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Networks of rigid bars connected by joints, termed linkages,

provide a minimal framework to design robotic arms and mechan-

ical metamaterials built of folding components. Here, we investi-

gate a chain-like linkage that, according to linear elasticity, behaves

like a topological mechanical insulator whose zero-energy modes

are localized at the edge. Simple experiments we performed using

prototypes of the chain vividly illustrate how the soft motion,

initially localized at the edge, can in fact propagate unobstructed

all of the way to the opposite end. Using real prototypes, simu-

lations, and analytical models, we demonstrate that the chain is a

mechanical conductor, whose carriers are nonlinear solitary waves,

not captured within linear elasticity. Indeed, the linkage prototype

can be regarded as the simplest example of a topological metama-

terial whose protected mechanical excitations are solitons, moving

domain walls between distinct topological mechanical phases. More

practically, we have built a topologically protected mechanism that

can perform basic tasks such as transporting a mechanical state from

one location to another. Our work paves the way toward adopting

the principle of topological robustness in the design of robots

assembled from activated linkages as well as in the fabrication

of complex molecular nanostructures.

topological matter | origami | isostaticity | jamming | active matter

Mechanical structures composed of folding components,
such as bars or plates rotating around pivots or hinges, are

ubiquitous in engineering, materials science, and biology (1). For
example, complex origami-like structures can be created by folding
a paper sheet along suitably chosen creases around which two
nearby faces can freely rotate (2–4). Similarly, linkages can be
viewed as 1D versions of origami where rigid bars (links) are
joined at their ends by joints (vertices) that permit full rotation of
the bars (Fig. 1 A–C). Some of the joints can be pinned to the plane
while the remaining ones rotate relative to each other under the
constraints imposed by the network structure of the linkage (5).
Familiar examples include the windshield wiper, robotic arms, bi-
ological linkages in the jaw and knee, and toys like the Jacob’s
ladder (6) and the Hoberman sphere. Moreover, linkages and ori-
gami can be used in the design of microscopic and structural met-
amaterials whose peculiar properties are controlled by the geometry
of the unit cell (7, 8).
Many of these examples are instances of what mechanical engi-

neers call mechanisms: structures where the degrees of freedom are
nearly balanced by carefully chosen constraints so that the allowed
free motions encode a desired mechanical function. However, as
the number of components increases, more can go wrong: lack of
precision machining or undesired perturbations. Robustness in this
sense is a concern relevant to the design of complex mechanical
structures from the microscopic to the architectural scale, typi-
cally addressed at the cost of higher manufacturing tolerances or
active feedback.
Here, we take an alternative approach inspired by recent de-

velopments in the design of fault tolerant quantum devices (9).
Consider, as an example, the quantized Hall conductivity of a 2D
electron gas that is topologically protected in the sense that it
cannot change when the Hamiltonian is smoothly varied (10).
In this article, we present a topologically protected classical

mechanism that can transport a mechanical state across a chain-
like linkage without being affected by changes in material param-
eters or smooth deformations of the underlying structure, very
much like its quantum counterparts.
Kane and Lubensky (11) recently took an important step to-

ward establishing a dictionary between the quantum and classical
problems. Their starting point, which seems at first disconnected
from the linkages we study here, was to analyze the phonons in
elastic systems composed of stretchable springs. In particular
they derived a mathematical mapping between electronic states
in topological insulators and superconductors (10) and the me-
chanical zero modes in certain elastic lattices (12). The simplest
is the 1D elastic chain, shown in Fig. 1B, inspired by the Su–
Schrieffer–Heeger (SSH) model for polyacetylene (13), a linear
polymer chain with topologically protected electronic states at its
free boundaries. In the mechanical chain, the electronic modes
map onto zero-energy vibrational modes with a nontrivial topo-
logical index, whose eigenvectors represented as green arrows in
Fig. 1B are localized at one of the edges (11). An intriguing question
then arises: Could these zero-energy edge modes propagate through
the system in the form of finite deformations?
We address this question by building and analyzing a linkage

of rigid bars as an extreme limit of the 1D lattice of springs. This
linkage allows no stretching deformations, yet it still displays the
distinctive zero-energy mode localized at the edges (Fig. 1 and
Movie S1). By nudging the rotors along the direction of the zero-
energy mode (Fig. 1B and Movie S2), we provide a vivid dem-
onstration of how the initially localized edge mode can indeed
propagate and be moved around the chain at an arbitrarily small
energy cost. We then show analytically and numerically that the
mechanism underlying the mechanical conduction is in fact an
evolution of the edge mode into a nonlinear topological soliton,
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which is the only mode of propagation in the chain of linkages that
costs zero potential energy. The soliton or domain wall interpolates
between two distinct topological mechanical phases of the chain and
derives its robustness from the presence of a band gap within linear
elasticity and the boundary conditions imposed at the edges of the
chain. Although the topological protection ensures the existence of
a domain wall, the dynamical nature of the soliton falls into two
distinct classes that can ultimately be traced to the geometry of the
unit cell. The prototypes we built therefore provide simple exam-
ples of structures that we dub topological metamaterials whose
excitations are topologically protected zero-energy solitons (9).

Topological Band Theory of Phonons

The application of topological band theory to mechanics is most
easily demonstrated in the context of the 1D elastic chain (11)
(Fig. 1B). The model consists of a periodic arrangement of al-
ternating massless rigid rotors of length r (black bars), con-
strained to rotate about fixed pivot points (black crosses), around
an equilibrium angle θ at odd-numbered sites and π − θ at even-
numbered sites. Here, the blue circles denote point masses M,
a is the lattice spacing, and l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 + 4r2 cos2θ
p

is the equilibrium
(unstretched) length of the Hookean spring (with spring constant
ke) connecting the masses. Because the 1D mechanical system
has Ns = N lattice points and Nb = N − 1 bonds, there is (at least)
one zero-energy vibrational mode as required by constraint count-
ing; i.e., N0 = dNs −Nb, where N0 is the number of zero modes and
d is the number of spatial dimensions.
The rigidity matrix (1, 14) for the lattice in Fig. 1, denoted R, is

obtained by linearizing the change in length of the spring that
connects masses {n, n + 1} in terms of small angular displace-
ments δθn,n+1 from the equilibrium value θ; i.e., δln,n+1 = Rniδθi
(the authors of ref. 11 work with a matrix Q = RT). The phonon
modes are readily obtained from the Fourier-transformed ri-
gidity matrix R(k) (considering the chain as a periodic arrange-
ment of two-particle unit cells),

RðkÞ=
�

q+ q−
q− q+e

ikð2aÞ

�

; [1]

where q± = r cosθð2r sinθ ± aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 + 4r2 cos2θ
p

. In this notation,
the (Fourier-transformed) dynamical matrix reads D(k) = R†(k)R(k).

The eigenvalues of D are the squared vibrational frequencies
(in units of

ffiffiffiffiffiffiffiffiffiffiffi

ke=M
p

) of the normal modes of the lattice, given by
ω(k) = jq+ ± q−e

ikaj, where the ± belongs to the acoustic (+) and
optical (−) branches of the dispersion curve, respectively.
For small k (and q+ > 0, q− < 0), the vibrational spectrum of the

acoustic branch is gapped, and ω2ðkÞ=ω2
0 + c2k2, where

ω0 =

�

�

�

�

�

r2

l
sin
�

2θ
�

�

�

�

�

�

> 0 [2]

is the gap frequency and

c2 =
cos2θ

�

�

�4r2 sin2θ− a2
�

�

�

l
2

a2ke

M
[3]

is the squared speed of sound. Owing to the gap, no propagating
modes (with real k) can be excited for ω < ω0. Nevertheless, there
is a zero-energy mode, which corresponds to the specific value of
k=

ffiffiffiffiffiffiffiffiffi

−ω0
p

=c for which ω = 0, i.e., the value of k for which there
are no changes in the spring length δln,n+1 = 0 for all n. Because k is
complex, the zero-energy mode is nonpropagating and thus Im k
yields an inverse penetration depth ℓ

−1 that evaluates to

ℓ

a
=−

"

ln

�

�

�

�

2r sinθ− a

2r sinθ+ a

�

�

�

�

#−1

∼
1

sinθ
; [4]

where the last relation is valid for small θ. As shown in Fig. 1B,
the eigenvectors ~ei of the dynamical matrix (shown as green
arrows) have appreciable magnitude only on the rightmost two
particles, illustrating the exponential localization of the zero-energy
mode at the boundary.
Eq. 4 shows that for θ= f0; πg, ℓ diverges and the zero-energy

end mode becomes an ordinary infinite-wavelength acoustic
phonon—the chain is no longer gapped. At θ= fπ=2; 3π=2g the
phonon spectrum collapses entirely to 0. This demonstrates the
topological robustness of the zero-energy edge modes: Unless
the chain is prepared with the specific values of θ= f0; π=2; . . .g
for which the gap closes, their presence is insensitive to changes
in material parameters.
Whether the zero-energy mode is localized at the right or the

left edge is determined by the topological polarization introduced
in ref. 11; here, it is simply the winding number of the complex
phase of det R(k). As k goes from −π/(2a) to π/(2a), the path of
det R(k) in the complex plane is a circle centered on the real axis
at q2

+
with radius q2−, provided that θ≠ 0. [If θ= 0, the path of det

R(k) passes through 0, making the phase undefined.] Thus, the
winding number n is 1 if

�

�q+
�

�< jq−j and zero if
�

�q+
�

�> jq−j, indi-
cating that the mode is localized respectively to the left (ℓ > 0 in
Eq. 4) or the right (ℓ < 0) edge of the chain. The physical meaning
of this classification is apparent when considering the symmetry
classes of the uniform ground states: The black rotors in Fig. 1 can
be either left (n = 1) or right leaning (n = 0).
Because the zero potential energy motion does not involve

stretching or compression of the spring, it can be studied in the
hybrid spring–strut system introduced by Kane and Lubensky as
well as in the chain of linkages shown in Fig. 1 A and C. In these
prototypes, the plastic rotors rotate around bolts attached to a
longer piece of plastic that serves as the rigid background and are
attached at their ends by other plastic pieces. Self-intersections
are avoided by arranging alternating bars at different heights in
the transverse direction.

Beyond Phonons: Solitons in Systems of Linkages

The linear elastic theory reviewed in the previous section pre-
dicts that there are no bulk low-energy phonons below the gap

Right-leaning Left-leaning

Soliton

A

B

C

D

Fig. 1. The chain of rotors in the flipper phase. (A) The translation symmetric

system with θ= θ constant. We show a linkage made from plastic and metal

screws. (B) A computer sketch of the elastic chain (11): Themasses are blue, rigid

rotors are black, and springs are dashed red lines. The green arrows depict the

amplitude of displacement of each mass of the edge-localized zero mode of

the system. (C) A configuration of the linkage showing a soliton as a domain wall

between right-leaning and left-leaning states. (D) A computer-simulated static

configuration. The arrows beneath show the x projections of each rotor.
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frequency and that the zero-energy mode is exponentially lo-
calized at the edge—i.e., the chain is a topological mechanical
insulator (Movie S1). However, this conclusion is manifestly at
odds with the simple experiments we performed using prototypes
of the SSH chain with rigid constraints, as shown in Fig. 1.
By tilting the chain, a soft mode initially localized at the edge

of the chain propagates under the effect of gravity all of the way
to the opposite end, as shown vividly in Movie S2. This simple
experiment demonstrates that the chain is in fact a mechanical
conductor whose carriers are nonlinear solitary wave excitations
not captured within linear elasticity. The nonlinear mechanism
of conduction is the central result of our work and relies on a key
difference between vibrational and electronic states: Phonons
are infinitesimal physical displacements that can be integrated
to finite deformations of the underlying mechanical structure,
whereas electronic states live in an abstract Hilbert space.
The SSH chain is a paradigmatic and analytically tractable

representative from a broader class of floppy mechanical systems
that share a common feature—the infinitesimal zero-energy mo-
tion described by the localized topological modes extends to a fi-
nite zero-energy motion that propagates freely through the bulk.
We expect similar behavior to occur in 2D and 3D structures in-
volving linkages or other general mechanical structures that could
be of considerable interest for robotic manipulations and design of
metamaterials (15).
What types of nonlinear waves does this type of system sup-

port? Are there different phases of motion? To answer these
questions we performed Newtonian dynamics simulations of the
chain for different values of the geometrical parameters fl; r; ag
and the spring constant, ke. Newton’s laws are numerically in-
tegrated with the initial condition set by the zero-energy mode:

~v 0
i = v0~ei, where ~v

0
i is the initial velocity of the ith particle,~ei is

the component corresponding to the ith particle in the zero-
energy eigenvector of the dynamical matrix, and v0 is a factor
determining the initial speed. As seen in Fig. 2 and Movie S3,
because the zero-energy mode is initially localized at the edge,
the above procedure amounts to imparting an initial kick to the first
few particles. We discuss below how this initial impulse evolves and
propagates through the chain as well as the rich phenomenology
that emerges as we vary the geometrical parameters of the chain.
In Fig. 2A, we show a chain with the rotors initially in the right-

leaning mechanical state. As the rotors at the right end rotate
following the zero-energy eigenmode (marked with small green
arrows), their angles soon reach −θ and they enter the left-
leaning state and halt. However, rotors farther to the left now

begin to rotate, generating a moving, localized region of motion.
At the far left of the chain, the rotors remain in the right-leaning
state until that region reaches them. The dynamics thus generate
a domain wall interpolating between the right- and left-leaning
states. Fig. 2B shows a snapshot of the chain where the domain
wall is halfway to the left end. Because the passage of the domain
wall flips the direction of the rotors from θ= θ to θ=−θ (mea-
sured with respect to the positive y axis on the odd-numbered
sites), we label this the flipper phase of motion. Once the domain
wall has reflected off the left edge of the chain, the edge rotor
now points down (Fig. 2C). Only when the domain wall has
traversed the chain back and forth twice does the entire chain
return to its initial right-leaning state. Upon varying the geo-
metrical parameters of the chain, in particular after increasing
the ratio r/a, we find that the rotors in the flipper can also
overshoot their equilibrium positions and the profile exhibits
oscillations, although the final effect of the soliton is still to flip
the rotors between the two states. We call this variant the wob-
bling flipper (Movie S4).
After further increasing r/a, a strikingly different behavior

emerges (Fig. 3 and Movie S5). Although a domain wall inter-
polating between the right- and left-leaning mechanical states is
still observed (Fig. 3B), the rotors now rotate counterclockwise
by an angle of π each time a domain wall passes by. We refer to
this as the spinner phase of motion. As the domain wall reflects
off the ends of the chain, the edge rotors rotate by 2π and com-
plete a full circle. In contrast to the flipper phase, the initial state
of the chain is restored after the domain wall has completed one
cycle around the chain.

Phase Diagram of Nonlinear Excitations

To understand the transitions and differences between these
phases of motion, we can treat the chain as a 1D metamaterial
and explain the nonlinear dynamics in terms of the geometry
of the unit cell, parameterized by the dimensionless number
d= 2r sinθ=a. Consider the zero-energy configuration space of
the four-bar linkage that is the unit cell of the chain. This space is
defined by the zero-stretching constraint δln,n+1 = 0 (for the
spring connecting rotors n and n + 1) and hence we replace the
spring by a strut in what follows. In Fig. 4B, we show snapshots of
the unit cell parameterized by the angles (θ1, θ2), whereas in Fig.
4C we show the corresponding configuration spaces for flippers
(Fig. 4C, Left), wobblers (Fig. 4C, Center), and spinners (Fig. 4C,
Right), respectively (Movies S6–S8 show full cycles of motion for
the unit cells in all three cases, alongside animations of the unit

A

B

C

Fig. 2. The evolution of a flipper soliton arising from integrating the zero

mode of a finite chain ðr=a=0:5, θ= 0:97Þ, with x projections of the rotors

underneath each snapshot (Movie S3 and S4). The system evolves from (A)

right leaning to (B) left leaning and then back to (C) right leaning. The green

arrows attached to the rotors depict the amplitude of the zero mode on

each mass; note that it is always localized to the domain wall. In the flipper

phase, the angle of a rotor flips between + θ and −θ each time the soliton

passes through, except for the rotors on the ends, which also toggle be-

tween up pointing and down pointing. Hence in a full cycle the soliton goes

from right to left and back twice.

A

B

C

Fig. 3. The evolution of a spinner soliton arising from integrating the zero

mode of a finite chain ðr=a= 2, θ= 1:18Þ, with x projections of the rotors

underneath each snapshot (Movie S5). The system evolves from (A) right

leaning to (B) left leaning and then back to (C) right leaning. The green

arrows attached to the rotors depict the amplitude of the zero mode on

each mass; note that it is always localized to the domain wall. In the spinner

phase, the angle of each rotor advances by +π each time the soliton passes.
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cell configuration spaces). The red (right-leaning) and green
(left-leaning) circles in Fig. 4 B and C represent four special
configurations for which θ= ± θ; π ± θ and correspond to the four
spatially periodic ground states that are related to each other by
reflection symmetries.
In going from Left to Right in Fig. 4C (increasing d), the con-

figuration space evolves from one connected circle bounding
a disk on a torus [parameterized by the coordinates (θ1, θ2)] to
two diagonal circles “linked” on that torus. This happens pre-
cisely when l decreases below 2r − a, equivalently d> 2=sinθ≡ dc,
thus marking the transition from the flipper to the spinner phase.
In Fig. 4D, we show sketches of the phase portrait on a 3D torus
to emphasize this doubly periodic configuration space. Thus, the
boundary that separates the flipper phase from the spinner phase
is in fact a topological change in the configuration space of the
four-bar linkage (16).
To understand this change, observe that when r � a we can

smoothly access all of the possible configurations of a linkage of
four bars (Fig. 4B, Left). However, as r/a increases, the four-bar
linkage approaches a triangle that is pinned at one vertex. Be-
cause it is impossible to transform a triangle to its mirror image
via translations and rotations in the plane, the set of config-
urations becomes disconnected (Fig. 4B, Right). Thus, for d > dc
(spinners) the unit cell configuration space consists of two
components, each containing a single pair of ground states ± θ

and ± θ+ π. A period of the motion of the four-bar linkage
reveals how the soliton propagates through the chain—all rotors
rotate in the same direction, from θ to θ+ π, say. By contrast, for
d < dc (flippers), a full cycle of the unit cell visits all four ground

state configurations. The transition between flipper and spinner
states appears to be discontinuous, as we show when we discuss
the continuum description of the solutions.
To understand the transition between the nonwobbling flipper

and the wobbling flipper phases, note that as a flipper soliton
passes through, the rotors must eventually rotate from θ to −θ,
passing through θ = 0. Suppose the first and second masses at the
edge initially both rotate counterclockwise. By virtue of the
flipper motion, the second mass must eventually rotate clock-
wise; thus it will appear to wobble. This is visible in Fig. 4C as the
change in sign of the slope dθ2/dθ1 at all of the red and green
circles, and the threshold for this can be derived from the point
at which the penetration depth ℓ in Eq. 4 vanishes: 2r sinθ= a
or d = 1.
The existence of these rich phases of motion illustrates the fact

that the uniform ground states and localized zero-energy edge
mode are best viewed as snapshots of a periodic nonlinear mo-
tion and its velocity field.

Continuum Theory: Flipper Solitons

In this section and the next we discuss how the flipper and spinner
motions discussed qualitatively in the previous section emerge as
topological soliton solutions to the very equation that within the
linear approximation predicts a localized edge mode: the constraint
equation δln,n+1 = 0. These solitons are described by solutions to the
ϕ4 and sine-Gordon equations, but have the key additional feature
that they cost precisely zero potential energy.
We begin by deriving the equation of motion of the flipper

solitons in the limit d � 1. In terms of the angles of the rotors in
a unit cell θn and π − θn+1 (measured clockwise with respect to
the +y axis), the constraint equation l2n;n+ 1 = l

2
reads

cosðθn + θn+1Þ− cos
�

2θ
�

+
a

r
ðsin θn − sin θn+1Þ= 0: [5]

To take the continuum limit of Eq. 5, we define a slowly varying
angular field θ(x) by letting a → dx, θn→ θðxÞ− ða=2Þðdθ=dxÞ,

flipper
wobbling

spinner

A

B

C

D

Fig. 4. (A) Phases of the soliton as a function of d =2r sinθ=a. (B) The unit cell

(four-bar linkage) configuration spaces in the flipper and spinner phases (four

copies of each). The translation-symmetric points are marked in red (right

leaning) and green (left leaning). There are two connected components in

the spinner phase and just one in the flipper phase. (C) Pictures of the unit cell

configuration space in the torus of θ1, θ2 angles (defined by δl1,2 = 0). (D) The

topology of the configuration spaces depicted on 3D tori. In going from

flipper to spinner, one circle splits into two linked Villarceau-like rings.

Fig. 5. A comparison of the numerically generated displacement field

u(x − vt) (symbols) with the continuum profiles in Eq. 11 (solid lines) in the

flipper phase. The numerical results are for a chain of 150 rotors with

θ= 0:1, r=a= 0:5 and ke = 1, M = 1. Colors denote different propagation

speeds, increasing from blue to gold circles. The speed of propagation v used

in Eq. 11 was measured by tracking the motion of the center of mass of the

domain wall [obtained by interpolating the data points (j, θj) and choosing

the value of x where the line passes through θ = 0]. The curves correspond to

10 time snapshots of a single chain, each translated so that the center of the

soliton is at x − vt = 0. Lower Right Inset shows the numerically extracted

width of the kinks (data points obtained from the inverse of the slope of

arctanhu=u for the recentered profiles) compared with the Lorentz con-

traction factor (red line). Upper Left Inset shows data from a wobbling

flipper profile with θ= 0:77, r=a= 1:45 (black circles) compared with a tanh

profile (blue) with the flipper width and an exponential decay envelope

(red) with the spinner width. See SI Appendix and Figs. S1 and S2 for a more

detailed look at the wobbling flipper profiles.
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θn+1→ π − θðxÞ− ða=2Þðdθ=dxÞ (using a Taylor series expansion
centered at x = n + 1/2). We obtain

cos
�

2θ
�

− cosð2θÞ− a2

r
cos θ

dθ

dx
= 0: [6]

Note that this choice preserves the underlying reflection symmetry
(x, θ) → (−x, −θ).
In terms of the field u(x) = r sin θ(x) (the x component of the

position of the mass), Eq. 6 reads

a2

2

du

dx
= u2 − u2; [7]

where u≡
�

�r sinθ
�

�> 0. Besides the uniform left- and right-leaning
solutions uðxÞ= ± u, Eq. 7 admits only one zero-energy solution
(for u< u) given by the kink

uðxÞ= u  tanh

�

x− x0

w0

�

; [8]

where w0 = ða2=2uÞ= ða=dÞ is the width of the static domain wall
that interpolates between left-leaning (u < 0 as x → −∞) and
right-leaning (u > 0 as x → +∞) states. Note that w0 is propor-
tional to the penetration length ℓ derived in Eq. 4 for small θ and
diverges when the gap closes. This is analogous to the divergence
of domain wall widths at the critical point in the Landau theory
of second-order phase transitions.
In SI Appendix, we derive the continuum Lagrangian for the chain

in the flipper phase in the limit lðxÞ≈ l and θ � 1, which reads

L=
Z

dx

"

1

2
M

�

∂u

∂t

�2

−
1

2
K
a4

4

�

∂u

∂x

�2

−
1

2
K
�

u2 − u2
�2

−
1

2
K
a2

2

�

u2 − u2
� ∂u

∂x

#

:

[9]

In addition to the ordinary ϕ
4 potential, L has an additional

boundary term linear in ∂xu. This extra term ensures that the static
kink has zero energy because the last three terms in Eq. 9 can be
written as a perfect square that vanishes for the static kink solution
in Eq. 7 (17, 18). It also breaks the ∂xu → −∂xu symmetry of the
ordinary ϕ4 theory. As a result, the antikink solution of Eq. 9 (with

left- and right-leaning states reversed in space) costs a finite
stretching energy. Hence, the antikink is forbidden in the linkage
limit, where ke→∞ and only solutions of Eq. 7 are admitted. We
can define the topological charge Q as the difference in the
number of kinks and antikinks:

Q=
1

2u

Z

+∞

−∞

∂u

∂x
dx=

1

2u

�

uð+∞Þ− uð−∞Þ
	

: [10]

For a system with periodic boundary conditions, Q = 0, and no
solitons exist. For a system that has a left- and right-leaning edge,
Q = 1, and the linkage must support one and only one kink that
is therefore topologically protected. The topological index is thus
a measure of the number of solitons in the system and is consis-
tent with the number of zero modes from constraint counting.
Because the ϕ4 theory is Lorentz invariant, the dynamical solu-

tion is simply obtained by a Lorentz boost

uðx; tÞ= u  tanh

"

x− x0 − vt

ða2=2uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v2=c2
p

#

; [11]

where v is the speed at which the kink propagates (set by the
initial kinetic energy in the system) and c is the linear speed of
sound. From Eq. 3, the speed of linear sound (defined from the
linear part of the dispersion curves above the gap) for r � a is
c≈ ða2=lÞ

ffiffiffiffiffiffiffiffiffiffiffi

ke=M
p

valid for small θ. In the comoving frame, Eq. 11
is equivalent to Eq. 8, provided that the static width w0 is replaced
by the Lorentz contracted width w=w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v2=c2
p

. For linkages c
diverges, and hence w = w0.
To test our continuum approximation for the domain wall in

the discrete mechanical chain, we numerically obtain the dis-
placement field u(x, t) of the rotors for a range of initial energies
imparted to the chain. In Fig. 5, we show that the displacements

Fig. 6. A comparison of the numerically generated field cosðθðx − vtÞ± θÞ
(symbols) with the continuum profiles in Eq. 14 (solid line) in the spinner

phase. The numerical results are for a chain of 50 rotors with θ= 0:9, r=a= 4:0

and ke = 1, M = 1. Profiles and speeds were obtained as in Fig. 5, except that

the even and odd sites are first shifted appropriately to yield continuous

profiles. Upper Left Inset shows θ(x) for one snapshot showing how the even

and odd angles are offset by the constant π − 2θ. Lower Right Inset shows the

numerically extracted width of the kink (as in Fig. 5) compared with the

Lorentz contraction factor.

A

B

Fig. 7. A LEGO realization of a chain admitting a spinner soliton (Movie S9).

(A) A view of the realization alongside a computer graphics sketch. The “L”-

shaped pieces are the rotors, the shorter red bars connecting their ends are the

springs, and the long red bars serve as supports for the pinning. The “T”-shaped

pieces connect the red bars to a single rigid background frame. (B) Another

view showing the staggering of the rotors in the transverse (z) direction.
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(dotted curves) in the flipper phase compare favorably with the
continuum ϕ

4 predictions in Eq. 11 (solid lines). The predicted
Lorentz contraction is evident in the profiles in Fig. 5 as a decrease
in the width of the profiles when the speed of propagation v is in-
creased (Fig. 5, Lower Right Inset). Note the presence of a large
wake behind the moving domain wall, exhibited in the profile with
the highest energy (gold symbols). We leave a more detailed anal-
ysis of the wake and higher-order nonlinearities for future work.
The wobbling flipper phase is more challenging to treat ana-

lytically. As shown in Fig. 5, Upper Left Inset, the profile exhibits
oscillations around the values ± θ. Numerically, the slope at the
kink center seems to follow the prediction coming from the in-
verse width of the continuum flipper solution (blue curve). How-
ever, the oscillations in the profile decay exponentially with a
decay length of approximately r sinθ (red dashed envelope). As we
shall see in the next section, this length scale is associated with the
width of the spinner. In SI Appendix, we derive a linearized ap-
proximation for the wobbling flipper that recovers the oscillations
qualitatively and recovers precisely this decay length (Figs. S1 and
S2), shedding light on how the transition between flipper and
spinner phases occurs.

Continuum Theory: Spinner Solitons

The solution presented for the flipper phase assumes that u never
exceeds u, a condition that is certainly violated by the spinner
solitons in which the rotors rotate by π. Moreover, in the spinner
phase where r � a, pairs of neighboring rotors in a unit cell seem
to move nearly in phase like adjacent sides of a rigid triangle
(Movie S5). To describe the motion in this phase, we thus con-
struct a description for the dynamics of spinner solitons by in-
tegrating out the motion of every other rotor (say, the even sites).
Let ln,n+1 be the length of the springs between nodes {n, n + 1}.

Then, the constraint equation l2n;n+ 1 − l
2
0 = l2n+ 1;n+ 2 − l

2
can again

be expressed in terms of the geometrical parameters r, a and the
angles {θn, θn+1, θn+2} as before. We next “integrate out” θn+1, by
using the constraint equation l2n;n+ 1 = l

2
. Expressing this second

constraint equation in terms of the angles fθ; θn; θn+1g, we find
(in the limit a � r) that θn+1 ≈ θn + π − 2θ. (We explicitly tested
the validity of this approximate relation in classical dynamics
simulations.)
Taking the continuum limit, θn → θ(x) and θn+2→ θ(x + 2a) =

θ + 2aθ′ (where f′ ≡ df/dx), and retaining terms to leading order
in a, we obtain the following differential equation for the static
profile valid in the spinner phase

θ′=−
1

r

 

sin
�

θ− θ
�

sinθ

!

[12]

that can be easily integrated with the result

cos
�

θ− θ
�

= tanh

�

x

r sinθ

�

: [13]

Thus, the static spinner profile at alternate sites is described
by a sine-Gordon soliton of the form in Eq. 13 whose width is
w0 = r sinθ= ad=2. This is in contrast to the flipper phase of mo-
tion where the width of the soliton scales inversely with d (Eq. 8).
Indeed, the basic continuum field in the spinner phase lives on
only half the rotors, compared with the flipper phase where the
field lives on all of the rotors. Thus, at a very basic level, the
transition between flippers and spinners cannot be described as
a smooth transition between two profile shapes.
The dynamical solution is again obtained by a Lorentz boost

cos
�

θ± θ
�

= ± tanh

 

x− vt

r sin
�

θ
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v2=c2
p

!

; [14]

where ± correspond to the solutions for even (odd) sites, re-
spectively, and from Eq. 3, the speed of sound in the spinner
phase (r� a) is c= ðar sinð2θÞ=lÞ

ffiffiffiffiffiffiffiffiffiffiffi

ke=M
p

. In SI Appendix, we reder-
ive the sine-Gordon solution starting from the discrete Lagrangian
for our mechanical chain, valid in the spinner phase. In Fig. 6 we
compare the continuum sine-Gordon predictions (solid line) to nu-
merical solutions (symbols) and find good agreement in the dynam-
ical width as well (Fig. 6, Lower Right Inset).
To build a spinner prototype, the 3D embedding must avoid

the many self-intersections visible in Fig. 3. A model made from
LEGO pieces is shown in Fig. 7 and Movie S9. The crucial point
is that the rotors are staggered in the transverse direction, causing
the transverse width to be proportional to the number of rotors; see
the z axis in Fig. 7.
To sum up, the zero-energy moving domain walls in simple

model chains are basic examples of a generic physical process
that we expect to exist in more complex man-made and natural
structures relevant to robotics and mechanical metamaterials.
The protected excitations of topological mechanical meta-
materials that appear as zero-energy vibrational modes within
the linear approximation may integrate to finite deformations
capable of transporting a mechanical state across the system.
Our work raises the question of whether the principle of to-
pological robustness can be adopted in the design of robotic
manipulators composed of activated linkages as well as in the
fabrication of complex molecular nanostructures.

ACKNOWLEDGMENTS. We thank J. C. Y. Teo, A. Turner, J. Paulose, and Y. Zhou
for helpful discussions and are grateful to T.-s. Chen for assistance in con-
structing the flipper. We acknowledge financial support from the Foundation
for Fundamental Research on Matter (FOM) and the Netherlands Organisation
for Scientific Research (NWO).

1. Demaine E, O’Rourke J (2007) Geometric Folding Algorithms: Linkages, Origami,

Polyhedra (Cambridge Univ Press, Cambridge, UK), pp 9–16, 50–52.

2. Wei ZY, Guo ZV, Dudte L, Liang HY, Mahadevan L (2013) Geometric mechanics of

periodic pleated origami. Phys Rev Lett 110(21):215501.

3. Dias MA, Dudte LH, Mahadevan L, Santangelo CD (2012) Geometric mechanics of

curved crease origami. Phys Rev Lett 109(11):114301.

4. Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad

Sci USA 110(9):3276–3281.

5. Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids

57:355–370.

6. Edge R (1998) Solitons. Phys Teach 36:483–485.

7. Kang SH, et al. (2014) Complex ordered patterns in mechanical instability induced

geometrically frustrated triangular cellular structures. Phys Rev Lett 112(9):098701.

8. Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater

Technol 117(4):483–493.

9. Vitelli V (2012) Topological soft matter: Kagome lattices with a twist. Proc Natl Acad

Sci USA 109(31):12266–12267.

10. Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82:3045–3067.

11. Kane CL, Lubensky TC (2014) Topological boundary modes in isostatic lattices. Nat

Phys 10(1):39–45.

12. Sun K, Souslov A, Mao X, Lubensky TC (2012) Surface phonons, elastic response, and

conformal invariance in twisted kagome lattices. Proc Natl Acad Sci USA 109(31):

12369–12374.

13. Su WP, Schrieffer JR, Heeger AJ (1979) Solitons in polyacetylene. Phys Rev Lett 42(25):

1698.

14. Calladine CR (1978) Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s

rules for the construction of stiff frames. Int J Solids Struct 14(2):161–172.

15. Hawkes E, et al. (2010) Programmable matter by folding. Proc Natl Acad Sci USA

107(28):12441–12445.

16. Kapovich M, Millson J (1995) On the moduli spaces of polygons in the Euclidean

plane. J Differ Geom 42(1):430–464.

17. Bogomolnyi E (1976) The stability of classical solutions. Sov J Nucl Phys 24(4):449–454.

18. Prasad MK, Sommerfield CH (1975) Exact classical solution for the ’t Hooft monopole

and the Julia-Zee dyon. Phys Rev Lett 35(12):760–762.

Chen et al. PNAS | September 9, 2014 | vol. 111 | no. 36 | 13009

P
H
Y
S
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405969111/-/DCSupplemental/pnas.201405969SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405969111/-/DCSupplemental/pnas.201405969SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405969111/-/DCSupplemental/pnas.201405969SI.pdf?targetid=nameddest=SF2
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1405969111/video-5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405969111/-/DCSupplemental/pnas.201405969SI.pdf?targetid=nameddest=STXT
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1405969111/video-9

