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Nonlinear Color Space and Spatiotemporal MRF for
Hierarchical Segmentation of Face Features in Video

Marc Liévin and Franck Luthon, Member, IEEE

Abstract—This paper deals with the low-level joint processing
of color and motion for robust face analysis within a feature-based
approach. To gain robustness and contrast under unsupervised
viewing conditions, a nonlinear color transform relevant for hue
segmentation is derived from a logarithmic model. A hierarchical
segmentation scheme is based on Markov random field modeling,
that combines hue and motion detection within a spatiotemporal
neighborhood. Relevant face regions are segmented without
parameter tuning. The accuracy of the label fields enables not only
face detection and tracking but also geometrical measurements
on facial feature edges, such as lips or eyes. Results are shown
both on typical test sequences and on various sequences acquired
from micro- or mobile cameras. The efficiency of the method
makes it suitable for real-time applications aiming at audiovisual
communication in unsupervised environments.

Index Terms—Face analysis, hue, liptracking, logarithmic color
space, Markov random field, motion detection, segmentation.

I. INTRODUCTION

FACE ANALYSIS is an active research area nowadays
due to the wide range of possible applications [1]: video-

phone, videoconferencing, special effects for movies, synthetic
talking faces in human computer interface (HCI), synthetic
clone-assistant for e-learning, face recognition and identifica-
tion, communication for disabled people, MPEG compression,
video indexing. Due to unpredictable environment conditions,
image analysis techniques are not currently able to yield
robust and accurate enough results for automatic face feature
extraction. Viewing conditions encompass lighting variations
(shadows), varying scale and pose, changes in speaker’s face
(skin color, eyeglasses, hair, beard, make-up), camera type
(3-CCD, mono-CCD, mobile camera, webcam) and unknown
background. Any robust application in face analysis has to take
these real-world conditions into account. Combining color and
motion information has become a standard approach to deal
with such situations.

Based on those considerations, our feature-based approach
is intended to be robust to real-world viewing conditions. For
that purpose, two modeling tools are introduced: a nonlinear
color transform computed by applying a logarithmic isomor-
phism on the RGB space, and a spatiotemporal Markov random
field (MRF) model that integrates both hue information and tem-
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poral changes. A hierarchical algorithm with iterative labeling
provides a robust labeling of each face feature.

The paper is organized as follows. After an overview of
related works in Section II, Section III presents the logarithmic
color transform. The spatiotemporal MRF prior model is
detailed in Section IV. Section V describes the hierarchical
segmentation algorithm that combines hue and motion detec-
tion for statistical clustering of face regions. Experimental
results and dedicated postprocessing stages corresponding
to real-world applications are shown in Section VI, namely
for face detection and tracking, face feature segmentation,
liptracking and eye contour extraction.

II. RELATED WORKS

In this section, we give a brief overview of current techniques
for face analysis and we comment on their pros and cons, in
particular their robustness with respect to viewing conditions
and their ability to extract face features.

Image-based methods have proved to be relevant for face
analysis [2]. Neural networks provide a convenient tool for pic-
ture classification or face detection in pictures [3], [4]. Gen-
erally applied on gray level images, neural approaches need a
huge learning database for the training phase and are sensitive
to lighting variations. Color processing actually reduces the sen-
sitivity to lighting conditions [5].

Statistical analysis may be used to detect specific patterns in
the face, i.e., features that are considered constant over time [6].
MRF modeling is also efficient for face detection [7]. Such ap-
proaches need to be combined with pattern recognition tech-
niques to gain temporal stability and robustness to viewing con-
ditions. Genetic algorithms propose a new approach able to de-
tect lip, nose, eyes, and eyebrows from a face [8]. However,
these methods require parameters that are dependent on viewing
conditions.

Lipreading has been studied far longer before face analysis.
Basic image processing modeling gives good results under con-
strained views [9]. Authors introduced preprocessing stages and
dedicated tools (active contours, deformable templates, point
distribution models). Nowadays, the last generation of such al-
gorithms provides methods for face analysis [10].

As face synthesis improves in quality, 3-D face models have
been used to locate and estimate real faces by 3-D/2-D registra-
tion [11], [12]. Unfortunately, the complexity of face analysis
and the inverse mathematical problem often lead to suboptimal
solutions without feature extraction for lipreading or expression
analysis. Moreover, simulating real-world environment in syn-
thetic scenes is still a challenging issue [13].

1057-7149/04$20.00 © 2004 IEEE
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Low-level image properties provide also relevant information
for face analysis. Motion information may be used to track faces
or lips. Motion estimation techniques, like optical flow, are also
used for face expression modeling and analysis [14], [15]. As
a global method, optical flow cannot separate each face feature
movement.

To gain independence from lighting conditions, color pro-
cessing (instead of luminance) has become of standard use for
face tracking in image sequences [16]. To take account of the
specific face color distribution, two color-based approaches
are common in the literature: the first one uses color angle
methods for illumination invariant recognition. The second one
estimates the skin distribution (or locus) in an appropriate color
space [17]. Unfortunately, in noisy conditions (weak lighting,
mono-CCD camera), angular transforms give poor results and
color modes are often mixed together [18]. The YCrCb color
space is widely used in face analysis for estimating the skin
color locus [19]. Nonetheless, lighting compensation is still
mandatory for robust face detection [20].

In conclusion, face analysis is often limited to ellipsoid or
rectangular region detection [21]. This first localization is then
used to run additional algorithms in constrained viewing condi-
tions for face feature extraction, e.g., mouth and eye. Combining
several approaches may lead to cumbersome frameworks and
complex parameter tuning. Chromatic information is undoubt-
edly relevant for face analysis in video but standard transforms
still remain sensitive to lighting conditions and very noisy in
shadow areas, so that some authors even preclude the use of
color [22], relying only on contours and motion. For automatic
face feature segmentation further investigations in this field are
therefore required, which is the goal of this paper. Moreover,
we do believe that processing video sequences instead of static
images is of precious help for face featrure extraction since it
allows to integrate temporal information in addition to spatial
information.

III. NONLINEAR COLOR TRANSFORM

A. YCrCb and HSI Color Spaces

The YCrCb video format is a linear combination of red, green,
and blue components (RGB) used as TV standard. The coeffi-
cients are standard-specific (cf. Rec. 601 and 709). For simplify
and without loss of generality, we consider the following trans-
form:

(1)

which may be written in vector form:
where denotes transposition and is the matrix

of chromatic coefficients.
Since color distributions based on linear combination of RGB

often require a learning database or strong priors in order to
be well estimated, angular transforms are sometimes preferred

for color segmentation. The HSI color space (hue, saturation,
intensity) is a typical nonlinear transform of the RGB space

(2)

It has proven to be suited for face and lip processing since it
is more related to psychovisual perception, and the red hue
distribution actually little depend on the speaker’s skin color
[2], [1]. Yet, low-cost video systems for face analysis often use
mono-CCD cameras that yield poor results with angular color
transforms due to noisy conditions.

B. Original LUX Color Space

In order to be robust to lighting conditions, we work with a
nonlinear color space based on a logarithmic transform. It is
inspired both by biological considerations, i.e., cone distribu-
tion in the fovea and nonlinear transduction of cones followed
by bipolar cell differencing in the retina (cf. [23, Fig. 6]) and
by a mathematical framework, namely the logarithmic image
processing (LIP) model, known to yield impressive contrast en-
hancement [24].

The LIP theory was developed for gray level images. The
LIP model is basically defined in the continous case by three
equations: a transform from the intensity space (variable ) to
the space of tones (variable ), an isomorphism (valid

) from the space of tones onto a logarithmic space
(variable ) and an inverse isomorphism (trivial expression
not given here, the interested reader is referred to [25] for de-
tails)

(3)

(4)

where is a continuous gray level, is
the maximum transmitted light and is the dynamic range of
gray levels (typ. for 8-bit coding).

Here, we extend the LIP model to handle colors (i.e.,
YCrCb) as well. We thus derive a new color space called LUX

(for Logarithmic hUe eXtension). For that purpose, only the
composition function is of pratical interest. The
isomorphism provides a logarithmic transform normalized
by the maximum transmitted light

(5)

(6)

Since in the discrete
case, we take rgb (with etc.) so that we stick to
the interval as required by the LIP theory. Similarly, we
will note lux (with , etc.) the transformed variables.
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The diagram below helps understand how we build the LUX

color space

(7)

The isomorphism transforms the vector into its log-
arithmic counterpart on which the linear matrix is ap-
plied, yielding vector

(8)

Let be the maximal values of rgb. Then, an explicit
formulation of (8) gives

(9)

Denoting the maximal values of lux and using (5), the
nonlinear transform which is the composition of
is directly given by

(10)

For practical use, (10) contains too many unknowns. There-
fore, we assume that each component is close to the
maximal intensity (first order approximation). This hypoth-
esis is valid when the camera is calibrated for full range on the
white values. A second approximation is that the maximal lumi-
nance is close to the dynamic range . This strong assump-
tion corresponds to an automatic contrast correction. Moreover,
we impose: in order to keep the same dy-
namic range. Then (10) reduces to

(11)

So far, this logarithmic model works only for positive values
in the range of . To take account of the possibly nega-
tive values of the chromatic components in (8), we have to con-
sider also the opposite formulae

(12)

Combining (8) and (12) while adapting the dynamic range
yields the final expression of the LUX components

(13)

Fig. 1 illustrates the robustness of the LUX transform in ad-
verse background (brown curtain close to red locus) and the

Fig. 1. Chromaticity results on Trevor sample frame: (a) From left to right:

GRB; (b) LUX; (c) IHS; and (d) YCrCb (after histogram equalization onCr and
Cb to enhance the contrast).

Fig. 2. Comparison of histograms on Trevor sample frame: (a) Cr without
histogram equalization; (b) Cr after histogram equalization; and (c) U chroma
computed with the proposed LUX transform.

failure of the classical color transforms. As is well-known, the
RGB components are strongly correlated [Fig. 1(a)]. The LUX

space Fig. 1(b) reveals hue areas corresponding to face and
hands, the background being clearly distinguishable. The hue
computed from HSI is sensitive to light variations in the back-
ground [Fig. 1(c)]. One may observe that the saturation com-
puted from HSI is little sensitive to light variations and pro-
vides good contrast for feature detection. However, saturation
describes only the quantity of color but not its value. There-
fore, it cannot be used alone for color segmentation (e.g., the
tie and hands are not distinguished from the shirt). The CrCb

components [Fig. 1(d)] provide less contrast than to distin-
guish between various color areas (face skin versus lips, shirt,
and tie versus background). Although a histogram equalization
was performed on and , the enhancement is only visual.
In Fig. 2, a comparison of the histograms of red chrominances
confirms the improvement obtained with instead of .

C. Simplified Formulae for Skin Locus Detection

This paragraph proposes a simplification of the LUX

transform specifically suited for skin detection in the context
of real-time implementation. Indeed the computation cost,
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Fig. 3. Typical frame of speaker Benny sequence: (a) From left to right: the
luminances Y; I; L, and G. (b) The chrominances Cr;H;U , and Û .

and hence the number of elementary operations, has to be
minimized.

Since the hue of the face skin is mainly red (i.e.,
), we may take only the contribution of and define the

red chroma as

(14)

Taking a step further, the luminance formula in the LUX

space is simply a weighted geometrical mean of RGB (13). In
practice, whatever the image, gives very little difference com-
pared to (or even component, see Fig. 3(a)). Therefore, the
following simplified formula might by used in place of (14):

(15)

Already used empirically for skin detection [26], the ratio
is derived here from a simplification of the LUX transform,
which provides some kind of theoretical background. This ratio
is scaled by a multiplicative constant in order to adjust its range
to the 8-bit quantization levels . The conditional test
in (15) accounts for the sign of the color difference.

Fig. 3 shows the results of the various transforms applied to
a typical color image representing the lower part of a speaker’s
face: the component is not enough discriminating for seg-
menting lips; the hue yields a noisy map, whereas the loga-
rithmic chroma clearly exhibits the lip shape and other facial
parts (tooth, nostrils). The logarithmic transform gains in con-
trast while being insensitive to illumination variations, thanks to
its homomorphic nature. As expected, the simplified chroma
(depicted with inverted gray levels compared to since it cor-
responds to the opposite formula ) is very close to which
means that the proposed simplification is relevant when aiming
at face and lip segmentation.

IV. SPATIOTEMPORAL MRF PRIOR MODEL

In order to build a probability map of face and facial feature
presence at each time , we propose to combine color estimates
with motion observations (temporal changes in the video). Each
pixel will be attributed a label that jointly re-
flects its hue class and its motion class

(16)

Fig. 4. (a) Spatiotemporal neighborhood �(s): in black, the current pixel s;
in light gray, the spatial neighbors r; in dark gray, the temporal neighbors r.
(b) Euclidian structure: metric cube with coordinates of vectors �!sr .

where is a Boolean variable indicating the motion class (mo-
bile or static). is an integer indicating the hue class

. Note that we take for all the unclassified
pixels (still belonging to the background).

A prior model should properly define the interactions be-
tween the labeled pixels. MRFs are well suited for that pur-
pose. Let us consider the spatiotemporal neighborhood struc-
ture shown in Fig. 4(a). The label field is supposed to verify
the main MRF property related to that neighborhood, namely
the label of the current pixel depends only on the labels
of its neighbors .

Given this neighborhood structure and considering only bi-
nary cliques of first order, the prior energy is classically ex-
pressed as a sum of potential functions that model spatiotem-
poral interactions within the neighborhood of pixel

(17)

Let be the coordinates of vector associated to
the clique Fig. 4(b). In [27], the potential
functions were defined according to the basic idea that interac-
tion gets weaker as the neighbor is farther. But instead of simply
taking the inverse of the Euclidian distance between two neigh-
bors and (norm of the vector), the coordinates of vector
were divided by three potential parameters for -axis
and for temporal axis

(18)

A spatial anisotropy: was imposed to emphasize
on horizontal configurations, which are of more importance for
liptracking. Then, (18) reduces to

(19)

where spatial parameter and temporal parameter
control spatial (resp. temporal) homogeneity.

Here, we modify the model in [27] by taking a neighbor-
hood that is temporally causal (for real-time implementation
purpose), and we extend the model to handle different
hue classes (instead of only 2). A unique potential function
encompasses all configurations. The two elementary potentials

and are no longer constant but as defined



LIÉVIN AND LUTHON: NONLINEAR COLOR SPACE AND SPATIOTEMPORAL MRF 67

TABLE I
ELEMENTARY POTENTIALS � AND � (� = DON’T MATTER). CROSSING

BETWEEN ROWS AND COLUMNS EXPRESSES A LOGICAL AND
BETWEEN CONDITIONS

Fig. 5. Hierarchical segmentation framework.

in Table I. These potentials constrain the model respectively
to spatial homogeneity of labels in frame and temporal
homogeneity of hue when no motion is detected between
and .

V. HIERARCHICAL FACE SEGMENTATION

A coarse-to-fine approach is appropriate for face feature ex-
traction since the head is composed of a main area: the face skin,
and secondary areas representing each feature: upper lip, lower
lip, left eye, right eye, nose, eyebrows. Moreover, the hue dis-
tribution estimation gains in accuracy when estimated hierar-
chically on smaller areas. We describe here a hierarchical iter-
ated algorithm for segmenting regions (e.g., face features)
where is unknown. To detect face regions, motion informa-
tion is combined with red hue.

In most of face analysis algorithms, face parameters are de-
termined manually beforehand or by a learning stage. Here, the
parameter vectors corresponding to hue
clusters are automatically estimated. At each iteration (or pass),
a new label corresponding to a new hue cluster is added during
the segmentation process. One pass (iteration ) of the algo-
rithm consists in the four sequential steps shown in Fig. 5.

A. Step1: Mode Estimation on Hue Histogram

A hue cluster is defined by vector , where
and are the mean value and standard deviation of the

chrominance distribution for all the pixels that are still unclassi-
fied at pass . An algorithm similar to the one proposed in [28]
is used for finding the main mode

1) build a smooth histogram from the chroma distribution
with a Gaussian kernel;

2) compute the first derivative and count the zero-crossings;
3) find the greatest mode corresponding to a

zero-crossing;
4) compute the second derivate to estimate .

B. Step2: Computation of Observations

From the simplified color space defined in Section III-C,
two observations are derived, taking values in the same range

as the 8-bit quantized image.

• The hue observation corresponding to pass is
computed by filtering the chrominance at pixel
with a parabola1 while discarding the influence of out-
liers:2

(20)

• The temporal observation is the frame difference
computed on the luminance (either or even as
explained in III-C)

(21)

C. Step 3: Initialization of the Label Set

It results from (16) that, during the segmentation process of
the image at pass , the label set is made of distinct
labels that code hue and motion.

Initial label field is computed by binarizing the obser-
vations , where denotes either or . Two thresh-
olds are used for that purpose.

• A threshold is associated to the hue distribution. We
compute the ratio within a trust
margin of 50%. From (20), this is reached when

. The thresholded hue observation is then
given by where .

• A threshold is used to suppress the camera noise without
cutting significant temporal changes. This threshold may
be tuned manually or estimated on-line using the entropy
power of the frame difference as proposed in [30]. The
binarized motion observation is then given by .
As can be seen from Fig. 6, motion detection will help and
contribute in extracting moving feature edges.

1The parabola associated to cluster P is centered on U with a standard
deviation� . This type of weighting function was already proposed by Coianiz
to emphasize the desired red hue [29].

2The notation 1 denotes a binary function which takes the value 1 if
the condition is true, 0 otherwise.
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Fig. 6. Temporal changes detected by entropic thresholding: (a) micro-camera
centered on the lower part of the face and (b) webcam sequence in office room.

D. Step4: Statistical Relaxation

Since those initial label fields are non homogeneous and
noisy, a statistical relaxation is needed to segment accurately
the face. The MRF framework with the prior model given in
Section IV is adopted for that purpose.

Maximizing the a posteriori probability (MAP criterion) of
the label field given the observations is equivalent to minimizing
a global energy function over the image grid at time [31]

(22)

where is the prior energy (corresponding to spatial and tem-
poral a priori constraints) as defined by (17), and (with de-
noting any observation, i.e., ) represent the var-
ious likelihood energies (expressing the link between labels and
the observations) of pixel . is a weighting co-
efficient for balancing the influence of the two terms of energy
(typ. ).

The energies are classically defined as [32]

(23)

where are data-link functions that depend on the (possibly
local) estimates of the average value of observations. They are
simply defined as two-valued functions

(24)

(25)

where represents the average value of observations above
the threshold

(26)

A variance is associated to each observation . Both and
are estimated on-line. The iterative deterministic algorithm

ICM (Iterated Conditional Modes) is implemented to compute
the minimum energy at each site, starting from the binarized
observations as initial label configuration. ICM is chosen be-
cause of its low computation cost but it may converge toward
local minima. In our tests however, a stable minimum was al-
ways reached in practice after a few iterations on the field (less
than 10). The relative variation of the global energy is used as

Fig. 7. Face Segmentation: (a) sample frames of color video sequence Claire
and (b) label fields after relaxation, with gray levels coding the hue clusters.

stopping criterion: (typ. %).
One obtains homogeneous label fields. Fig. 7 shows final hue
labels when the algorithm is applied to a moving face.

E. Contour Postprocessing

1) Region of Interest Extraction: Localization of region
of interest (ROI) is a prerequisite toward feature analysis and
anthropometrical measurements. Any suboptimal (ad hoc)
approach may be applied to estimate the ROI from the good
segmentation results of the MRF labeling (binary masks). In
this paper, results are shown with rectangular shapes. Each
vertex location is computed automatically by using a gradient
descent method applied on the ratio between the number of
labeled points and the area of the region.

2) Unsupervised Active Contour: Active contours were
primarily designed for interactive segmentation where the user
guides, by external forces, the contour close to the desired
solution [33]. Active contours are usually applied on the
image intensity gradient in order to extract edge points on face
features. However active contours are known to be complex
to tune and sensitive to initialization. In this paper, active
contours are run on the segmented label fields instead of being
applied on intensity images as usual. This technique avoids
manual parameter tuning and bad convergence: working on
binary masks is a convenient way to define a stable external
energy, always confined in the same range. In that case, the
active contour parameters only need to be evaluated once
beforehand and stay adequate to future segmented fields. No
user initialization is required thanks to the rectangular ROI.
Such active contours applied on MRF label fields are therefore
reliable in face analysis applications.

VI. EXPERIMENTAL RESULTS

This section presents specific implementations of the hierar-
chical segmentation scheme for face, lip and eye tracking, re-
spectively.

Each application depends on a specific choice of the ROI and
of the number of segmentation passes. The scheme below
details the application dependent implementation stages. The
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Fig. 8. Face tracking with rectangular shape ROI (the ROI detected is marked
in white): (a) office sequence with mobile cam tracking the ROI. (b) Trevor
sequence.

Fig. 9. Face tracking with arbitrary face orientation: (a) sample frames of
the Foreman video sequence. (b) Masks obtained after 1-pass segmentation
and initial positionning of active contours. (c) Face extraction with final active
contours.

final active contour stage may provide geometrical parameters
(width, height) of the facial features.

1) Set an initial ROI (automatic or manual).
2) Cluster this region up to pass .
3) Compute the ROI associated to a selected hue (i.e., fea-

ture).
4) Apply active contours on binary masks.

A. Face Tracking

Face tracking is the first task in face analysis. A 1-pass seg-
mentation is considered . This comes out to estimate
only the preponderant red hue mode in the color image. There-
fore, while looking for the head, any other object or surface (like
the hands) should represent a smaller red hue area.

For face tracking, the initial ROI is simply the outer border
of the first image. The 1-pass algorithm segments the face and
extracts the border of the binary masks. The temporal tracking is
obtained by taking the final ROI at time to initiate the next one
at time . Fig. 8 shows the robustness of the proposed face
tracking algorithm in complex environment (busy office with
two persons) or when the face represents a small area in front of
a brown (i.e., close to red locus) background.

Note that the same method simply fails when combined with
HSI or YCrCb transforms (cf. Fig. 1(c)–(d)).

Fig. 9 shows binary masks after 1-pass segmentation and final
results of active contours on test sequence Foreman. In this well-
known sequence, the camera moves while the speaker’s head
changes in orientation. Though this sequence presents numerous
motion artefacts and moving shadows, the algorithm tracks the
head with only 4 false detections among 300 images. The four
misdetections correspond to images with superimposition of the
hand over the head. Indeed, no distinction is actually made in the
modeling between a talking head and a moving hand.

Fig. 10. (a) and (b) Two lip sequences with detected ROI and lip masks
superimposed in white. (c) and (d) Two lip sequences with final active contours
superimposed in white.

B. Lip Tracking

Lip contour extraction is achieved by applying the proposed
scheme with a 2-pass segmentation . The first pass cor-
responds to the face tracking implementation. The second pass
segments the lip hue mode. The search for the second mode is
constrained by the condition: , where and are
the mean values of red chroma for face and lips respectively.
This condition drives the histogram estimate toward the appro-
priate mode, whenever the background is non uniform or noisy.
In undefined viewing conditions, where these modes are gener-
ally mixed, the hierarchical segmentation succeeds in labeling
the lip areas from the face. Fig. 10(a)–(b) shows lip masks ob-
tained on two sequences acquired with a micro-camera.

With an approach similar to face tracking, two active contours
are initiated and computed on the binary masks. One contour
corresponds to the outer border of the mouth whereas the other
contour extracts the inner border of the mouth. Lip corners need
to be fixed during active contour convergence. Their position is
located at the middle of the estimated lip ROI. Fig. 10(c)–(d)
shows two sequences with superimposed final active contours.
Fig. 10(c) corresponds to a common case in videophone applica-
tion. An ambient light induces shadows on lip boundaries while
the speaker is talking. Fig. 10(d) shows the robustness of the
processing even when the speaker wears a beard.

C. Eye Tracking

Eyes are an essential feature of face expression. In the rest
of this paragraph, only the right eye tracking is detailed without
loss of generality. Considering the ROI obtained from the pre-
vious face tracking process, this area is partitionned into smaller
bounding boxes corresponding to the various face feature loca-
tions. For instance, the right eye is located a priori at the upper
left side of the image. A more accurate solution may consist in
using anthropometric parameters taken from a speaker database
built in a previous learning phase. Here, the sub-area is prede-
fined as the upper left quadrant of the image. This assumption
is sufficient as an initial guess for the ROI. The segmentation
scheme is then run with two passes , followed by an
active contour stage. The approach is the same as for lip contour
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Fig. 11. Four stages of the right eye contour extraction. (a) Bounding box
positioning; (b) LUX transform; (c) label field after hierarchical segmentation;
(d) eye contour extraction by active contours (initial position is shown on the
first image).

extraction: one active contour is initialized on the outer border
with two centered corners, corresponding to the eye corners.

Following is an overview of the eye tracking stages:

1) face tracking;
2) locating anthropomorphic areas: mouth, left eye, right

eye;
3) computing chroma from the LUX transform;
4) segmenting the eye area;
5) extracting the eye contour.

Fig. 11 presents the four last stages when applied to Claire se-
quence. Even after zooming on the eye area, the algorithm tracks
correctly the outer border of the eye.

VII. DISCUSSION

While real-time, accuracy and robustness are still bottlenecks
for user-friendly multimedia applications, the low-level tools
presented here are an attempt to address these key issues in order
to improve forthcoming facial communication platforms.

The three cues of our pixel-based approach for robust face
feature segmentation are the following.

• A new nonlinear color transform is derived from the as-
sociation of LIP model with YCrCb space. Note that the
LUX color transform may also be applied to other multi-
media applications, like video coding, video indexing or
scene description. We are currently investigating its use
not only for color segmentation but also for compression
within the JPEG2000 standard. Our first results (to be pub-
lished) confirm that it yields visual improvement com-
pared to YCrCb when dealing with very high compression
ratios (typ. 1:100).

• A hierarchical segmentation algorithm allows robust
tracking of face and facial features under unsupervised

conditions, thanks to the robustness of the spatiotemporal
MRF model that jointly handles color and motion.

• Active contours applied on label fields (instead of images)
make it possible to extract accurately and automatically all
feature edges.

Whereas simplifications were done for real-time implementa-
tion, this approach proved to be efficient not only for classical
test sequences like Trevor, Foreman or Claire, but also for
sequences acquired with various cameras (micro-cam, mobile
cam, desktop webcam). Moreover, the quality of results is ac-
tually little affected by MPEG compression since the proposed
logarithmic space is derived from the coding. Face
tracking was implemented at a rate of 12 full-color video fps on
a 1.4 GHz processor, the complete face feature segmentation
requiring less than 1 second per frame. The whole algorithm
may run in real-time at 30 fps on a specialized DSP board.

The proposed method works automatically for front-view
face sequences with complex background. Its capacity in
extracting object contours enables its integration in MPEG7
bit-stream description. Its robustness to lighting variations
makes it also suitable for outdoor applications. Of course, one
limitation is when dealing with profile images: in that case, the
method should be partially supervised (for instance to set the
initial ROI for tracking the visible eye).

A forthcoming development of such a framework is the
synthesis of 3-D realistic animated faces, fed with geometrical
parameters measured on the face features extracted by the
algorithm.
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