]
=

1

4
κπ2, (A.37)

τ11 =

∫ ∞
1

[
2f2(y)

y
+12κ

∂yb0(y)

2y2

]
=

5

16
κπ2, (A.38)

τ12 =−
∫ ∞

1

[
6κ [y∂ya1(y)+a1(y)]+

f2(y)

y

]
=

1

8
κ
(
6π−12log2−π2

)
, (A.39)

τ13 =−
∫ ∞

1
72κ2 [y∂ya2(y)+a2(y)] = 18κ2 (2 log2−1) , (A.40)

τ14 =−
∫ ∞

1
dy72κ2∂yb6(y) =−3

4
κ2π2, (A.41)

τ15 =

∫ ∞
1
{6κ [2y∂yb6(y)+b6(y)]−12κ [f1(y)∂yf3(y)+∂yb1(y)]} (A.42)

=
3

2
κC+

5

32
κπ2, (A.43)

τ16 =

∫ ∞
1

dy12κ

[
∂yb1(y)+∂y(f1(y)f3(y))− ∂yb2(y)

2y2

]
=−1

8
κ

[
12C+

π2

4
−6log2 2

]
, (A.44)

τ17 =−
∫ ∞

1
dy36κ2∂yb4(y) =−3

8
κ2
(
48C−π2

)
, (A.45)

τ18 =

∫ ∞
1

dy
[
72κ2 (2y∂yb6(y)+b6(y))−12κf3(y)∂yf2(y)

]
=

3π2

2
κ2, (A.46)

τ19 =

∫ ∞
1

dy864κ3∂yb6(y) = 9κ3π2, (A.47)
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τ20 =−
∫ ∞

1
dy12κ [6κ∂yb3(y)+∂y(f2(y)f3(y))] =−3

8
κ2
(
48C+3π2

)
, (A.48)

τ21 =

∫ ∞
1

dy12κ∂yb0(y) =
3

8
κπ2, (A.49)

τ22 =−2τ14 =−3

2
κ(π−2log2) , (A.50)

τ23 =

∫ ∞
1

dy

{
36κ2

y3
[2b3(y)+b4(y)]−36κ2[2∂yb5(y)+b5(y)]

}
=

3

2
κ2(π2−12log2), (A.51)

τ24 =

∫ ∞
1

dy432κ3

[
1

y3
b5(y)

]
=−108κ3( log2−1)2, (A.52)

τ25 =

∫ ∞
1

dy

{
36κ2(2∂y+1)[b5(y)−b7(y)]+12κ[f2(y)∂yf1(y)−f1(y)∂yf2(y)]

−18κ2

y3
[y∂yb4(y)+2y∂yb3(y)+4b3(y)+2b4(y)]

}
=

3

16
κ2
[
−144C+13π2+72log2 2+12π(9 log2−4)

]
, (A.53)

τ26 =−
∫ ∞

1
dy

{
18κ2

y3
[4b3(y)+2b4(y)+y∂yb4(y)]+12κf1(y)∂yf2(y)

}
=

9

4
κ2 [−8C+(8+5π) log2] , (A.54)

τ27 =−
∫ ∞

1
dy

{
18κ2

y3
[2b4(y)+2y∂yb3(y)+y∂yb4(y)]−12κf2(y)∂yf1(y)

}
=

9

16
κ2
[
48C+π2−4(8+7π) log2

]
, (A.55)

τ28 =

∫ ∞
1

dy72κ2

[
b3(y)

y3
−[2∂y+1]b5(y)

]
=

3

4
κ2 [π(5π−12)+12(π−2) log2] , (A.56)

τ29 =−
∫ ∞

1
dy12κf1(y)∂yf2(y) =− 3

16
κ2 [48C−π(π+12log2)] , (A.57)

τ30 =−
∫ ∞

1
dy72κ2

[
1

y3
b6(y)

]
=

9

2
κ2(log2)2, (A.58)

τ31 =−
∫ ∞

1
dy

432κ3

y3
[y∂yb6(y)+2b6(y)] =−9

2
κ3
(
π2−24log2 2

)
, (A.59)

τ32 =

∫ ∞
1

dy12κ

[
1

2y2
∂yb1(y)−f1(y)∂yf1(y)

]
=− 1

64
κ [48C+π(π−24log2)] , (A.60)

τ33 =−
∫ ∞

1
dy12κf2(y)∂yf2(y) = 54κ3(log2)2, (A.61)

τ34 =

∫ ∞
1

dy432κ3∂yb5(y) = 9κ3
[
π2−6log2( log2−2)

]
, (A.62)

τ35 =

∫ ∞
1

dy72κ2

[
1

y3
b6(y)

]
=−9

2
κ2(log2)2, (A.63)

τ36 =

∫ ∞
1

dy72κ2

[
1

2y2
∂yb6(y)

]
=

3

8
κ2
[
π2−12( log2)2

]
, (A.64)

τ37 =−
∫ ∞

1
dy

216κ3

y3
[y∂yb5(y)+4b5(y)] =

9

2
κ3
[
72−π2+30(log2−2) log2

]
, (A.65)
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τ38 =−
∫ ∞

1
dy432κ3

[
1

y3
b7(y)− 1

y3
b5(y)

]
=κ3

(
324−135log2 2+162

)
, (A.66)

τ39 =

∫ ∞
1

dy
216κ3

y2
[∂yb5(y)−∂yb7(y)] =−27

4
κ3
[
24−π2−16log2(log2−2)

]
, (A.67)

τ40 =−
∫ ∞

1
dy432κ3 [∂yb5(y)−∂yb7(y)] =−27

2
κ3
[
π2−4log2( log2−4)

]
, (A.68)

where the Catalan’s constant C ≈ 0.915966.
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