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Abstract— For the nonlinear output regulation, or ser-
vomechanism, problem a nonlinear compensator synthesis
framework is presented that merges techniques for linear
parameter-varying (LPV) systems with ideas derived from
linearization-based gain scheduling. Plant linearizations about
zero-error trajectories have an LPV structure upon which
the synthesis of an LPV compensator is based. A key issue
is whether, loosely speaking, the linearization process can
be reversed wherein a nonlinear compensator is sought that
linearizes to the LPV compensator about every zero-error
trajectory. Necessary and sufficient existence conditions are
derived for the existence of compensators satisfying this
linearization requirement. Based on this, it is shown that
error feedback compensators that contain an internal model of
the exosystem are guaranteed to exist under mild hypotheses.
A nonlinear compensator is designed for the ball and beam
apparatus to illustrate the technique.

I. I NTRODUCTION

Linear parameter-varying (LPV) control has, over the past
decade, emerged as an effective methodology to accommo-
date plants exhibiting parameter-dependent dynamics that
preclude the application of linear time-invariant techniques
[1], [2], [3], [5], [11], [14]. LPV plant models are often
derived from a nonlinear plant whose dynamics over a
specified operating regime vary significantly but admit a
parameterization by a subset of the system variables. For
example, in flight control applications a vehicle’s linearized
aerodynamics are commonly parameterized by variables
such as angle-of-attack, dynamics pressure, altitude, and
mach number that specify the required flight envelope.

In the case where LPV plant models arise from the
linearization of a nonlinear plant about nominal trajectories,
the feedback interconnection of the nonlinear plant and an
LPV controller is not guaranteed to linearize to the feed-
back interconnection of the LPV plant and LPV controller
precisely due to the parameter-dependence in the controller.
This can produce unexpected and undesirable consequences.
It is appropriate instead to consider more a general nonlinear
compensator structure and impose the requirement that
the nonlinear compensator should linearize to the LPV
compensator about the designated nominal trajectories. This
linearization requirement leads to the controller existence
conditions derived in [10] for the case of plant linearizations
about a family of equilibria and a novel compensator
architecture that satisfies these conditions is presented [9].
The paper [12] surveys the interplay between LPV methods

and the linearization-related issues raised above under the
general heading of gain scheduling.

In this paper, we demonstrate the applicability of LPV
methods in the context of the nonlinear output regulation,
or servomechanism, problem. Namely, LPV plant models
naturally arise from the linearization of a nonlinear plant
about a parameterized collection ofzero-error trajectories
specified by a certainzero-error submanifold. An LPV
compensator can then be constructed to meet additional per-
formance objectives beyond error regulation, directly taking
into account the time-varying nature of the parameters as
generated by an associated exosystem. As in [10], we derive
conditions for the existence of nonlinear compensators that
meet an appropriate linearization requirement. Moreover,
we show that a general class of error feedback compensators
containing an internal model of the exosystem is guaranteed
to satisfy this requirement. This approach on the one hand
rigorously ties LPV methods to nonlinear systems and on
the other hand extends prior work on linearization-based
gain scheduling to the case of time-varying trajectories
rather than just equilibria. It is reasonable to expect that
this marriage of LPV-based techniques and linearization-
based gain scheduling will allow for the design of nonlinear
compensators that yield improved performance over those
designed on the basis of a single plant linearization about a
nominal equilibrium [8] or on the basis of plant lineariza-
tions about zero-error trajectories but for which LTI design
methods are applied point-wise along the trajectory [7].

II. PROBLEM FORMULATION

We consider a nonlinear continuous-time plant of the
form

ẋ = f(x,w, d, u)

z = hz(x,w, d, u)

y = hy(x,w, d) (1)

wherex(t) ∈ R
n is the state vector andw(t) ∈ R

mw is
generated by a known exosystem,

ẇ = s(w). (2)

In addition, d(t) ∈ R
md is an unmeasured disturbance,

u(t) ∈ R
mu is the control input,z(t) ∈ R

q is the regulated
output, andy(t) ∈ R

p is the measured output available



for control purposes. For convenience, we assume that the
plant functions, along with all other functions to appear,
are smooth. Next, we assume that output regulation is
achievable for the undisturbed plant (d = 0).

Assumption 2.1: For the nonlinear plant (1) and exosys-
tem (2) we assume that there exists an open set0 ∈ W ⊂
R

mw and functions

x◦ : W −→ R
n, u◦ : W −→ R

mu , y◦ : W −→ R
p,

all zero at the origin, such that

∂x◦(w)

∂w
s(w) = f(x◦(w), w, 0, u◦(w))

0 = hz(x
◦(w), w, 0, u◦(w)) (3)

and
y◦(w) = hy(x◦(w), w, 0)

for w ∈ W. �

The regulator equations (3) define azero-error subman-
ifold via

M = {x ∈ R
n | x = x◦(w), w ∈ W}.

Linearizing the nonlinear plant (1) about any zero-error
trajectory lying inM leads to the family of linearizations
having the linear parameter-varying (LPV) form

ẋδ = A(w)xδ + Bd(w)dδ + Bu(w)uδ

zδ = Cz(w)xδ + Dzd(w)dδ + Dzu(w)uδ

yδ = Cy(w)xδ + Dyd(w)dδ (4)

whereδ–subscripts indicate deviations from nominal values
along a zero-error trajectory,

xδ = x − x◦(w), dδ = d, uδ = u − u◦(w),

zδ = z, yδ = y − y◦(w)

and the coefficient matrices are given by, for example,

A(w) =
∂f

∂x
(x◦(w), w, 0, u◦(w))

with the others defined analogously.
Suppose an LPV compensator of the form

ẋCδ = AC(w)xCδ + BC(w)yδ

uδ = CC(w)xCδ + DC(w)yδ (5)

has been constructed such that performance objectives are
met by the feedback interconnection of (4) and (5) in an
LPV sense for all exosystem trajectories generated by (2).
It is important to note that the LPV compensator is also
described in terms of deviation variables but in this case
the compensator state functionx◦

C
(w) associated withxCδ

has yet to be specified.
Of interest is the existence of a nonlinear compensator

ẋC = a(xC , y, w)

u = c(xC , y, w) (6)

that meets the following important linearization requirement
with respect to the LPV compensator (5).

Requirement 2.2: For the nonlinear compensator (6)
there must exist a smooth functionx◦

C
(·) satisfying

∂x◦
C
(w)

∂w
s(w) = a(x◦

C(w), y◦(w), w)

u◦(w) = c(x◦
C(w), y◦(w), w). (7)

In addition, the following partial derivative identities must
hold

∂a

∂xC

(x◦
C(w), y◦(w), w) = AC(w),

∂a

∂y
(x◦

C(w), y◦(w), w) = BC(w),

∂a

∂w
(x◦

C(w), y◦(w), w) = 0, (8)

∂c

∂xC

(x◦
C(w), y◦(w), w) = CC(w),

∂c

∂y
(x◦

C(w), y◦(w), w) = DC(w),

∂c

∂w
(x◦

C(w), y◦(w), w) = 0. �

The first part of Requirement 2.2 ensures that the the
undisturbed (d = 0) closed-loop system possesses a zero-
error submanifold. The second part guarantees that lin-
earizations of the nonlinear compensator about closed-loop
zero-error trajectories agree with the LPV compensator.
Consequently, linearizations of the nonlinear closed-loop
system about zero-error trajectories exactly match the feed-
back interconnection of (4) and (5). Note that terms in (8)
involving partial derivatives with respect tow are required
to vanish since they have no counterpart in the LPV com-
pensator (5). The following theorem gives a necessary and
sufficient existence condition for nonlinear compensators
satisfying this linearization requirement.

Theorem 2.3: Given LPV compensator (5), there exists
a nonlinear compensator (6) satisfying Requirement 2.2 if
and only if there exists a smooth functionx◦

C
(·) satisfying

the partial differential equation

∂

∂w

[

∂x◦
C
(w)

∂w
s(w)

]

= AC(w)
∂x◦

C

∂w
+ BC(w)

∂y◦

∂w

∂u◦(w)

∂w
= CC(w)

∂x◦
C

∂w
+ DC(w)

∂y◦

∂w
(9)

Proof: For necessity, if a nonlinear compensator satisfying
Requirement 2.2 exists, then differentiating the identities
in (7) with respect tow and substituting the identities
in (8) yields the identities in (9). Conversely, if there
exists a smooth functionx◦

C
(·) satisfying (9), then it is

straightforward to verify that the nonlinear compensator
specified by

a(xC , y, w) = AC(w) [xC − x◦
C(w)] + BC(w) [y − y◦(w)]

+
∂x◦

C
(w)

∂w
s(w)

c(xC , y, w) = CC(w) [xC − x◦
C(w)] + DC(w) [y − y◦(w)]

+ u◦(w)



satisfies Requirement 2.2 �

At first glance, the existence condition of Theorem 2.3
appears to be restrictive as it involves a type of partial
differential equation that may not have a solution. On the
other hand, if the condition above is not satisfied then
linearizations of any compensator of the form (6) about
a zero-error trajectory will not completely agree with the
LPV compensator (5). Resulting mismatches constitute so-
called hidden coupling terms that can potentially impact
system performance. Compensators arising from a direct
LPV implementation of (5) are likely to introduce hidden
coupling terms corresponding to the exogenous variable
w because partial derivative terms with respect tow that
arise in the linearization process are typically nonzero. It is
therefore of interest to identify compensator architectures
that automatically satisfy the existence condition thereby
decoupling the LPV design process from the existence issue.
The next section presents such a situation.

III. E RRORFEEDBACK COMPENSATORS

For the case of error feedback (y = z = hz(x,w, d)),
a nonlinear compensator satisfying Requirement 2.2 neces-
sarily incorporates an internal model of the exosystem [8].
For such error feedback compensators, we first show that
there exist local coordinates in which the LPV compensator
has a particular structure. For this, define

MC = {xC ∈ R
nC | xC = x◦

C(w), w ∈ W}

AssumingMC is an embedded submanifold, there exist
about eachx◦

C
∈ MC local coordinates(vC , wC) for which

MC = {xC ∈ R
nC | vC(xC) = 0}

andwC(x◦
C
(w)) = w.

Lemma 3.1: A nonlinear error feedback compensator
satisfying Requirement 2.2 when expressed in the local
coordinates(vC , wC) has linearizations about zero-error tra-
jectories characterized by parameterized coefficient matrices

AC(w) =

[

A11(w) 0
A21(w) A22(w)

]

, BC(w) =

[

B1(w)
B2(w)

]

CC(w) =
[

C1(w) C2(w)
]

, DC(w) = DC(w) (10)

in which A22(w) = ∂s(w)
∂w

andC2(w) = ∂u◦(w)
∂w

.
Proof: Given the functionx◦

C
(w) associated with a nonlinear

controller satisfying Requirement 2.2, we have by definition
v◦
C
(w) := vC(x◦

C
(w)) = 0 andw◦

C
(w) := wC(x◦

C
(w)) = w.

Since the existence conditions of Theorem 2.3 must also
hold in the(vC , wC)−coordinates and for the error feedback
casey◦(w) = z◦(w) = 0, we have

∂

∂w

[[

0
I

]

s(w)

]

=

[

A11(w) A12(w)
A21(w) A22(w)

] [

0
I

]

∂u◦(w)

∂w
=

[

C1(w) C2(w)
]

[

0
I

]

which forcesA12(w) = 0, A22(w) = ∂s(w)
∂w

, andC2(w) =
∂u◦(w)

∂w
as required. �

Loosely speaking, Lemma 3.1 establishes that a nonlinear
error feedback compensator satisfying Requirement 2.2 has
linearizations about zero-error trajectories that specify an
LPV compensator containing an internal model of the
linearized exosystem. Moreover, since a coordinate transfor-
mation on the compensator state does not affect closed-loop
linearizations, we can assume without loss of generality that
the LPV compensator has the structure presented in the
lemma. This allows us to establish the following converse
result which guarantees the existence of a nonlinear error
feedback compensator satisfying Requirement 2.2 that, as
a result of our choice of coordinates, clearly exhibits the
internal model of the exosystem.

Lemma 3.2: For the LPV compensator characterized in
Lemma 3.1, there exists a nonlinear error feedback com-
pensator satisfying Requirement 2.2. Moreover, one such
compensator is specified by

a(vC , wC , z, w) =

[

A11(w)vC + B1(w)z
A21(w)vC + B2(w)z + s(wC)

]

c(vC , wC , z, w) = C1(w)vC + DC(w)z + u◦(wC) (11)

for which Requirement 2.2 is satisfied withv◦
C
(w) = 0 and

w◦
C
(w) = w.

Proof: For the error feedback controller specified by (11)
andv◦

C
(w) = 0 andw◦

C
(w) = w, we have

a(v◦
C(w), w◦

C(w), 0, w) =

[

0
s(w◦

C
(w))

]

=

[

∂v◦

C
(w)

∂w
∂w◦

C
(w)

∂w

]

s(w)

c(v◦
C(w), w◦

C(w), 0, w) = u◦(w◦
C(w)) = u◦(w)

so the first part of Requirement 2.2 is satisfied. Next, the
partial derivative identities with respect tovC andz clearly
hold. The partial derivative identities with respect towC

hold by definition ofA22(w) andC2(w). Finally, the partial
derivative terms with respectw vanish along zero-error
trajectories sincev◦

C
(w) = 0 andz◦(w) = 0. �

It is interesting to note that, as a consequence of the fact
w◦

C
(w) = w, the nonlinear controller specified by

a(vC , wC , z) =

[

A11(wC)vC + B1(wC)z
A21(wC)vC + B2(wC)z + s(wC)

]

c(vC , wC , z) = C1(wC)vC + DC(wC)z + u◦(wC) (12)

also satisfies Requirement 2.2 but does not requirew(t)
as an input. Although the linearization requirement ensures
that for sufficiently small deviations from zero-error trajec-
tories the two controllers will deliver comparable perfor-
mance, this is not necessarily the case for large deviations.

To summarize, the LPV compensator structure character-
ized in Lemma 3.1 necessarily must result from a nonlinear
error feedback compensator satisfying Requirement 2.2
when expressed in suitable local coordinates. Conversely,
a nonlinear error feedback compensator satisfying Require-
ment 2.2 always exists with respect to an LPV compensator
possessing the structure described in Lemma 3.1. In this
sense, the LPV compensator design process is not further
constrained by the nonlinear compensator existence issue



beyond the natural structural requirement that the LPV
compensator contain an internal model of the linearized
exosystem.

IV. LPV COMPENSATORSYNTHESIS

Having resolved the existence issue for nonlinear error
feedback compensators, we now turn our attention to the
synthesis of LPV compensators that possess the struc-
ture described in Lemma 3.1 and achieve stability and
disturbance attenuation for the closed-loop LPV system
represented by (omittingw−arguments):

Gcl =









A + BuDCCz BuC1 BuC2 Bd + BuDCDzd

B1Cz A11 0 B1Dzd

B2Cz A21 A22 B2Dzd

Cz 0 0 Dzd









(13)
Note that in principle the problem above is not a standard
LPV design problem since the controller is subject to
structural constraints, namelyA12 = 0, A22 andC2 given.
Nevertheless, as we show in the sequel, the problem can
be reduced to that of stabilizing an auxiliary plant, whose
state space realization can be obtained from the problem
data. This constitutes an LPV version of the development
in [13] for LTI systems.

Lemma 4.1: Given the LPV system:

G =





A Bd Bu

Cz Dzd 0
Cz Dzd 0



 (14)

consider the following LPV auxiliary plant

Gaux =









A BuC2 Bd Bu 0
0 A22 0 0 I

Cz 0 Dzd 0 0
Cz 0 Dzd 0 0









(15)

Assume that there exists an LPV controllerKaux

Kaux =





A11 B1

C1 DC

A21 B2



 (16)

that internally stabilizesGaux and achieves a closed–loop
performance levelγ = supρ∈P ‖F`(Gaux,Kaux)‖∗, where
P and‖.‖∗ denote the set of admissible parameter trajecto-
ries and a suitable norm, such as`2 induced, respectively.
Then the controller

K =





A11 0 B1

A21 A22 B2

C1 C2 DC



 (17)

has the following properties:

i.- It satisfies the structural constraints (10).
ii.- It internally stabilizes the original plant (14), and
iii.- The closed loop system achieves the same perfor-

mance level obtained for the auxiliary plant, i.e.
supρ∈P ‖F`(G,K)‖∗ = γ.

Proof: The first property holds by construction. Properties
(ii) and (iii) follows by noting that combining the auxil-
iary plant and controller equations (15)–(16) leads to the
following closed-loop LPV system:









A + BuDCCz BuC2 BuC1 Bd + BuDCDzd

B2Cz A22 A21 B2Dzd

B1Cz 0 A11 B1Dzd

Cz 0 0 Dzd









Interchanging now the second and third partitions of the
underlying state vector yields (13), which are precisely the
equations that one obtains closing the loop around the plant
(14) using the controller (17). Finally, internal stability of
the auxiliary closed–loop system guarantees that all internal
closed–loop subsystems are stable. �

V. EXAMPLE : THE BALL AND BEAM

We apply the synthesis methodology of the previous
sections to the well-known ball and beam experiment whose
nonlinear equations of motion are given by ([6])

(

Jb

R2
+ M

)

r̈ + MG sin(θ) − Mrθ̇2 = 0

(

Mr2 + J + Jb

)

θ̈ + 2Mrṙθ̇ + MGr cos(θ) = τ

in which r is the ball position,θ is the beam angle ,τ is
the applied torque, and the remaining system parameters are
listed in Table 4.1. The applied torque is assumed to have
the form

τ = τd + τm

where τd is a disturbance torque andτm is the torque
produced by a servomotor connected to the beam, modelled
by

τ̇m = α (τc − τm)

in which τc is the commanded torque.
We define state variables, disturbance input, and control

input according to

x1 = r, x2 = ṙ, x3 = θ, x4 = θ̇, x5 = τm

along with disturbance inputd = τd and control inputu =
τc yielding the nonlinear state equation

ẋ1 = x2

ẋ2 = B
(

x1x
2
4 − G sin(x3)

)

ẋ3 = x4

ẋ4 =
−2Mx1x2x4 − MGx1 cos(x3) + x5 + d

Mx2
1 + J + Jb

ẋ5 = α (u − x5)

whereB := M/(Jb/R2 + M).
The exosystem generating constant-velocity ball position

commands is given by
[

ẇ1

ẇ2

]

=

[

w2

0

]

.



Table 4.1: Ball and Beam Parameters

Parameter Description Value
M ball mass 0.05 kg

R ball radius 0.01 m

J beam inertia 0.02 kg m2

Jb ball inertia 2× 10−6 kg m2

G acceleration due to gravity 9.81 m/s2

The regulated and measured outputs are taken to be ball
position error

z = y = x1 − w1.

It is straightforward to verify that Assumption 2.1 is satis-
fied for

x◦(w) =













w1

w2

0
0

MGw1













, u◦(w) = MG (w1 + w2/α)

and the associated zero-error submanifold is given by

M = {x ∈ R
5 | x3 = 0, x4 = 0, x5 = MGx1}.

Plant linearizations about zero-error trajectories are speci-
fied by the coefficient matrices

A(w) =













0 1 0 0 0
0 0 −BG 0 0
0 0 0 1 0

− MG
Mw2

1
+J+Jb

0 0 − 2Mw1 w2

Mw2

1
+J+Jb

1
Mw2

1
+J+Jb

0 0 0 0 −α













,

Bd(w) =













0
0
0
1

Mw2

1
+J+Jb

0













, Bu(w) =













0
0
0
0
α













,

Cz(w) = Cy(w) =
[

1 0 0 0
]

.

The auxiliary plant (15) can be formed by using in
addition

A22(w) = ∂s(w)
∂w

=

[

0 1
0 0

]

,

C2(w) = ∂u◦(w)
∂w

=
[

MG MG/α
]

which, definingρ = (ρ1, ρ2) according to

ρ1 =
1

Mw2
1 + J + Jb

, ρ2 = −
2Mw1 w2

Mw2
1 + J + Jb

,

can be cast in the affine parameter-dependent form
(

Aaux(ρ) Baux(ρ)
Caux(ρ) Daux(ρ)

)

=

(

A0
aux B0

aux

C0
aux D0

aux

)

+ ρ1

(

A1
aux B1

aux

C1
aux D1

aux

)

+ ρ2

(

A2
aux B2

aux

C2
aux D2

aux

)

Even though this description is affine inρ, sinceρ1 and
ρ2 are not independent, designing an LPV controller for

this plant entails finding a solution to a set offunctional
matrix inequalities, or, equivalently an infinite set of LMIs
(see for instance [4] or [3]). An approximate solution to
this problem can be obtained by gridding the parameter
space and enforcing these LMIs at a finite number of points
1, but pursuing this approach still requires both expanding
the solution to the original set of functional inequalitiesin
terms of some basis and solving a large number of LMIs.
To circumvent this difficulty, in this example we will take
advantage of the fact that bothCy andBu are independent
of ρ to recast the problem as the synthesis of anH∞

controller for a polytopic plant. To this effect note that, upon
independently restricting|w1(t)| ≤ 1 m and |w2(t)| ≤ 1
m/s, the parameter vectorρ(t) is guaranteed to lie in the
box [ρ

1
, ρ1] × [ρ

2
, ρ2] with

ρ
1

= 1
M+J+Jb

, ρ1 = 1
J+Jb

,

ρ
2

= −
√

M/(J + Jb), ρ2 =
√

M/(J + Jb).

Finally, neglecting the correlation betweenρ1 andρ2 leads
to a standard quadratic stability problem for polytopic
parameter dependent plants [3] that can be solved by
synthesizing anH∞ controller for each of the vertices,
for instance using thehinfgs command in Matlab’s LMI
Control Toolbox. The LPV controller is then implemented
by interpolating these four vertex controllers. Note that
in this case, sinces(w) and u◦(w) are linear inw, the
nonlinear controller given by (11) allows for a direct im-
plementation of the LPV controller having constantA22 and
C2.

Nonlinear simulations were conducted to assess the dis-
turbance rejection performance of the LPV controller. A
nominal trajectory corresponding to an initial ball posi-
tion of −1 m and a constant velocity of0.25 m/s was
commanded. The plant and controller were initialized to
yield identically zero tracking error for the disturbance-free
case. A bandlimited (500 Hz) disturbance torque, plotted
in Figure 1, was then applied. Note that this disturbance
has large amplitude compared to the nominal torque com-
mand which has|τc(t)| = MG|w1(t)| ≤ 0.49 N-m. The
ball position, ball position tracking error, and beam angle
responses are shown in Figures 2 – 4. These plots indicate
that the controller substantially attenuates the influencethat
the disturbance torque has on the position tracking error
without causing excessive beam activity. As another figure
of merit, we numerically calculate

‖z‖`2[0,8]

‖d‖`2[0,8]
= 0.156

which compares favorably to the worst-case value of8.2
achieved in the LPV design process.

VI. CONCLUDING REMARKS

The nonlinear output regulation problem is a natural
setting in which to apply LPV synthesis techniques based

1Usually a coarser mesh is used for synthesis, followed by validation
using a finer grid.



on an LPV plant model derived from nonlinear plant
linearizations about a manifold of zero-error trajectories.
The LPV formalism allows for other performance objectives
to be addressed, such as the rejection of disturbances not
generated by the exosystem, in addition to traditional error
regulation.

In this paper, we have presented a framework for the
synthesis of nonlinear compensators that meet an important
linearization requirement with respect to LPV controllers
designed on the basis of LPV plant linearizations. We have
derived necessary and sufficient existence conditions that
are automatically satisfied for a class of error feedback com-
pensators satisfying the internal model principle. Moreover,
we have shown that the associated structural constraints
imposed on the underlying LPV compensator can be easily
accommodated in the LPV design process. Finally, we
have illustrated these ideas by designing a compensator for
the ball and beam apparatus for which simulation results
indicate excellent disturbance rejection performance along
time-varying zero-error trajectories.
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Fig. 1 Disturbance torque.
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Fig. 2 Commanded ball position (dashed) and ball
position response (solid).
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Fig. 3 Ball position tracking error response.
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Fig. 4 Beam angle response.


