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Nonlinear conductance of quantum point contacts
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The conductance of ballistic quantum constrictions in a two-dimensional electron gas has been
studied experimentally äs a function of the applied voltage. Large nonlinearities are found in the
current-voltage characteristics. We give a simple model, which explains the main features of the
nonlinear conductance. Breakdown of the conductance quantization occurs when the number of
occupied one-dimensional subbands becomes unequal for the two velocity directions. A critical
voltage is found for the breakdown, which is equal to the subband Separation at the Fermi level.

The quantization of the conductance of a constriction in
a two-dimensional electron gas (2D EG) was recently
discovered in the experiments of van Wees etal. ' and
Wharam et al.2 They defined a ballistic constriction in
the 2D EG of a high-mobility GaAs-AlxGai -xAs hetero-
structure by means of a metallic split gate. Application of
a negative voltage Vg on the gate forms the constriction in
the 2D EG by electrostatic depletion. The two-terminal
conductance G, measured at zero magnetic field between
the two wide regions of 2D EG on each side of the con-
striction, was shown to change stepwise in units of 2e2/h
on varying Vg. The quantization of G can be explained
from the formation of one-dimensional (lD) subbands in
the constriction due to the lateral confinement. Then G is
given by the Landauer-type formula3 G=Nc2e2/h, with
Nc the number of occupied l D subbands. A detailed
analysis has shown that a Variation of Vg changes the
width äs well äs the electron density of the constriction.4

Both mechanisms move the Fermi energy £> in the chan-
nel through the l D subbands and whenever it passes a
subband bottom G changes by the quantized amount of
2e2/h.

So far this new conductance quantization has been
studied in the linear ballistic transport regime. Here we
report on the nonlinear conductance of quantum point
contacts. Deviations from quantization are expected to
occur when eV becomes comparable to the subband Sepa-
ration (with V the applied voltage over the constriction).
We have studied the nonlinear transport by measuring a
set of current-voltage (i-V} characteristics using Vg äs a
Parameter. The main features of the l-V characteristics
can be accounted for by a simple qualitative model, which
is based on ballistic electron transport over a potential
barrier in the constriction. Related models have been
used in the field of hot electron transport in layered semi-
conductor structures,5 and to explain the breakdown of
the quantum Hall effect.6"10

The measurements have been performed on a device
which is similar to that in Ref. l (see inset Fig. l). The

2D EG of the GaAs-AlxGai-xAs heterostructure has a
transport mean free path of 8.5 μιη and an electron densi-
ty of 3.6x 10 l 5/m2 resulting in a Fermi wavelength of 42
nm. At a gate voltage Vg = — 0.6 V the constriction is just
formed in the 2D EG and has its maximum width, which
is approximately equal to the lithographic width of the
opening in the gate (250 nm). Lowering Vg reduces the
width and at Vg = — 2.2 V the constriction is fully pinched
off. The experiments were done at 0.6 K with de current
biasing. The voltage V across the constriction is defined
äs the voltage of the upper contact in the inset of Fig. l
minus the voltage of the lower contact. The measured
voltage is corrected for a background resistance originat-
ing from the two wide 2D EG regions and from the resis-
tance of the Ohmic contacts.''

In Fig. l the l-V characteristics are shown for several
values of the gate voltage Vg, for which the constriction is
pinched off in equilibrium. For low V the current through
the constriction is zero. At a certain critical voltage Vc

there is a stepwise increase of the differential conductance
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FIG. 1. /- V characteristics at different values of gate voltage
Vg for which the constriction is pinched off for small voltage V.
The inset shows the sample layout.
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g = 9//Θ V from zero to a constant value [ = (80 k Ω) ' ],
which is found to be nearly independent of Vg. The criti-
cal voltage Vc, however, increases strongly with decreas-
ing Vg. Note that the 7-Fcharacteristics are not antisym-
metric. The asymmetry is considerably influenced by the
choice of zero reference of Vg, which in the experiment
has been the lower contact in the sample layout of Fig. l.
Changing the zero reference to the upper contact results
in a different gate voltage Vg + V, which gives for V < 0 a
lower gate voltage. However, this change in zero refer-
ence does not account for the asymmetry in the curves of
Fig. 1. This might be due to an intrinsic asymmetry in the
electrostatic potential defining the constriction. In a
second device of identical design the change of zero refer-
ence completely accounted for the asymmetry.

In Fig. 2 the /-Kcharacteristics are shown for a ränge
of Vg, for which the constriction is already conducting at a
small applied voltage V. For comparison we display G at
small V äs a function of Vg for the lowest two quantized
plateaus in the inset of Fig. 2(a). As can be seen in the in-
set, Vg ranges from near pinch off (Vg = — 2.10 V) to the
onset of the second plateau (Vg = — 2.00 V). In Fig. 2(a)
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FIG 2 l-V charactenstics at different values of Vg for which
the conductance G is quantized at 2e2/h for small V, indicated
by the dotted ime. The inset of (a) shows G äs function of Vs in
equilibnum and the inset of (b) the breakdown voltage KBR äs a
function of V,

the curves are displayed for gate voltages corresponding to
the lower part of the first plateau. For small Fthey follow
the dotted line, which indicates the quantized value 2e 2/h
of the first plateau. At a certain voltage KBR, the quanti-
zation breaks down and g decreases from 2e2/h [«= (13
k n ) ~ ' l to a lower value [«= (60 k«) ~'l. In Fig. 2(b)
the l-V characteristics are shown for gate voltages corre-
sponding to the upper part of the first plateau. Again the
curves follow the dotted line of quantization for small V
and deviate from it above a breakdown voltage. However
in contrast to Fig. 2 (a) the deviation from quantization is
now to a larger value for g [= (8.7 kü ) ~']. A further
increase of V reduces g to a value much lower than 2e2/h.
Note that the relative effect of V on the gate voltage and
hereby the asymmetry is much less in Fig. 2 äs compared
to Fig. 1. We thus see that increasing V results in the
breakdown of the conductance quantization, äs manifest-
ed by either an increase or a decrease in g. As can be seen
from Fig. 2, the breakdown voltage FBR (the voltage
where g deviates more than 10% from the quantized
value) increases äs Vg approaches the center of the first
plateau. To illustrate this we have plotted FBR äs a func-
tion of Vg in the inset of Fig. 2(b), which shows a triangu-
lär shape with a maximum value of 3.5 meV at Vg

= -2.06 V.
To understand the main features in the /- V characteris-

tics we propose a simple model. Apart from the lateral
confinement, the gate voltage Vg also gives rise to an elec-
trostatic potential in the constriction,4'12 which results in a
reduced electron density. For simplicity we neglect the
voltage V dependence of Vg. Due to the lateral confine-
ment l D subbands are formed. On entering the constric-
tion the bottom of the nth subband rises relative to the
bulk 2D EG, äs a combined result of the increased lateral
confinement and the electrostatic barrier. The number of
occupied states is lowest at the maximum of the potential
barrier, where the nth subband bottom has an energy E„
constituting a "bottleneck" for the current. Extrapolating
an approach valid in the linear transport regime,3'12 we
calculate the net current /„ through the constriction car-
ried by the nth subband by considering the occupation of
the right- and left-moving states at the bottleneck E„.
The right-moving states are filled from E„ up to μι, the
electrochemical potential at the left of the constriction
(provided that μ\>E„). Analogously, provided that
μ 2 > En, the left-moving states are filled from E„ up to μ2,
the electrochemical potential at the right. We assume
that the electrons with energy μ > E„ are fully transmit-
ted through the constriction. A difference in occupation
between the right- and left-moving states is determined by
the applied voltage V, with εΥ=μ\ —μι (assuming a van-
ishing electric field outside the constriction), resulting in a
net current. For μ\ > μι the nth subband carries a net
current, which according to the well-known cancellation
of group velocity with density of states in one dimension is
given by

/„ (1)

provided μι > max(^2,£„), and /„ =0 otherwise. On in-
creasing V the population of the right-moving states in-
creases to μι =Ερ + ιηβν and of the left-moving states de-
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creases to μι =EF — (l — m )eV. Here m is a phenomeno-
logical parameter between 0 and l , describing the fraction
of V, which drops on the left of the bottleneck. Con-
currently the fraction ( l — m ) of V drops oh the right. At
a certain voltage μ\ or μι crosses the subband bottom E„,
in this way changing the contribution 9/„/9Kfrom the nth
subband to the differential conductance g. We find for
EF <En,

[0, if \V\<Vc--(EF-E„)/me,

\m2e2/h, if \V\>VC,
(2)

whileif £>>£"„

ΒΙ,,__\2β2/Η, if | K | <Fc' = (E>-£„)/(l-m)e,

1)V~{m2e2/h, if \V\ >V'C.
 (3)

Equation (2) applies to a subband which in equilibrium is
not occupied at the bottleneck of the constriction
(EF<E„). The differential conductance from this sub-
band increases beyond a critical voltage Vc to a value
which is smaller than the quantized value. Equation (3)
applies to a subband which is occupied in equilibrium
(£>>£„). Beyond a critical voltage V'c the differential
conductance due to this subband decreases from its nor-
mal quantized value of 2e2/h. Although the expressions
for the critical voltages depend on the parameter m, these
conclusions are general and model independent.

To illustrate the consequences of Eqs. (2) and (3) on in-
creasing the voltage we have schematically shown in Fig.
3 the energy of the two lowest subbands at the bottleneck
äs a function of longitudinal wave vector ky. Note that
positive ky corresponds to a positive velocity. In equilibri-
um (K=0) the subbands are occupied up to the Fermi en-
ergy EF. A voltage V across the constriction gives a
difference μ\ — μ 2=εΚ in occupation between the two ve-

(c) g = (d)

FIG. 3. Subband occupation at the bottleneck, where the
conductance is determined. Four situations are illustrated for
difierent V across the constriction (with βν=μ\—μι), and for
different positions of EF.

locity directions [Fig. 3 (a)], resulting in a net current. As
long äs the number of occupied subbands is the same for
both velocity directions the conductance is quantized.
However, at larger applied voltages, μ 2 can fall below the
bottom of a subband. Here g reduces from 2e2/h to a
fraction m2e2/h, äs shown in Fig. 3(b) (where EF is near
the bottom of the lowest subband) and äs observed experi-
mentally in Fig. 2(a). The subband occupation of Fig.
3(b) can also be reached from the Situation EF<E\,
where there are no occupied states in equilibrium. For
low voltages g =0 äs in Fig. l, but at a critical voltage μ\
crosses E\ and g increases to m2e2/h according to Eq.
(2). We emphasize that this explanation for the onset of
conductance holds that μ ι is lifted above the barrier in the
constriction. The constant g above the critical voltage ex-
cludes tunneling through the barrier, which would lead to
an exponential dependence of g on V.13 Figures 3(c) and
3(d) correspond to the Situation where EF is close to the
bottom of the second subband, äs in the experimental Fig.
2(b). On increasing V first the second subband Starts to
be populated [Fig. 3(c)] leading to an increase of g to
(l+m)2e2/h. A further increase of V causes μ2 to fall
below the bottom of the first subband [Fig. 3(d)], which
then reduces g to a fraction 2m2e2/h. This explains quali-
tatively the increasing and then decreasing slope in Fig.
2(b). We note that the Situation of Fig. 3(d) can also be
reached directly from Fig. 3(a), which is actually happen-
ing at Vg = —2.06 V in Fig. 2(b). The model presented
here in terms of a single phenomenological parameter m
does give qualitative insight, but it is not a realistic
description of the complex interdependence of the electro-
static potential on V and Vg. This is demonstrated by the
fact that no universal value for m is found. If both veloci-
ty directions are occupied the experiment yields m «0.5.
The maximum of the breakdown voltage FBR at
Vg = — 2.06 V (for which EF is approximately in the mid-
dle of the first and second subband bottom äs can be seen
from the insets of Fig. 2), also indicates m « 0.5. Howev-
er, if one velocity direction is fully depopulated, m has an
experimental value of «sO.2. It would be of interest to
develop a more quantitative theory for our observations.

It follows from Eqs. (2) and (3) that the maximum
value of the breakdown voltage KBR is equal to the sub-
band Separation at the Fermi level. This is independent of
the parameter m and provides a fundamental limit for the
conductance quantization. From the inset of Fig. 2(b) we
thus find a subband Separation of 3.5 meV, which is con-
sistent with the value obtained from an analysis of mag-
netic depopulation.4·14 As we have discussed, the break-
down of the conductance quantization occurs whenever
the number of occupied subbands differs for the two veloc-
ity directions. We emphasize that this mechanism does
not involve any inelastic process or intersubband scatter-
ing. The triangulär dependence of the breakdown voltage
[see inset Fig. 2(b)l on the gate voltage is reminiscent of
experiments on the breakdown of the quantum Hall effect,
where a similar dependence of the breakdown Hall volt-
age on the magnetic field was found.6~9 A mechanism
for breakdown of the quantum Hall effect also including
only elastic processes has been proposed in Ref. 10.

In this paper we have presented I-V characteristics at
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fixed Vg. Glazman and Khaetskii15 have recently predict-
ed that the differential conductance äs a function of gate
voltage at a fixed finite V should exhibit additional pla-
teaus in between the plateaus at multiples of 2e 2/h. We
have found some evidence for these additional plateaus
[which follow also from Eq. (2)1, but these are not well
resolved in our device.

In conclusion, we have reported the first experimental
study on the nonlinear behavior of quantum ballistic point
contacts. We have given a simple model explaining the
main features in the nonlinear conductance. The mea-
sured 7-Kcharacteristics reveal the occupation of the l D
subbands formed in the constriction, for the individual ve-
locity directions. Breakdown of the quantization occurs

when the number of occupied subbands becomes different
for the two directions. A critical voltage equal to the sub-
band Separation at the Fermi level is derived for the com-
plete breakdown of the two-terminal conductance quanti-
zation.
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