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Non-linear complementary filters on the special

orthogonal group
Robert Mahony, Member, IEEE, Tarek Hamel, Member, IEEE, and Jean-Michel Pflimlin, Member, IEEE

Abstract—This paper considers the problem of obtaining good
attitude estimates from measurements obtained from typical low
cost inertial measurement units. The outputs of such systems
are characterised by high noise levels and time varying additive
biases. We formulate the filtering problem as deterministic
observer kinematics posed directly on the special orthogonal
group SO(3) driven by reconstructed attitude and angular ve-
locity measurements. Lyapunov analysis results for the proposed
observers are derived that ensure almost global stability of the
observer error. The approach taken leads to an observer that we
term the direct complementary filter. By exploiting the geometry
of the special orthogonal group a related observer, termed the
passive complementary filter, is derived that decouples the gyro
measurements from the reconstructed attitude in the observer
inputs. Both the direct and passive filters can be extended to
estimate gyro bias on-line. The passive filter is further developed
to provide a formulation in terms of the measurement error that
avoids any algebraic reconstruction of the attitude. This leads to
an observer on SO(3), termed the explicit complementary filter,
that requires only accelerometer and gyro outputs; is suitable
for implementation on embedded hardware; and provides good
attitude estimates as well as estimating the gyro biases on-line.
The performance of the observers are demonstrated with a set
of experiments performed on a robotic test-bed and a radio
controlled unmanned aerial vehicle.

Index Terms—Complementary filter, nonlinear observer, atti-
tude estimates, special orthogonal group.

I. INTRODUCTION

THE recent proliferation of Micro-Electro-Mechanical

Systems (MEMS) components has lead to the devel-

opment of a range of low cost and light weight inertial

measurement units. The low power, light weight and po-

tential for low cost manufacture of these units opens up a

wide range of applications in areas such as virtual reality

and gaming systems, robotic toys, and low cost mini-aerial-

vehicles (MAVs) such as the Hovereye (Fig. 1). The signal

output of low cost IMU systems, however, is characterised

by low-resolution signals subject to high noise levels as well

as general time-varying bias terms. The raw signals must be

processed to reconstruct smoothed attitude estimates and bias-

corrected angular velocity measurements. For many of the

low cost applications considered the algorithms need to run

on embedded processors with low memory and processing

resources.
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There is a considerable body of work on attitude recon-

struction for robotics and control applications (for example

[1]–[4]). A standard approach is to use extended stochastic

linear estimation techniques [5], [6]. An alternative is to use

deterministic complementary filter and non-linear observer

design techniques [7]–[9]. Recent work has focused on some

of the issues encountered for low cost IMU systems [9]–

[12] as well as observer design for partial attitude estimation

[13]–[15]. It is also worth mentioning the related problem of

fusing IMU and vision data that is receiving recent attention

[16]–[19] and the problem of fusing IMU and GPS data [9],

[20]. Parallel to the work in robotics and control there is

a significant literature on attitude heading reference systems

(AHRS) for aerospace applications [21]. An excellent review

of attitude filters is given by Crassidis et al. [22]. The recent

interest in small low-cost aerial robotic vehicles has lead to a

renewed interest in lightweight embedded IMU systems [8],

[23]–[25]. For the low-cost light-weight systems considered,

linear filtering techniques have proved extremely difficult

to apply robustly [26] and linear single-input single-output

complementary filters are often used in practice [25], [27]. A

key issue is on-line identification of gyro bias terms. This

problem is also important in IMU callibration for satellite

systems [5], [21], [28]–[31]. An important development that

came from early work on estimation and control of satellites

was the use of the quaternion representation for the attitude

kinematics [30], [32]–[34]. The non-linear observer designs

that are based on this work have strong robustness properties

and deal well with the bias estimation problem [9], [30].

However, apart from the earlier work of the authors [14],

[35], [36] and some recent work on invariant observers [37],

[38] there appears to be almost no work that considers the

formulation of non-linear attitude observers directly on the

matrix Lie-group representation of SO(3).
In this paper we study the design of non-linear attitude

observers on SO(3) in a general setting. We term the proposed

observers complementary filters because of the similarity of

the architecture to that of linear complementary filters (cf. Ap-

pendix A), although, for the non-linear case we do not have

a frequency domain interpretation. A general formulation of

the error criterion and observer structure is proposed based

on the Lie-group structure of SO(3). This formulation leads

us to propose two non-linear observers on SO(3), termed the

direct complementary filter and passive complementary filter.

The direct complementary filter is closely related to recent

work on invariant observers [37], [38] and corresponds (up

to some minor technical differences) to non-linear observers

proposed using the quaternion representation [9], [30], [32].
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Fig. 1. The VTOL MAV HoverEye c© of Bertin Technologies.

We do not know of a prior reference for the passive comple-

mentary filter. The passive complementary filter has several

practical advantages associated with implementation and low-

sensitivity to noise. In particular, we show that the filter can

be reformulated in terms of vectorial direction measurements

such as those obtained directly from an IMU system; a

formulation that we term the explicit complementary filter. The

explicit complementary filter does not require on-line algebraic

reconstruction of attitude, an implicit weakness in prior work

on non-linear attitude observers [22] due to the computational

overhead of the calculation and poor error characterisation of

the constructed attitude. As a result the observer is ideally

suited for implementation on embedded hardware platforms.

Furthermore, the relative contribution of different data can be

preferentially weighted in the observer response, a property

that allows the designer to adjust for application specific

noise characteristics. Finally, the explicit complementary filter

remains well defined even if the data provided is insufficient

to algebraically reconstruct the attitude. This is the case, for

example, for an IMU with only accelerometer and rate gyro

sensors. A comprehensive stability analysis is provided for

all three observers that proves local exponential and almost

global stability of the observer error dynamics, that is, a stable

linearisation for zero error along with global convergence

of the observer error for all initial conditions and system

trajectories other than on a set of measure zero. Although

the principal results of the paper are presented in the matrix

Lie group representation of SO(3), the equivalent quaternion

representation of the observers are presented in an appendix.

The authors recommend that the quaternion representations are

used for hardware implementation.

The body of paper consists of five sections followed by a

conclusion and two appendices. Section II provides a quick

overview of the sensor model, geometry of SO(3) and in-

troduces the notation used. Section III details the derivation

of the direct and passive complementary filters. The develop-

ment here is deliberately kept simple to be clear. Section IV

integrates on-line bias estimation into the observer design and

provides a detailed stability analysis. Section V develops the

explicit complementary filter, a reformulation of the passive

complementary filter directly in terms of error measurements.

A suite of experimental results, obtained during flight tests

of the Hovereye (Fig. 1), are provided in Section VI that

demonstrate the performance of the proposed observers. In

addition to the conclusion (§VII) there is a short appendix on

linear complementary filter design and a second appendix that

provides the equivalent quaternion formulation of the proposed

observers.

II. PROBLEM FORMULATION AND NOTATION.

A. Notation and mathematical identities

The special orthogonal group is denoted SO(3). The asso-

ciated Lie-algebra is the set of anti-symmetric matrices

so(3) = {A ∈ R
3×3 | A = −AT }

For any two matrices A,B ∈ R
n×n then the Lie-bracket (or

matrix commutator) is [A,B] = AB − BA. Let Ω ∈ R
3 then

we define

Ω× =







0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0






.

For any v ∈ R
3 then Ω×v = Ω×v is the vector cross product.

The operator vex : so(3) → R
3 denotes the inverse of the Ω×

operator

vex (Ω×) = Ω, Ω ∈ R
3.

vex(A)× = A, A ∈ so(3)

For any two matrices A,B ∈ R
n×n the Euclidean matrix

inner product and Frobenius norm are defined

〈〈A, B〉〉 = tr(AT B) =

n
∑

i,j=1

AijBij

||A|| =
√

〈〈A,A〉〉 =

√

√

√

√

n
∑

i,j=1

A2
ij
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The following identities are used in the paper

(Rv)× = Rv×RT , R ∈ SO(3), v ∈ R
3

(v × w)× = [v×, w×] v, w ∈ R
3

vT w = 〈v, w〉 =
1

2
〈〈v×, w×〉〉, v, w ∈ R

3

vT v = |v|2 =
1

2
||v×||2, v ∈ R

3

〈〈A, v×〉〉 = 0, A = AT ∈ R3, v ∈ R3

tr([A,B]) = 0, A, B ∈ R
3×3

The following notation for frames of reference is used

• {A} denotes an inertial (fixed) frame of reference.

• {B} denotes a body-fixed-frame of reference.

• {E} denotes the estimator frame of reference.

Let Pa, Ps denote, respectively, the anti-symmetric and

symmetric projection operators in square matrix space

Pa(H) =
1

2
(H − HT ), Ps(H) =

1

2
(H + HT ).

Let (θ, a) (|a| = 1) denote the angle-axis coordinates of

R ∈ SO(3). One has [39]:

R = exp(θa×), log(R) = θa×

cos(θ) =
1

2
(tr(R) − 1), Pa(R) = sin(θ)a×.

For any R ∈ SO(3) then 3 ≥ tr(R) ≥ −1. If tr(R) = 3 then

θ = 0 in angle-axis coordinates and R = I . If tr(R) = −1
then θ = ±π, R has real eigenvalues (1,−1,−1), and there

exists an orthogonal diagonalising transformation U ∈ SO(3)
such that URUT = diag(1,−1,−1).

For any two signals x(t) : R → Mx, y(t) : R → My

are termed asymptotically dependent if there exists a non-

degenerate function ft : Mx × My → R and a time T such

that for any t > T

ft(x(t), y(t)) = 0.

By the term non-degenerate we mean that the Hessian of ft

at any point (x, y) is full rank. The two signals are termed

asymptotically independent if for any non-degenerate ft and

any T there exists t1 > T with ft(x(t1), y(t1)) 6= 0.

B. Measurements

The measurements available from a typical inertial mea-

surement unit are 3-axis rate gyros, 3-axis accelerometers and

3-axis magnetometers. The reference frame of the strap down

IMU is termed the body-fixed-frame {B}. The inertial frame

is denoted {A}. The rotation R = A
BR denotes the relative

orientation of {B} with respect to {A}.

Rate Gyros: The rate gyro measures angular velocity of {B}
relative to {A} expressed in the body-fixed-frame of

reference {B}. The error model used in this paper is

Ωy = Ω + b + µ ∈ R
3

where Ω ∈ {B} denotes the true value, µ denotes

additive measurement noise and b denotes a constant (or

slowly time-varying) gyro bias.

Accelerometer: Denote the instantaneous linear acceleration

of {B} relative to {A}, expressed in {A}, by v̇. An ideal

accelerometer, ‘strapped down’ to the body-fixed-frame

{B}, measures the instantaneous linear acceleration of

{B} minus the (conservative) gravitational acceleration

field g0 (where we consider g0 expressed in the inertial

frame {A}), and provides a measurement expressed in

the body-fixed-frame {B}. In practice, the output a from

a MEMS component accelerometer has added bias and

noise,

a = RT (v̇ − g0) + ba + µa,

where ba is a bias term and µa denotes additive measure-

ment noise. Normally, the gravitational field g0 = |g0|e3

where |g0| ≈ 9.8 dominates the value of a for low

frequency response. Thus, it is common to use

va =
a

|a| ≈ −RT e3

as a low-frequency estimate of the inertial z-axis ex-

pressed in the body-fixed-frame.

Magnetometer: The magnetometers provide measurements of

the magnetic field

m = RT Am + Bm + µb

where Am is the Earths magnetic field (expressed in

the inertial frame), Bm is a body-fixed-frame expres-

sion for the local magnetic disturbance and µb denotes

measurement noise. The noise µb is usually quite low

for magnetometer readings, however, the local magnetic

disturbance can be very significant, especially if the IMU

is strapped down to an MAV with electric motors. Only

the direction of the magnetometer output is relevant for

attitude estimation and we will use a vectorial measure-

ment

vm =
m

|m|
in the following development

The measured vectors va and vm can be used to construct

an instantaneous algebraic measurement of the rotation A
BR :

{B} → {A}

Ry = arg min
R∈SO(3)

(

λ1|e3 − Rva|2 + λ2|v∗
m − Rvm|2

)

≈ A
BR

where v∗m is the inertial direction of the magnetic field in

the locality where data is acquired. The weights λ1 and λ2

are chosen depending on the relative confidence in the sensor

outputs. Due to the computational complexity of solving an op-

timisation problem the reconstructed rotation is often obtained

in a suboptimal manner where the constraints are applied in

sequence; that is, two degrees of freedom in the rotation matrix

are resolved using the acceleration readings and the final

degree of freedom is resolved using the magnetometer. As a

consequence, the error properties of the reconstructed attitude

Ry can be difficult to characterise. Moreover, if either mag-

netometer or accelerometer readings are unavailable (due to

local magnetic disturbance or high acceleration manoeuvres)

then it is impossible to resolve the vectorial measurements into

a unique instantaneous algebraic measurement of attitude.
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C. Error criteria for estimation on SO(3)

Let R̂ denote an estimate of the body-fixed rotation matrix

R = A
BR. The rotation R̂ can be considered as coordinates

for the estimator frame of reference {E}. It is also associated

with the frame transformation

R̂ = A
ER̂ : {E} → {A}.

The goal of attitude estimate is to drive R̂ → R. The

estimation error used is the relative rotation from body-fixed-

frame {B} to the estimator frame {E}
R̃ := R̂T R, R̃ = E

BR̃ : {B} → {E}. (1)

The proposed observer design is based on Lyapunov stabil-

ity analysis. The Lyapunov functions used are inspired by the

cost function

Etr :=
1

4
‖I3 − R̃‖2 =

1

4
tr

(

(I3 − R̃)T (I3 − R̃)
)

=
1

2
tr(I3 − R̃) (2)

One has that

Etr =
1

2
tr(I − R̃) = (1 − cos(θ)) = 2 sin(θ/2)2. (3)

where θ is the angle associated with the rotation from {B} to

frame {E}. Thus, driving Eq. 2 to zero ensures that θ → 0.

III. COMPLEMENTARY FILTERS ON SO(3)

In this section, a general framework for non-linear comple-

mentary filtering on the special orthogonal group is introduced.

The theory is first developed for the idealised case where R(t)
and Ω(t) are assumed to be known and used to drive the filter

dynamics. Filter design for real world signals is considered in

later sections.

The goal of attitude estimation is to provide a set of

dynamics for an estimate R̂(t) ∈ SO(3) to drive the error

rotation (Eq. 1) R̃(t) → I3. The kinematics of the true system

are

Ṙ = RΩ× = (RΩ)×R (4)

where Ω ∈ {B}. The proposed observer equation is posed

directly as a kinematic system for an attitude estimate R̂ on

SO(3). The observer kinematics include a prediction term

based on the Ω measurement and an innovation or correction

term ω := ω(R̃) derived from the error R̃. The general form

proposed for the observer is

˙̂
R = (RΩ + kP R̂ω)×R̂, R̂(0) = R̂0, (5)

where kP > 0 is a positive gain. The term (RΩ + kP R̂ω) ∈
{A} is expressed in the inertial frame. The body-fixed-frame

angular velocity is mapped back into the inertial frame AΩ =
RΩ. If no correction term is used (kP ω ≡ 0) then the error

rotation R̃ is constant,

˙̃R =R̂T (RΩ)T
×R + R̂T (RΩ)×R

=R̂T (−(RΩ)× + (RΩ)×) R = 0. (6)

The correction term ω := ω(R̃) ∈ {E} is considered to

be in the estimator frame of reference. It can be thought of

as a non-linear approximation of the error between R and

R̂ as measured from the frame of reference associated with

R̂. In practice, it will be implemented as an error between a

measured estimate Ry of R and the estimate R̂.

The goal of the observer design is to find a simple expres-

sion for ω that leads to robust convergence of R̃ → I . In prior

work [35], [36] the authors introduced the following correction

term

ω := vex(Pa(R̃)) = vex(Pa(R̂T Ry)) (7)

This choice leads to an elegant Lyapunov analysis of the

filter stability. Differentiating the storage function Eq. 2 along

trajectories of Eq. 5 yields

Ėtr = − 1

2
tr( ˙̃R) = −kP

2
tr

(

ωT
×R̃

)

= −kP

2
tr

[

ωT
×(Ps(R̃) + Pa(R̃))

]

= −kP

2
tr

[

ωT
×Pa(R̃)

]

= −kP

2
〈〈ω×, Pa(R̃)〉〉 = −kP |ω|2 (8)

In Mahony et al. [35] a local stability analysis of the filter

dynamics Eq. 5 is provided based on this derivation. In Section

IV a global stability analysis for these dynamics is provided.

We term the filter Eq. 5 a complementary filter on SO(3)
since it recaptures the block diagram structure of a classical

complementary filter (cf. Appendix A). In Figure 2: The ‘R̂T ’

R̂
kR̂

T
R

Ω

Maps angular velocity

Maps angular velocity

R̃

+

+

Inverse operation

on SO(3)

SystemMaps error R̃

R

R

˙̂
R = AR̂

(RΩ)×

on SO(3)

Difference operation

into correct frame of reference

onto TI SO(3).

onto TI SO(3). kinematics

A

R̂
T

RΩ

Pa(R̃)

Fig. 2. Block diagram of the general form of a complementary filter on
SO(3).

operation is an inverse operation on SO(3) and is equivalent to

a ‘−’ operation for a linear complementary filter. The ‘R̂T Ry’

operation is equivalent to generating the error term ‘y − x̂’.

The two operations Pa(R̃) and (RΩ)× are maps from error

space and velocity space into the tangent space of SO(3);
operations that are unnecessary on Euclidean space due to the

identification TxR
n ≡ R

n. The kinematic model is the Lie-

group equivalent of a first order integrator.

To implement the complementary filter it is necessary to

map the body-fixed-frame velocity Ω into the inertial frame. In

practice, the ‘true’ rotation R is not available and an estimate

of the rotation must be used. Two possibilities are considered:

direct complementary filter: The constructed attitude Ry is

used to map the velocity into the inertial frame

˙̂
R = (RyΩy + kP R̂ω)×R̂.

A block diagram of this filter design is shown in Figure

3. This approach can be linked to observers documented
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in earlier work [30], [32] (cf. Appendix B). The approach

has the advantage that it does not introduce an additional

feedback loop in the filter dynamics, however, high

frequency noise in the reconstructed attitude Ry will

enter into the feed-forward term of the filter.

R̂
k

R̂
T

+

+ ˙̂
R = AR̂

(RyΩy)×

A

Ωy

Ry

RyΩy

R̃
R̂

T
Ry Pa(R̃)

Fig. 3. Block diagram of the direct complementary filter on SO(3).

passive complementary filter: The filtered attitude R̂ is used

in the predictive velocity term

˙̂
R = (R̂Ωy + kP R̂ω)×R̂. (9)

A block diagram of this architecture is shown in Figure 4.

The advantage lies in avoiding corrupting the predictive

angular velocity term with the noise in the reconstructed

pose. However, the approach introduces a secondary

feedback loop in the filter and stability needs to be

proved.

R̂
k

+

+
R̂

T
Ry

˙̂
R = AR̂

Ry

Ωy

R̃

(R̂Ωy)×

R̂Ωy

R̂
T

A
Pa(R̃)

Fig. 4. Block diagram of the passive complementary filter on SO(3).

A key observation is that the Lyapunov stability analysis in

Eq. 8 is still valid for Eq. 9, since

Ėtr = − 1

2
tr( ˙̃R) = −1

2
tr(−(Ω + kP ω)×R̃ + R̃Ω×)

= −1

2
tr([R̃, Ω×]) − kP

2
tr(ωT

×R̃) = −kP |ω|2,

using the fact that the trace of a commutator is zero,

tr([R̃, Ω×]) = 0. The filter is termed a passive complimentary

filter since the cross coupling between Ω and R̃ does not

contribute to the derivative of the Lyapunov function. A global

stability analysis is provided in Section IV.

There is no particular theoretical advantage to either the

direct or the passive filter architecture in the case where exact

measurements are assumed. However, it is straightforward to

see that the passive filter (Eq. 9) can be written

˙̂
R = R̂(Ω× + kP Pa(R̃)). (10)

This formulation suppresses entirely the requirement to repre-

sent Ω and ω = kP Pa(R̃) in the inertial frame and leads to

the architecture shown in Figure 5. The passive complementary

filter avoids coupling the reconstructed attitude noise into the

predictive velocity term of the observer, has a strong Lyapunov

stability analysis, and provides a simple and elegant realisation

that will lead to the results in Section V.

˙̂
R = R̂A

R̂
k

Ωy

Ry

R̂
T

R

(Ω)×

R̂
T

Pa(R̃)

Fig. 5. Block diagram of the simplified form of the passive complementary
filter.

IV. STABILITY ANALYSIS

In this section, the direct and passive complementary filters

on SO(3) are extended to provide on-line estimation of time-

varying bias terms in the gyroscope measurements and global

stability results are derived. Preliminary results were published

in [35], [36].

For the following work it is assumed that a reconstructed

rotation Ry and a biased measure of angular velocity Ωy are

available

Ry ≈ R, valid for low frequencies, (11a)

Ωy ≈ Ω + b for constant bias b. (11b)

The approach taken is to add an integrator to the compensator

term in the feedback equation of the complementary filter.

Let kP , kI > 0 be positive gains and define

Direct complementary filter with bias correction:

˙̂
R =

(

Ry(Ωy − b̂) + kP R̂ω
)

×
R̂, R̂(0) = R̂0, (12a)

˙̂
b = −kIω, b̂(0) = b̂0,

(12b)

ω = vex(Pa(R̃)), R̃ = R̂T Ry. (12c)

Passive complementary filter with bias correction:

˙̂
R = R̂

(

Ωy − b̂ + kP ω
)

×
, R̂(0) = R̂0, (13a)

˙̂
b = −kIω, b̂(0) = b̂0, (13b)

ω = vex(Pa(R̃)), R̃ = R̂T Ry. (13c)

The non-linear stability analysis is based on the idea of an

adaptive estimate for the unknown bias value.

Theorem 4.1: [Direct complementary filter with bias

correction.] Consider the rotation kinematics Eq. 4 for a

time-varying R(t) ∈ SO(3) and with measurements given

by Eq. 11. Let (R̂(t), b̂(t)) denote the solution of Eq. 12.

Define error variables R̃ = R̂T R and b̃ = b − b̂. Define

U ⊆ SO(3) × R
3 by

U =
{

(R̃, b̃) tr(R̃) = −1, Pa(b̃×R̃) = 0
}

. (14)

Then:
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1) The set U is forward invariant and unstable with respect

to the dynamic system Eq. 12.

2) The error (R̃(t), b̃(t)) is locally exponentially stable to

(I, 0).
3) For almost all initial conditions (R̃0, b̃0) 6∈ U the trajec-

tory (R̂(t), b̂(t)) converges to the trajectory (R(t), b).

Proof: Substituting for the error model (Eq. 11), Equation

12a becomes

˙̂
R =

(

R(Ω + b̃) + kP R̂ω
)

×
R̂.

Differentiating R̃ it is straightforward to verify that

˙̃R = −kP ω×R̃ − b̃×R̃. (15)

Define a candidate Lyapunov function by

V =
1

2
tr(I3 − R̃) +

1

2kI

|b̃|2 = Etr +
1

2kI

|b̃|2 (16)

Differentiating V one obtains

V̇ = − 1

2
tr( ˙̃R) − 1

kI

b̃T ˙̂
b

=
1

2
tr

(

kP ω×R̃ + b̃×R̃
)

− 1

kI

〈b̃, ˙̂
b〉

=
−kP

2
〈〈ω×, Pa(R̃) + Ps(R̃)〉〉

− 1

2
〈〈b̃×, Pa(R̃) + Ps(R̃)〉〉 − 1

kI

〈b̃, ˙̂
b〉

= −kP 〈ω, vex(Pa(R̃))〉 − 〈b̃, vex(Pa(R̃)〉 − 1

kI

〈b̃, ˙̂
b〉

Substituting for
˙̂
b and ω (Eqn’s 12b and 12c) one obtains

V̇ = −kP |ω|2 = −kP |vexPa(R̃)|2 (17)

Lyapunov’s direct method ensures that ω converges asymptoti-

cally to zero [40]. Recalling that ||Pa(R̃)|| =
√

2 sin(θ), where

(θ, a) denotes the angle-axis coordinates of R̃. It follows that

ω ≡ 0 implies either R̃ = I , or log(R̃) = πa× for |a| = 1.

In the second case one has the condition tr(R̃) = −1. Note

that ω = 0 is also equivalent to requiring R̃ = R̃T to be

symmetric.

It is easily verified that (I, 0) is an isolated equilibrium of

the error dynamics Eq. 18.

From the definition of U one has that ω ≡ 0 on U. We will

prove that U is forward invariant under the filter dynamics

Eqn’s 12. Setting ω = 0 in Eq. 15 and Eq. 12b yields

˙̃R = −b̃×R̃,
˙̂
b = 0. (18)

For initial conditions (R̃0, b̃0) = (R̃0, b̃0) ∈ U the solution of

Eq. 18 is given by

R̃(t) = exp(−tb̃×)R̃0, b̃(t) = b̃0, (R̃0, b̃0) ∈ U.
(19)

We verify that Eq. 19 is also a general solution of Eqn’s 15

and 12b. Differentiating tr(R̃) yields

d

dt
tr(R̃) = −tr(b̃× exp(−tb̃×)R̃0)

= tr

(

exp(−tb̃×)
(b̃×R̃0 + R̃0b̃×)

2

)

= tr
(

exp(−tb̃×)Pa(b̃×R̃0)
)

= 0,

where the second line follows since b̃× commutes with

exp(b̃×) and the final equality is due to the fact that

Pa(b̃×R̃0) = 0, a consequence of the choice of initial

conditions (R̃0, b̃0) ∈ U. It follows that tr(R̃(t)) = −1 on

solution of Eq. 19 and hence ω ≡ 0. Classical uniqueness

results verify that Eq. 19 is a solution of Eqn’s 15 and 12b. It

remains to show that such solutions remain in U for all time.

The condition on R̃ is proved above. To see that Pa(b̃×R̃) ≡ 0
we compute

d

dt
Pa(b̃×R̃) = −Pa(b̃2

×R̃) = −Pa(b̃×R̃b̃T
×) = 0

as R̃ = R̃T . This proves that U is forward invariant.

Applying LaSalle’s principle to the solutions of Eq. 12 it

follows that either (R̃, b̃) → (I, 0) asymptotically or (R̃, b̃) →
(R̃∗(t), b̃0) where (R̃∗(t), b̃0) ∈ U is a solution of Eq. 18.

To determine the local stability properties of the invariant

sets we compute the linearisation of the error dynamics. We

will prove exponential stability of the isolated equilibrium

point (I, 0) first and then return to prove instability of the

set U. Define x, y ∈ R
3 as the first order approximations of

R̃ and b̃ around (I, 0)

R̃ ≈ (I + x×), x× ∈ so(3) (20a)

b̃ = −y. (20b)

The sign change in Eq. 20b simplifies the analysis of the

linearisation. Substituting into Eq. 15, computing
˙̃
b and dis-

carding all terms of quadratic or higher order in (x, y) yields

d

dt

(

x

y

)

=

(

−kP I3 I3

−kII3 0

)(

x

y

)

(21)

For positive gains kP , kI > 0 the linearised error system is

strictly stable. This proves part ii) of the theorem statement.

To prove that U is unstable, we use the quaternion formu-

lation (see Appendix B). Using Eq. 49, the error dynamics of

the quaternion q̃ = (s̃, ṽ) associated to the rotation R̃ is given

by

˙̃s =
1

2
(kP s̃|ṽ|2 + ṽT b̃), (22a)

˙̃
b = kI s̃ṽ, (22b)

˙̃v = −1

2
(s̃(b̃ + kP s̃ṽ) + b̃ × ṽ), (22c)

It is straightforward to verify that the invariant set associated

to the error dynamics is characterised by

U =
{

(s̃, ṽ, b̃) s̃ = 0, |ṽ| = 1, b̃T ṽ = 0
}
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Define y = b̃T ṽ, then an equivalent characterisation of U is

given by (s̃, y) = (0, 0). We study the stability properties

of the equilibrium (0, 0) of (s̃, y) evolving under the filter

dynamics Eq. 12. Combining Eq. 22c and 22b, one obtains

the following dynamics for ẏ

ẏ = ṽT ˙̃
b + b̃T ˙̃v

= kI s̃|ṽ|2 − 1
2 s̃|b̃|2 − 1

2kP s̃2y

Linearising around small values of (s̃, y) one obtains
(

˙̃s

ẏ

)

=

(

1
2kP

1
2

kI − 1
2 |b̃0|2 0

)(

s̃

y

)

Since KP and KI are positive gains it follows that the lineari-

sation is unstable around the point (0, 0) and this completes

the proof of part i).

The linearisation of the dynamics around the unstable set is

either strongly unstable (for large values of |b̃0|2) or hyperbolic

(both positive and negative eigenvalues). Since b̃0 depends on

the initial condition then there there will be trajectories that

converge to U along the stable centre manifold [40] associated

with the stable direction of the linearisation. From classical

centre manifold theory it is known that such trajectories are

measure zero in the overall space. Observing in addition that

U is measure zero in SO(3)×R
3 proves part iii) and the full

proof is complete.

The direct complimentary filter is closely related to quater-

nion based attitude filters published over the last fifteen years

[9], [30], [32]. Details of the similarities and differences is

given in Appendix B where we present quaternion versions of

the filters we propose in this paper. Apart from the formulation

directly on SO(3), the present paper extends earlier work

by proposing globally defined observer dynamics and a full

global analysis. To the authors best understanding, all prior

published algorithms depend on a sgn(θ) term that is discon-

tinuous on U (Eq. 14). Given that the observers are not well

defined on the set U the analysis for prior work is necessarily

non-global. However, having noted this, the recent work of

Thienel et al. [30] provides an elegant powerful analysis that

transforms the observer error dynamics into a linear time-

varying system (the transformation is only valid on a domain

on SO(3) × R
3 − U) for which global asymptotic stability is

proved. This analysis provides a global exponential stability

under the assumption that the observer error trajectory does

not intersect U. In all practical situations the two approaches

are equivalent.

The remainder of the section is devoted to proving an anal-

ogous result to Theorem 4.1 for the passive complementary

filter dynamics. In this case, it is necessary to deal with

non-autonomous terms in the error dynamics due to passive

coupling of the driving term Ω into the filter error dynamics.

Interestingly, the non-autonomous term acts in our favour to

disturb the forward invariance properties of the set U (Eq. 14)

and reduce the size of the unstable invariant set.

Theorem 4.2: [Passive complementary filter with bias

correction.] Consider the rotation kinematics Eq. 4 for a

time-varying R(t) ∈ SO(3) and with measurements given by

Eq. 11. Let (R̂(t), b̂(t)) denote the solution of Eq. 13. Define

error variables R̃ = R̂T R and b̃ = b− b̂. Assume that Ω(t) is

a bounded, absolutely continuous signal and that the pair of

signals (Ω(t), R̃) are asymptotically independent (see §II-A).

Define U0 ⊆ SO(3) × R
3 by

U0 =
{

(R̃, b̃) tr(R̃) = −1, b̃ = 0
}

. (23)

Then:

1) The set U0 is forward invariant and unstable with respect

to the dynamic system 13.

2) The error (R̃(t), b̃(t)) is locally exponentially stable to

(I, 0).
3) For almost all initial conditions (R̃0, b̃0) 6∈ U0 the tra-

jectory (R̂(t), b̂(t)) converges to the trajectory (R(t), b).

Proof: Substituting for the error model (Eq. 11) in Eqn’s

13 and differentiating R̃, it is straightforward to verify that

˙̃R = [R̃, Ω×] − kP ω×R̃ − b̃×R̃, (24a)

˙̃
b = kIω (24b)

The proof proceeds by differentiating the Lyapunov-like func-

tion Eq. 16 for solutions of Eq. 13. Following an analogous

derivation to that in Theorem 4.1, but additionally exploiting

the cancellation tr([R̃, Ω×]) = 0, it may be verified that

V̇ = −kP |ω|2 = −kP |vex(Pa(R̃))|2

where V is given by Eq. 16. This bounds V (t) ≤ V (0), and

it follows b̃ is bounded. LaSalle’s principle cannot be applied

directly since the dynamics Eq. 24a are not autonomous. The

function V̇ is uniformly continuous since the derivative

V̈ = −kP Pa(R̃)T
(

Pa([R̃, Ω×]) − Pa((kP ω − b̃)×)R̃
)

is uniformly bounded. Applying Barbalat’s lemma proves

asymptotic convergence of ω = vex(Pa(R̃)) to zero.

Direct substitution shows that (R̃, b̃) = (I, 0) is an equilib-

rium point of Eq. 24. Note that U0 ⊂ U (Eq. 14) and hence

ω ≡ 0 on U (Th. 4.1). For (R̃, b̃) ∈ U0 the error dynamics

Eq. 24 become

˙̃R = [R̃, Ω×],
˙̃
b = 0.

The solution of this ordinary differential equation is given by

R̃(t) = exp(−A(t))R̃0 exp(A(t)), A(t) =

∫ t

0

Ω×dτ.

Since A(t) is anti-symmetric for all time then exp(−A(t)) is

orthogonal and since exp(−A(t)) = exp(A(t))T it follows R̃
is symmetric for all time. It follows that U0 is forward invariant

under the filter dynamics Eq. 13. We prove by contradiction

that U0 ⊂ U is the largest forward invariant set of the closed-

loop dynamics Eq. 13 such that ω ≡ 0. Assume that there

exits (R̃0, b̃0) ∈ U − U0 such that (R̃(t), b̃(t)) remains in U

for all time. One has that Pa(b̃×R̃) = 0 on this trajectory.

Consequently,

d

dt
Pa(b̃×R̃) = Pa(b̃×[R̃, Ω×]) − P(b̃×R̃bT

×)

= Pa(b̃×[R̃, Ω×])

= −1

2

(

(b̃ × Ω)×R̃ + R̃(b̃ × Ω)×

)

= 0, (25)
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where we have used

2Pa(b̃×R̃) = b̃×R̃ + R̃b̃× = 0, (26)

several times in simplifying expressions. Since (Ω(t), R̃(t))
are asymptotically independent then the relationship Eq. 25

must be degenerate. This implies that there exists a time T
such that for all t > T then b̃(t) ≡ 0 and contradicts the

assumption.

It follows that either (R̃, b̃) → (I, 0) asymptotically or

(R̃, b̃) → (R̃∗(t), 0) ∈ U0.

Analogously to Theorem 4.1 the linearisation of the error

dynamics (Eq. 24) at (I, 0) is computed. Let R̃ ≈ I + x×

and b̃ ≈ −y for x, y ∈ R3. The linearised dynamics are the

time-varying linear system

d

dt

(

x

y

)

=

(

−kP I3 − Ω(t)× I3

−kII3 0

) (

x

y

)

Let |Ωmax| denote the magnitude bound on Ω and choose

α2 > 0, α1 >
α2(|Ωmax|2 + kI)

kP

,

α1 + kP α2

kI

< α3 <
α1 + kP α2

kI

+
|Ωmax|α2

kI

Set P, Q to be matrices

P =

(

α1I3 −α2I3

−α2I3 α3I3

)

, Q =

(

kP α1 − α2kI −α2|Ωmax|

−α2|Ωmax| α2

)

(27)

It is straightforward to verify that P and Q are positive

definite matrices given the constraints on {α1, α2, α3}. Con-

sider the cost function W = 1
2ξT Pξ, with ξ = (x, y)T .

Differentiating W yields

Ẇ = − (kP α1 − α2kI)|x|2 − α2|y|2

+ yT x(α1 + kP α2 − α3kI) + α2y
T (Ω × x) (28)

It is straightforward to verify that

d

dt

(

ξT Pξ
)

≤ −2(|x|, |y|)Q

(

|x|
|y|

)

.

This proves exponential stability of the linearised system at

(I, 0).
The linearisation of the error dynamics on a trajectory in

U0 are also time varying and it is not possible to use the

argument from Theorem 4.1 to prove instability. However,

note that V (R̃∗, b̃∗) = 2 for all (R̃∗, b̃∗) ∈ U0. Moreover,

any neighbourhood of a point (R̃∗, b̃∗) ∈ U0 within the set

SO(3) × R
3 contains points (R̃, b̃) such the V (R̃, b̃) < 2.

Trajectories with these initial conditions cannot converge to U0

due to the decrease condition derived earlier, and it follows that

U0 is unstable. Analogous to Theorem 4.1 it is still possible

that a set of measure zero initial conditions, along with very

specific trajectories Ω(t), such that the resulting trajectories

converge to to U0. This proves part iii) and completes the

proof.

Apart from the expected conditions inherited from Theo-

rem 4.1 the key assumption in Theorem 4.2 is the indepen-

dence of Ω(t) from the error signal R̃. The perturbation of the

passive dynamics by the independent driving term Ω provides

a disturbance that ensures that the adaptive bias estimate

converges to the true gyroscopes’ bias, a particularly useful

property in practical applications.

V. EXPLICIT ERROR FORMULATION OF THE PASSIVE

COMPLEMENTARY FILTER

A weakness of the formulation of both the direct and passive

and complementary filters is the requirement to reconstruct an

estimate of the attitude, Ry , to use as the driving term for the

error dynamics. The reconstruction cannot be avoided in the

direct filter implementation because the reconstructed attitude

is also used to map the velocity into the inertial frame. In this

section, we show how the passive complementary filter may be

reformulated in terms of direct measurements from the inertial

unit.

Let v0i ∈ {A}, i = 1, . . . , n, denote a set of n known

inertial directions. The measurements considered are body-

fixed-frame observations of the fixed inertial directions

vi = RT v0i + µi, vi ∈ {B} (29)

where µi is a noise process. Since only the direction of the

measurement is relevant to the observer we assume that |v0i| =
1 and normalise all measurements to ensure |vi| = 1.

Let R̂ be an estimate of R. Define

v̂i = R̂T v0i

to be the associated estimate of vi. For a single direction vi,

the error considered is

Ei = 1 − cos(∠vi, v̂i) = 1 − 〈vi, v̂i〉

which yields

Ei = 1 − tr(R̂T v0iv
T
0iR) = 1 − tr(R̃RT v0iv

T
0iR)

For multiple measures vi the following cost function is con-

sidered

Emes =

n
∑

i=1

kiEi =

n
∑

i=1

ki − tr(R̃M), ki > 0, (30)

where

M = RT M0R with M0 =

n
∑

i=1

kiv0iv
T
0i (31)

Assume linearly independent inertial direction {v0i} then the

matrix M is positive definite (M > 0) if n ≥ 3. For n = 2
then M is positive semi-definite with one eigenvalue zero.

The weights ki > 0 are chosen depending on the relative

confidence in the measurements vi. For technical reasons in the

proof of Theorem 5.1 we assume additionally that the weights

ki are chosen such that M0 has three distinct eigenvalues λ1 >
λ2 > λ3.

Theorem 5.1: [Explicit complementary filter with bias

correction.] Consider the rotation kinematics Eq. 4 for a time-

varying R(t) ∈ SO(3) and with measurements given by Eqn’s

29 and 11b. Assume that there are two or more, (n ≥ 2)

vectorial measurements vi available. Choose ki > 0 such



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, MONTH YEAR 9

that M0 (defined by Eq. 31) has three distinct eigenvalues.

Consider the filter kinematics given by

˙̂
R = R̂

(

(Ωy − b̂)× + kP (ωmes)×

)

, R̂(0) = R̂0 (32a)

˙̂
b = −kIωmes (32b)

ωmes :=

n
∑

i=1

kivi × v̂i, ki > 0. (32c)

and let (R̂(t), b̂(t)) denote the solution of Eqn’s 32. Assume

that Ω(t) is a bounded, absolutely continuous signal and that

the pair of signals (Ω(t), R̃T ) are asymptotically independent

(see §II-A). Then:

1) There are three unstable equilibria of the filter charac-

terised by

(R̂∗i, b̂∗i) =
(

U0DiU
T
0 R, b

)

, i = 1, 2, 3,

where D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1)
and D3 = diag(−1,−1, 1) are diagonal matrices with

entries as shown and U0 ∈ SO(3) such that M0 =
U0ΛUT

0 where Λ = diag(λ1, λ2, λ3) is a diagonal

matrix.

2) The error (R̃(t), b̃(t)) is locally exponentially stable to

(I, 0).
3) For almost all initial conditions (R̃0, b̃0) 6= (R̂T

∗iR, b),
i = 1, . . . , 3, the trajectory (R̂(t), b̂(t)) converges to the

trajectory (R(t), b).

Proof: Define a candidate Lyapunov-like function by

V =

n
∑

i=1

ki − tr(R̃M) +
1

kI

b̃2 = Emes +
1

kI

b̃2

The derivative of V is given by

V̇ = − tr
(

˙̃RM + R̃Ṁ
)

− 2

kI

b̃T ˙̂
b

= −tr
(

[R̃M, Ω×] − (b̃ + kP ωmes)×R̃M
)

− 2

kI

b̃T ˙̂
b

Recalling that the trace of a commutator is zero, the derivative

of the candidate Lyapunov function can be simplified to obtain

V̇ = kP tr
(

(ωmes)×Pa(R̃M)
)

+tr

(

b̃×

(

Pa(R̃M) − 1

kI

˙̂
b×

))

(33)

Recalling the identities in Section II-A one may write ωmes

as

(ωmes)× =

n
∑

i=1

ki

2
(v̂iv

T
i − viv̂i

T ) = Pa(R̃M) (34)

Introducing the expressions of ωmes into the time derivative

of the Lyapunov-like function V , Eq. 33, one obtains

V̇ = −kP ||Pa(R̃M)||2.

The Lyapunov-like function derivative is negative semi-

definite ensuring that b̃ is bounded. Analogous to the proof

of Theorem 4.2, Barbalat’s lemma is invoked to show that

Pa(R̃M) tends to zero asymptotically. Thus, for V̇ = 0 one

has

R̃M = MR̃T . (35)

We prove next Eq. 35 implies either R̃ = I or tr(R̃) = −1.

Since R̃ is a real matrix, the eigenvalues and eigenvectors

of R̃ verify

R̃T xk = λkxk and xH
k R̃ = λH

k xH
k (36)

where λH
k (for k = 1 . . . 3) represents the complex conjugate

of the eigenvalue λk and xH
k represents the Hermitian trans-

pose of the eigenvector xk associated to λk. Combining Eq. 35

and Eq. 36, one obtains

xH
k R̃Mxk = λH

k xH
k Mxk

xH
k MR̃T xk = λkxH

k Mxk = λH
k xH

k Mxk

Note that for n ≥ 3, M > 0 is positive definite and

xH
k Mxk > 0, ∀k = {1, 2, 3}. One has λk = λH

k for all k.

In the case when n = 2, it is simple to verify that two of the

three eigenvalues are real. It follows that all three eigenvalues

of R̃ are real since complex eigenvalues must come in complex

conjugate pairs. The eigenvalues of an orthogonal matrix are

of the form

eig(R̃) = (1, cos(θ) + i sin(θ), cos(θ) − i sin(θ)),

where θ is the angle from the angle-axis representation. Given

that all the eigenvalues are real it follows that θ = 0 or θ =
±π. The first possibility is the desired case (R̃, b̃) = (I, 0).
The second possibility is the case where tr(R̃) = −1.

When ωmes ≡ 0 then Eqn’s 32 and Eqn’s 13 lead to

identical error dynamics. Thus, we use the same argument

as in Theorem 4.2 to prove that b̃ = 0 on the invariant set.

To see that the only forward invariant subsets are the unstable

equilibria as characterised in part i) of the theorem statement

we introduce R̄ = RR̂T . Observe that

R̃M = MR̃T ⇒ R̄M0 = M0R̄
T

Analogous to Eq. 35, this implies R̄ = I3 or tr(R̄) = −1 on

the set ωmes ≡ 0 and R̄ = R̄T . Set R̄′ = UT
0 R̄U0. Then

R̄′Λ − ΛR̄′ = 0 ⇒ ∀i, j (λi − λj)R̄
′
ij = 0

As M0 has three distinct eigenvalues, it follows that R̄′
ij = 0

for all i 6= j and thus R̄′ is diagonal. Therefore, there are

four isolated equilibrium points R̄′
0 = U0DiU

T
0 , i = 1, . . . , 3

(where Di are specified in part i) of the theorem statement)

and R̄′ = I that satisfy the condition ωmes ≡ 0. The case

R̄′
0 = I = U0D4U

T
0 (where D4 = I) corresponds to the

equilibrium (R̃, b̃) = (I, 0) while we will show that the other

three equilibria are unstable.

We proceed by computing the dynamics of the filter in the

new R̄ variable and using these dynamics to prove the stability

properties of the equilibria. The dynamics associated to R̄ are

˙̄R = ṘR̂T + R
˙̂
RT

= RΩ×R̂T − R(Ω + b̃)×R̂T − kP RPa(R̃M)R̂T

= −Rb̃×R̂T − kP

2 R(R̃M − MR̃T )R̂T

= −Rb̃×(RT R)R̂T − kP

2 R(R̂T M0R − RT M0R̂)R̂T

= −(Rb̃)×R̄ − kP

2 (R̄M0R̄ − M0)
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Setting b̄ = Rb̃, one obtains

˙̄R = −b̄×R̄ − kP

2
(R̄M0R̄ − M0). (37)

The dynamics of the new estimation error on the bias b̄ are

˙̄b× = Ṙb̄×RT + Rb̄×ṘT + kIRPa(R̃M)RT

= [(RΩ)×, b̄×] +
kI

2
R(R̂T M0R − RT M0R̂)RT

= [(RΩ)×, b̄×] +
kI

2
(R̄M0 − M0R̄

T ) (38)

The dynamics of (R̄, b̄) (Eqn’s 37 and 38) are an alternative

formulation of the error dynamics to (R̃, b̃).
Consider a first order approximation of (R̄, b̄) (Eqn’s 37 and

38) around an equilibrium point (R̄0, 0)

R̄ = R̄0(I3 + x×), b̄ = −y.

The linearisation of Eq. 37 is given by

R̄0ẋ× = y×R̄0 −
kP

2
(R̄0x×M0R̄0 + R̄0M0R̄0x×),

and thus

ẋ× = R̄T
0 y×R̄0 −

kP

2
(x×M0R̄0 + M0R̄0x×),

and finally

UT
0 ẋ×U0 = Di(U

T
0 y)×Di−

kP

2
((UT

0 x)×ΛDi+ΛDi(U
T
0 x)×)

for i = 1, . . . , 4 and where Λ is specified in part i) of the

theorem statement. Define

A1 = 0.5diag(λ2 + λ3,−λ1 + λ3,−λ1 + λ2)

A2 = 0.5diag(λ2 − λ3, λ1 − λ3, λ1 + λ2)

A3 = 0.5diag(−λ2 + λ3, λ1 + λ3, +λ1 − λ2)

A4 = 0.5diag(−λ2 − λ3,−λ1 − λ3,−λ1 − λ2)

Setting y′ = UT
0 y and x′ = UT

0 x one may write the

linearisation Eq. 37 as

ẋ′ = kP Aix
′ + Diy

′, i = 1, . . . , 4.

We continue by computing the linearisation of ˙̄b. Equation

(38) may be approximated to a first order by

−ẏ× = [(RΩ)×,−y×] +
kI

2
(R̄0x×M0 + M0x×R̄0)

and thus

−UT
0 ẏ×U0 = [(UT

0 RΩ)×,−y′
×] +

kI

2
(Dix

′
×Λ + Λx′

×Di).

Finally, for i = 1, . . . , 4

UT
0 ẏ×U0 = −kI

2
((Dix

′)×DiΛ + ΛDi(Dix
′)×) + [Ω′

×, y′
×].

Rewriting in terms of the variables x′, y′ and setting Ω′ =
UT

0 RΩ one obtains

ẏ′ = kIAiDix
′ + Ω′ × y′, for i = 1, . . . , 4.

The combined error dynamic linearisation in the primed coor-

dinates is
(

ẋ′

ẏ′

)

=

(

kP Ai Di

kIAiDi Ω′(t)×

)(

x′

y′

)

, i = 1, . . . , 4.

(39)

To complete the proof of part i) of the theorem statement we

will prove that the three equilibria associated with (R̄∗i, b̄∗i)
for i = 1, 2, 3 are unstable. The demonstration is analogous to

the proof of the Chetaev’s Theorem (see [40, pp. 111–112]).

Consider the following cost function:

S =
1

2
kIx

′T Aix
′ − 1

2
|y′|2

It is straightforward to verify that its time derivative is always

positive

Ṡ = kP kIA
2
i |x′|2.

Note that for i = 1, . . . , 3 then Ai has at least one element of

the diagonal positive. For each i = 1, . . . , 3 and r > 0, define

Ur = {ξ′ = (x′, y′)T : S(ξ′) > 0, |ξ′| < r}

and note that Ur is non-null for all r > 0. Let ξ′0 ∈ Ur such

that S(ξ′0) > 0. A trajectory ξ′(t) initialized at ξ′(0) = ξ′0
will diverge from the compact set Ur since Ṡ(ξ′) > 0 on Ur.

However, the trajectory cannot exit Ur through the surface

S(ξ′) = 0 since S(ξ′(t)) ≥ S(ξ′0) along the trajectory.

Restricting r such that the linearisation is valid, then the trajec-

tory must exit Ur through the sphere |ξ′| = r. Consequently,

trajectories initially arbitrarily close to (0, 0) will diverge. This

proves that the point (0, 0) is locally unstable.

To prove local exponential stability of (R̄, b̄) = (I, 0) we

consider the linearisation Eq. 39 for i = 4. Note that D4 = I
and A4 < 0. Set KP = −kP

2 A4 and KI = −kI

2 A4. Then

KP ,KI > 0 are positive definite and Eq. 39 may be written

as

d

dt

(

x′

y′

)

=

(

−KP I3

−KI Ω′(t)×

)(

x′

y′

)

Consider a cost function V = ξ′T Pξ′ with P given by Eq. 27.

Analogous to Eq. 28, the time derivative of V is given by

V̇ = − (KP α1 − α2KI)|x′|2 − α2|y′|2

+ y′T x′(α1 + KP α2 − α3KI) − α2x
′T (Ω′ × y′).

Once again, it is straightforward to verify that

V̇ ≤ −2(|x′|, |y′|)Q
(

|x′|
|y′|

)

where Q is defined in Eq. 27 and this proves local exponential

stability of (R̄, b̄) = (I, 0).
The final statement of the theorem follows directly from the

above results along with classical dynamical systems theory

and the proof is complete.

Remark: If n = 3, the weights ki = 1, and the measured

directions are orthogonal (vT
i vj = 0,∀i 6= j) then M = I3.

The cost function Emes becomes

Emes = 3 − tr(R̃M) = tr(I3 − R̃) = Etr.
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In this case, the explicit complementary filter (Eqn’s 32) and

the passive complementary filter (Eqn’s 13) are identical. ¤

Remark: It is possible to weaken the assumptions in Theo-

rem 5.1 to allow any choice of gains ki and any structure of the

matrix M0 and obtain analogous results. The case where all

three eigenvalues of M0 are equal is equivalent to the passive

complementary filter scaled by a constant. The only other case

where n > 2 has

M0 = U0diag(λ1, λ1, λ2)U
T
0

for λ1 > λ2 ≥ 0. (Note that the situation where n = 1
is considered in Corollary 5.2.) It can be shown that any

symmetry R̄∗ = exp(πa∗×) with a∗ ∈ span{v01, v02} satisfies

ωmes ≡ 0 and it is relatively straightforward to verify that this

set is forward invariant under the closed-loop filter dynamics.

This invalidates part i) of Theorem 5.1 as stated, however,

it can be shown that the new forward invariant points are

unstable as expected. To see this, note that any (R̄∗, b̄∗) in

this set corresponds to the minimal cost of Emes on U0.

Consequently, any neighbourhood of (R̄∗, b̄∗) contains points

(R̃, b̃) such that V (R̃, b̃) < V (R̄∗, b̄∗) and the Lyapunov

decrease condition ensures instability. There is still a separate

isolated unstable equilibrium in U0, and the stable equilibrium,

that must be treated in the same manner as undertaken in the

formal proof of Theorem 5.1. Following through the proof

yields analogous results to Theorem 5.1 for arbitrary choice

of gains {ki}. ¤

The two typical measurements obtained from an IMU unit

are estimates of the gravitational, a, and magnetic, m, vector

fields

va = RT a0

|a0|
, vm = RT m0

|m0|
.

In this case, the cost function Emes becomes

Emes = k1(1 − 〈v̂a, va〉) + k2(1 − 〈v̂m, vm〉)

The weights k1 and k2 are introduced to weight the confidence

in each measure. In situations where the IMU is subject

to high magnitude accelerations (such as during takeoff or

landing manoeuvres) it may be wise to reduce the relative

weighting of the accelerometer data (k1 << k2) compared to

the magnetometer data. Conversely, in many applications the

IMU is mounted in the proximity to powerful electric motors

and their power supply busses leading to low confidence in

the magnetometer readings (choose k1 >> k2). This is a very

common situation in the case of mini aerial vehicles with

electric motors. In extreme cases the magnetometer data is

unusable and provides motivation for a filter based solely on

accelerometer data.

A. Estimation from the measurements of a single direction

Let va be a measured body fixed frame direction associated

with a single inertial direction v0a, va = RT v0a. Let v̂a be an

estimate v̂a = R̂T v0a. The error considered is

Emes = 1 − tr(R̃M); M = RT v0avT
0aR

Corollary 5.2: Consider the rotation kinematics Eq. 4 for a

time-varying R(t) ∈ SO(3) and with measurements given by

Eqn’s 29 (for a single measurement v1 = va) and Eq. 11b. Let

(R̂(t), b̂(t)) denote the solution of Eqn’s 32. Assume that Ω(t)
is a bounded, absolutely continuous signal and (Ω(t), va(t))
are asymptotically independent (see §II-A). Define

U1 = {(R̃, b̃) : vT
0aR̃v0a = −1, b̃ = 0}.

Then:

1) The set U1 is forward invariant and unstable under the

closed-loop filter dynamics.

2) The estimate (v̂a, b̂) is locally exponentially stable to

(va, b).
3) For almost all initial conditions (R̃0, b̃0) 6∈ U1 then

(v̂a, b̂) converges to the trajectory (va(t), b).

Proof: The dynamics of v̂a are given by

˙̂va = −(Ω + b̃ + kP va × v̂a) × v̂a (40)

Define the following storage function

V = Emes +
1

kI

b̃2.

The derivative of V is given by

V̇ = −kP ||(va × R̂T v0a)×||2 = −2kP |va × v̂a|2

The Lyapunov-like function V derivative is negative semi-

definite ensuring that b̃ is bounded and va × v̂a → 0. The

set va × v̂∗a = 0 is characterised by va = ±v̂∗a and thus

v̂T
∗ava = ±1 = vT

0aR̂T
∗ Rv0a = vT

0aR̃∗v0a.

Consider a trajectory (v̂∗a(t), b∗(t)) that satisfies the filter

dynamics and for which v̂∗a = ±va for all time. One has

d

dt
(va × v̂∗a) = 0

= −(Ω × va) × v̂∗a − va × (Ω × v̂∗a)

− va × (b̃∗ × v̂∗a) − kP va × ((va × v̂∗a) × v̂∗a)

= ±va × (b̃∗ × va) = 0.

Differentiating this expression again one obtains
(

(Ω × va) × (b̃∗ × va) + va × (b̃∗ × (Ω × va))
)

= 0

Since the signals Ω and va are asymptotically independent it

follows that the functional expression on the left hand side is

degenerate. This can only hold if b̃∗ ≡ 0. For v̂∗a = −va, this

set of trajectories is characterised by the definition of U1. It is

straightforward to adapt the arguments in Theorems 4.1 and

4.2 to see that this set is forward invariant. Note that for b̃∗ = 0
then V = Emes. It is direct to see that (v̂∗a(t), b∗(t)) lies on a

local maximum of Emes and that any neighbourhood contains

points such that the full Lyapunov function V is strictly less

than its value on the set U1. This proves instability of U1 and

completes part i) of the corollary.

The proof of part ii) and part iii) is analogous to the proof

of Theorem 5.1 (see also [15]).

An important aspect of Corollary 5.2 is the convergence of

the bias terms in all degrees of freedom. This ensures that, for

a real world system, the drift in the attitude estimate around

the unmeasured axis v0a will be driven asymptotically by a

zero mean noise process rather than a constant bias term. This

makes the proposed filter a practical algorithm for a wide range

of MAV applications.
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VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-

strate the performance of the proposed observers.

Experiments were undertaken on two real platforms to

demonstrate the convergence of the attitude and gyro bias

estimates.

1) The first experiment was undertaken on a robotic ma-

nipulator with an IMU mounted on the end effector and

supplied with synthetic estimates of the magnetic field

measurement. The robotic manipulator was programmed

to simulate the movement of a flying vehicle in hover-

ing flight regime. The filter estimates are compared to

orientation measurements computed from the forward

kinematics of the manipulator. Only the passive and

direct complimentary filters were run on this test bed.

2) The second experiment was undertaken on the VTOL

MAV HoverEye c© developed by Bertin Technologies

(Figure 1). The VTOL belongs to the class of ‘sit

on tail’ ducted fan VTOL MAV, like the iSTAR9 and

Kestrel developed respectively by Allied Aerospace [41]

and Honeywell [42]. It was equipped with a low-cost

IMU that consists of 3-axis accelerometers and 3-axis

gyroscopes. Magnetometers were not integrated in the

MAV due to perturbations caused by electrical motors.

The explicit complementary filter was used in this ex-

periment.

For both experiments the gains of the proposed filters were

chosen to be: kP = 1rad.s−1 and kI = 0.3rad.s−1. The inertial

data was acquired at rates of 25Hz for the first experiment and

50Hz for the second experiment. The quaternion version of the

filters (Appendix B) were implemented with first order Euler

numerical integration followed by rescaling to preserve the

unit norm condition.

Experimental results for the direct and passive versions of

the filter are shown in Figures 6 and 7. In Figure 6 the only

significant difference between the two responses lies in the

initial transient responses. This is to be expected, since both

filters will have the same theoretical asymptotic performance.

In practice, however, the increased sensitivity of the direct

filter to noise introduced in the computation of the measured

rotation Ry is expected to contribute to slightly higher noise

in this filter compared to the passive.

The response of the bias estimates is shown in Figure 7.

Once again the asymptotic performance of the filters is similar

after an initial transient. From this figure it is clear that the

passive filter displays slightly less noise in the bias estimates

than for the direct filter (note the different scales in the y-axis).

Figures 8 and 9 relate to the second experiment. The

experimental flight of the MAV was undertaken under remote

control by an operator. The experimental flight plan used was:

First, the vehicle was located on the ground, initially headed

toward ψ(0) = 0. After take off, the vehicle was stabilized

in hovering condition, around a fixed heading which remains

close the initial heading of the vehicle on the ground. Then,

the operator engages a ≃ 90
o

-left turn manoeuvre, returns

to the initial heading, and follows with a ≃ 90
o

-right turn
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Fig. 7. Bias estimation from direct and passive complementary filters

manoeuvre, before returning to the initial heading and landing

the vehicle. After landing, the vehicle is placed by hand at its

initial pose such that final and initial attitudes are the identical.

Figure 8 plots the pitch and roll angles (φ, θ) estimated

directly from the accelerometer measurements against the

estimated values from the explicit complementary filter. Note

the large amounts of high frequency noise in the raw attitude

estimates. The plots demonstrate that the filter is highly

successful in reconstructing the pitch and roll estimates.

Figure 9 presents the gyros bias estimation verses the

predicted yaw angle (φ) based on open loop integration of the

gyroscopes. Note that the explicit complementary filter here

is based solely on estimation of the gravitational direction.

Consequently, the yaw angle is the indeterminate angle that is

not directly stabilised in Corollary 5.2. Figure 9 demonstrates

that the proposed filter has successfully identified the bias of

the yaw axis gyro. The final error in yaw orientation of the

microdrone after landing is less than 5 degrees over a two

minute flight. Much of this error would be due to the initial

transient when the bias estimate was converging. Note that the
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second part of the figure indicates that the bias estimates are

not constant. Although some of this effect may be numerical,

it is also to be expected that the gyro bias on low cost IMU

systems are highly susceptible to vibration effects and changes

in temperature. Under flight conditions changing engine speeds

and aerodynamic conditions can cause quite fast changes in

gyro bias.

Fig. 8. Estimation results of the Pitch and roll angles.

50 60 70 80 90 100 110 120 130 140
−100

−50

0

50

100

time (s)

φ 
(d

e
g

)

φ (yaw angle) from gyros

φ from the estimator

50 60 70 80 90 100 110 120 130 140
−0.04

−0.02

0

0.02

0.04

time (s)

b
 (

rd
/s

)

b
x

b
y

b
z

Fig. 9. Gyros bias estimation and influence of the observer on yaw angle.

VII. CONCLUSION

This paper presents a general analysis of attitude observer

design posed directly on the special orthogonal group. Three

non-linear observers, ensuring almost global stability of the

observer error, are proposed:

Direct complementary filter: A non-linear observer posed on

SO(3) that is related to previously published non-linear

observers derived using the quaternion representation of

SO(3).
Passive complementary filter: A non-linear filter equation that

takes advantage of the symmetry of SO(3) to avoid

transformation of the predictive angular velocity term

into the estimator frame of reference. The resulting ob-

server kinematics are considerably simplified and avoid

coupling of constructed attitude error into the predictive

velocity update.

Explicit complementary filter: A reformulation of the passive

complementary filter in terms of direct vectorial measure-

ments, such as gravitational or magnetic field directions

obtained for an IMU. This observer does not require on-

line algebraic reconstruction of attitude and is ideally

suited for implementation on embedded hardware plat-

forms. Moreover, the filter remains well conditioned in

the case where only a single vector direction is measured.

The performance of the observers was demonstrated in a

suite of experiments. The explicit complementary filter is now

implemented as the primary attitude estimation system on

several MAV vehicles world wide.

APPENDIX A

A REVIEW OF COMPLEMENTARY FILTERING

Complementary filters provide a means to fuse multiple

independent noisy measurements of the same signal that

have complementary spectral characteristics [11]. For example,

consider two measurements y1 = x+µ1 and y2 = x+µ2 of a

signal x where µ1 is predominantly high frequency noise and

µ2 is a predominantly low frequency disturbance. Choosing a

pair of complementary transfer functions F1(s) + F2(s) = 1
with F1(s) low pass and F2(s) high pass, the filtered estimate

is given by

X̂(s) = F1(s)Y1+F2(s)Y2 = X(s)+F1(s)µ1(s)+F2(s)µ2(s).

The signal X(s) is all pass in the filter output while noise

components are high and low pass filtered as desired. This type

of filter is also known as distorsionless filtering since the signal

x(t) is not distorted by the filter [43]. Complementary filters

are particularly well suited to fusing low bandwidth position

measurements with high band width rate measurements for

first order kinematic systems. Consider the linear kinematics

ẋ = u. (41)

with typical measurement characteristics

yx = L(s)x + µx, yu = u + µu + b(t) (42)

where L(s) is low pass filter associated with sensor character-

istics, µ represents noise in both measurements and b(t) is a

deterministic perturbation that is dominated by low-frequency

content. Normally the low pass filter L(s) ≈ 1 over the

frequency range on which the measurement yx is of interest.

The rate measurement is integrated yu

s
to obtain an estimate of

the state and the noise and bias characteristics of the integrated

signal are dominantly low frequency effects. Choosing

F1(s) =
C(s)

C(s) + s

F2(s) = 1 − F1(s) =
s

C(s) + s
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with C(s) all pass such that L(s)F1(s) ≈ 1 over the band-

width of L(s). Then

X̂(s) ≈ X(s) + F1(s)µx(s) +
µu(s) + b(s)

C(s) + s

Note that even though F2(s) is high pass the noise µu(s)+b(s)
is low pass filtered. In practice, the filter structure is imple-

mented by exploiting the complementary sensitivity structure

of a linear feedback system subject to load disturbance.

Consider the block diagram in Figure 10. The output x̂ can

yu

C(s)

-

+

+
R

x̂yx

+

Fig. 10. Block diagram of a classical complementary filter.

be written

x̂(s) =
C(s)

s + C(s)
yx(s) +

s

C(s) + s

yu(s)

s

= T (s)yx(s) + S(s)
yu(s)

s

where S(s) is the sensitivity function of the closed-loop

system and T (s) is the complementary sensitivity. This archi-

tecture is easy to implement efficiently and allows one to use

classical control design techniques for C(s) in the filter design.

The simplest choice is a proportional feedback C(s) = kP . In

this case the closed-loop dynamics of the filter are given by

˙̂x = yu + kP (yx − x̂). (43)

The frequency domain complementary filters associated with

this choice are F1(s) = kP

s+kP

and F2(s) = s
s+kP

. Note that

the crossover frequency for the filter is at kP rad.s−1. The gain

kP is typically chosen based on the low pass characteristics

of yx and the low frequency noise characteristics of yu to

choose the best crossover frequency to tradeoff between the

two measurements. If the rate measurement bias, b(t) = b0,

is a constant then it is natural to add an integrator to the

compensator to make the system type I

C(s) = kP +
kI

s
. (44)

A type I system will reject the constant load disturbance b0

from the output. Gain design for kP and kI is typically based

on classical frequency design methods. The non-linear devel-

opment in the body of the paper requires a Lyapunov analysis

of closed-loop system Eq. 43. Applying the PI compensator,

Eq. 44, one obtains state space filter with dynamics

˙̂x = yu − b̂ + k(yx − x̂),
˙̂
b = −kI(yx − x̂)

The negative sign in the integrator state is introduced to

indicate that the state b̂ will cancel the bias in yu. Consider

the Lyapunov function

L =
1

2
|x − x̂|2 +

1

2kI

|b0 − b̂|2

Abusing notation for the noise processes, and using x̃ = (x−
x̂), and b̃ = (b0 − b̂), one has

d

dt
L = −kP |x̃|2 − µux̃ + µx(b̃ − kx̃)

In the absence of noise one may apply Lyapunov’s direct

method to prove convergence of the state estimate. LaSalle’s

principal of invariance may be used to show that b̂ → b0.

When the underlying system is linear, then the linear form of

the feedback and adaptation law ensure that the closed-loop

system is linear and stability implies exponential stability.

APPENDIX B

QUATERNION REPRESENTATIONS OF OBSERVERS

The unit quaternion representation of rotations is commonly

used for the realisation of algorithms on SO(3) since it offers

considerable efficiency in code implementation. The set of

quaternions is denoted Q = {q = (s, v) ∈ R × R
3 : |q| = 1}.

The set Q is a group under the operation

q1 ⊗ q2 =

[

s1s2 − vT
1 v2

s1v2 + s2v1 + v1 × v2

]

with identity element 1 = (1, 0, 0, 0). The group of quater-

nions are homomorphic to SO(3) via the map

F : Q → SO(3), F (q) := I3 + 2sv× + 2v2
×

This map is a two to one mapping of Q onto SO(3) with

kernel {(1, 0, 0, 0), (−1, 0, 0, 0)}, thus, Q is locally isomorphic

to SO(3) via F . Given R ∈ SO(3) such that R = exp(θa×)
then F−1(R) = {±(cos( θ

2 ), sin( θ
2 )a)} Let Ω ∈ {A} de-

note a body-fixed frame velocity, then the pure quaternion

p(Ω) = (0,Ω) is associated with a quaternion velocity.

Consider the rotation kinematics on SO(3) Eq. 4, then the

associated quaternion kinematics are given by

q̇ =
1

2
q ⊗ p(Ω) (45)

Let qy ≈ q be a low frequency measure of q, and Ωy ≈ Ω+ b
(for constant bias b) be the angular velocity measure. Let q̂
denote the observer estimate and quaternion error q̃

q̃ = q̂−1 ⊗ q =

[

s̃

ṽ

]

Note that

2s̃ṽ = 2 cos(θ/2) sin(θ/2)a =
1

2
(sin θ)a = vex(Pa(R̃))

where (θ, a) is the angle axis representation of R̃ = F (q̃).
The quaternion representations of the observers proposed in

this paper are:

Direct complementary filter (Eq. 12):

˙̂q =
1

2
q̂ ⊗ p(R̃(Ωy − b̂) + 2kP s̃ṽ) (46a)

˙̂
b = −2kI s̃ṽ (46b)
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Passive complementary filter (Eq. 13):

˙̂q =
1

2
q̂ ⊗ p(Ωy − b̂ + 2kP s̃ṽ) (47a)

˙̂
b = −2kI s̃ṽ (47b)

Explicit complementary filter (Eq. 32):

ωmes = − vex

(

n
∑

i=1

ki

2
(viv̂i

T − v̂iv
T
i )

)

(48a)

˙̂q =
1

2
q̂ ⊗ p(Ωy − b̂ + kP ωmes) (48b)

˙̂
b = −kIωmes (48c)

The error dynamics associated with the direct filter expressed

in the quaternion formulation are

˙̃q = −1

2

(

p(b̃ + kP s̃ṽ) ⊗ q̃
)

. (49)

The error dynamics associated with the passive filter are

˙̃q =
1

2

(

q̃ ⊗ p(Ω) − p(Ω) ⊗ q̃ − p(b̃ + kP s̃ṽ) ⊗ q̃
)

. (50)

There is a fifteen year history of using the quaternion rep-

resentation and Lyapunov design methodology for filtering

on SO(3) (for example cf. [9], [30], [32]). To the authors

knowledge the Lyapunov analysis in all cases has been based

around the cost function

Φ(q̃) = (|s̃| − 1)2 + |ṽ|2.
Due to the unit norm condition it is straightforward to show

that

Φ(q̃) = 2(1 − |s̃|) = 2 (1 − | cos(θ/2)|)
The cost function proposed in this paper is Etr = (1 −

cos(θ)) (Eq. 3). It is straightforward to see that the quadratic

approximation of both cost functions around the point θ = 0 is

the quadratic θ2/2. The quaternion cost function Φ, however,

is non-differentiable at the point θ = ±π while the cost

tr(I − R̃) has a smooth local maxima at this point. To the

authors understanding, all quaternion filters in the published

literature have a similar flavour that dates back to the seminal

work of Salcudean [32]. The closest published work to that

undertaken in the present paper was published by Thienel in

her doctoral dissertation [44] and transactions paper [30]. The

filter considered by Thienel et al. is given by

˙̂q =
1

2
q̂ ⊗ p(R̃(Ωy − b̂ + kP sgn(s̃)ṽ)) (51a)

˙̂
b = −kIsgn(s̃)ṽ (51b)

The sgn(s̃) term enters naturally in the filter design from the

differential, d
dt
|s̃| = sgn(s̃) d

dt
s̃, of the absolute value term

in the cost function Φ, during the Lyapunov design process.

Consider the observer obtained by replacing sgn(s̃) in Eqn’s 51

by 2s̃. Note that with this substitution, Eq. 51b is transformed

into Eq. 46b. To show that Eq. 51a transforms to Eq. 46a it is

sufficient to show that R̃ṽ = ṽ. This is straightforward from

2s̃R̃ṽ = R̃(2s̃ṽ) = R̃vex(Pa(R̃))

= vex(R̃Pa(R̃)R̃T ) = vex(Pa(R̃)) = 2s̃ṽ

This demonstrates that the quaternion filter Eqn’s 51 is ob-

tained from the standard form of the complimentary filter

proposed Eq. 12 with the correction term Eq. 12c replaced

by

ωq = sgn(s̃)ṽ, q̃ ∈ F−1(R̂T R).

Note that the correction term defined in Eq. 12c can be written

ω = 2s̃ṽ. It follows that

ωq =
sgn(s̃)

2s̃
ω

The correction term for the two filters varies only by the

positive scaling factor sgn(s̃)/(2s̃). The quaternion correction

term ωq is not well defined for s̃ = 0 (where θ = ±π) and

these points are not well defined in the filter dynamics Eq. 51.

It should be noted, however, that |ωq| is bounded at s̃ = 0
and, apart from possible switching behaviour, the filter can

still be implemented on the remainder of SO(3) × R
3. An

argument for the use of the correction term ωq is that the

resulting error dynamics strongly force the estimate away from

the unstable set U (cf. Eq. 14). An argument against its use is

that, in practice, such situations will only occur due to extreme

transients that would overwhelm the bounded correction term

ωq in any case, and cause the numerical implementation of

the filter to deal with a discontinuous argument. In practice,

it is an issue of little significance since the filter will general

work sufficiently well to avoid any issues with the unstable

set U. For s̃ → 1, corresponding to θ = 0, the correction term

ωq scales to a factor of 1/2 the correction term ω. A simple

scaling factor like this is compensated for the in choice of filter

gains kP and kI and makes no difference to the performance

of the filter.
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