
J
H
E
P
1
0
(
2
0
1
6
)
0
0
8

Published for SISSA by Springer

Received: July 5, 2016

Accepted: September 2, 2016

Published: October 3, 2016

Nonlinear conductivity and the ringdown of currents

in metallic holography

Benjamin Withers

School of Mathematical Sciences, Queen Mary University of London,

E1 4NS, U.K.

Centre for Research in String Theory, School of Physics and Astronomy,

Queen Mary University of London,

E1 4NS, U.K.

DAMTP, University of Cambridge,

CB3 0WA, U.K.

E-mail: b.withers@qmul.ac.uk

Abstract: We study the electric and heat current response resulting from an electric

field quench in a holographic model of momentum relaxation at nonzero charge density.

After turning the electric field off, currents return to equilibrium as governed by the vector

quasi-normal modes of the dual black brane, whose spectrum depends qualitatively on

a parameter controlling the strength of inhomogeneity. We explore the dynamical phase

diagram as a function of this parameter, showing that signatures of incoherent transport

become identifiable as an oscillatory ringdown of the heat current. We also study nonlinear

conductivity by holding the electric field constant. For small electric fields a balance

is reached between the driving electric field and the momentum sink — a steady state

described by DC linear response. For large electric fields Joule heating becomes important

and the black branes exhibit significant time dependence. In a regime where the rate of

temperature increase is small, the nonlinear electrical conductivity is well approximated

by the DC linear response calculation at an appropriate effective temperature.

Keywords: Holography and condensed matter physics (AdS/CMT), AdS-CFT Corre-

spondence, Black Holes in String Theory, Gauge-gravity correspondence

ArXiv ePrint: 1606.03457

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2016)008

mailto:b.withers@qmul.ac.uk
http://arxiv.org/abs/1606.03457
http://dx.doi.org/10.1007/JHEP10(2016)008


J
H
E
P
1
0
(
2
0
1
6
)
0
0
8

Contents

1 Introduction 1

2 Gravitational model and equilibrium black branes 5

3 Vaidya-like solutions with axions 6

4 Current relaxation 7

4.1 Vector QNMs at ρ 6= 0 7

4.2 Quenches 9

5 Nonlinear conductivity 10

5.1 Defining an effective temperature 10

5.2 Linear regime 11

5.3 Examples with significant Joule heating 12

6 Final comments 13

A Details of the numerical method 17

B Convergence testing 19

1 Introduction

Transport properties of the strongly coupled metals and insulators of gauge/gravity duality

has been the subject of much recent interest. At a practical level this is enabled by the

proliferation of stationary black brane solutions with AdS asymptotics which incorporate

momentum relaxation through explicitly sourced inhomogeneities, either directly in the

form of inhomogeneous lattices [1–11], disorder [12–17], or other constructions motivated

by their bulk simplicity [18–22]. For each equilibrium brane, thermoelectric conductivities

can be obtained at finite temperature using a linear response calculation. DC conductivities

can be evaluated provided certain data at the black brane horizon is known [8, 23], and in

some generality [10, 24, 25].

In this paper we turn to an investigation of the nonlinear response of such holographic

models, following the quench of an applied electric field. From the gravitational point

of view, this amounts to an investigation of the nonlinear dynamics associated to black

branes in AdS with inhomogeneous Dirichlet boundary conditions. One should expect

qualitatively different dynamical behaviour for bulk evolutions with such boundary condi-

tions, as compared with those with homogeneous boundary conditions. At the very least

the boundary CFT dynamics are distinct, with the former conserving momentum either
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only approximately or not at all.1,2 Thus at late times we do not expect to find hydrody-

namic behaviour, but rather only exponentially fast decay described by the quasi-normal

modes (QNMs) associated to momentum relaxation. The QNM spectrum itself is known to

change qualitatively with the strength of inhomogeneity, resulting in transitions between

coherent and incoherent metals [28–30], offering up further interesting features for the bulk

dynamics.

From the field theory point of view, an electric field is a natural tool to quench an

inhomogeneous system with finite charge density.3 The non-conservation of momentum

allows the possibility of approaching a finite steady state, at least in the linear response

regime. In particular, as a special case this includes the relaxation of currents to zero in

the laboratory frame after the electric field is turned off. Here we can study the imprint

of the QNM spectrum on the current relaxation, in particular how it is affected by the

aforementioned coherent to incoherent shifts in the QNM spectrum.4

For constant electric fields we compute nonlinear electric and thermoelectric conduc-

tivity. Here the ideal scenario would involve a steady state solution, perhaps utilising an

external heat bath. This is precisely the kind of scenario that is argued to arise in some

probe brane constructions [34–41]. In the present backreacted context a steady state will

not be reached since energy is continually added and the system exhibits Joule heating

without bound. It would be interesting to consider models which realise a coupling to an

external heat bath incorporating backreaction — we consider some of results presented

here as a precursor to this problem, which we shall leave to future work.

Remarkably however, even in the absence of a steady state, nonlinear electrical con-

ductivity has been computed exactly in the absence of charge [42], explored using a Vaidya

spacetime. Similarly in this paper we will be able to make clean statements about the

nonlinear electric and thermoelectric conductivities at finite charge density in the absence

of a steady state, at least in a limit where the rate of heating is low.

To motivate our choice of bulk model, we note that at finite charge density, the electric

field will drive both electric and heat currents. It is therefore desirable that the model used

incorporates some form of momentum relaxation. The minimal ingredients required are

provided by an Einstein-Maxwell-axion model [19]. Each axion field, φI , is dual to an

operator OI sourced by the value of φI at the AdS boundary, φ
(0)
I . To break translational

invariance the sources are taken to be linear in the boundary spatial coordinates φ
(0)
I ∝ xI .

If two axions are used, the equilibrium state can be made isotropic, although driving the

system with an electric field will break isotropy in general. The axion model brings a clear

computational benefit since the bulk geometry remains independent of xI .5

1Previous work on the dynamics associated to momentum relaxation was discussed in a complementary

class of holographic experiments in [7].
2See [26, 27] for approaches to a hydrodynamic-like description when momentum relaxation is weak, in

the context of axion models.
3For studies of electric field quenching in a probe brane context see for example [31–33].
4We thank Richard Davison for encouraging pursuit of these features at nonzero charge density.
5The only xI dependence appears in φI and the gauge field, A, where it is known in advance.
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Some basic aspects of the role of the electric field in the axion model can be understood

in reference to the Ward identities,

∂µ 〈Tµ
ν〉 = ∂νφ

(0)
I 〈OI〉+ (F (0)) µ

ν 〈Jµ〉 (1.1)

∂µ 〈Jµ〉 = 0 (1.2)

where Tµν is the QFT stress tensor, Jµ the U(1) current and F (0) = dA(0) is a classical,

boundary field strength. Throughout this paper the sources are taken to be,

φ
(0)
I = kxI , F (0) = E(t)dx ∧ dt (1.3)

where I = 1, 2 labels the two spatial boundary directions, x = x1, y = x2. With the excep-

tion of φ
(0)
I and A(0) all quantities here are independent of xI . Inserting these expressions

into (1.1) we find,

∂tǫ = EJ (1.4)

∂tJE = k 〈O1〉+ Eρ (1.5)

where ǫ =
〈

T tt
〉

is the energy density, ρ =
〈

J t
〉

is the charge density, J = 〈Jx〉 is the

electrical current, JE =
〈

T tx
〉

is the energy current.6 The first equation (1.4) shows that

energy is injected by the electric field, which results in Joule heating. The second, (1.5),

accounts for the momentum, and because of the axion sink term there is the possibility of

a steady state where the terms on the hand side cancel, balancing momentum relaxation

with the driving electric field. Finally we note that (1.2) gives ∂tρ = 0.

Since we shall be subject to the nonlinearities of the full evolution of the Einstein-

Maxwell-axion system, we resort to a numerical integration of the bulk equations of motion.

Details of the numerics are given in appendices A and B. We will study two different cases

for the profiles of E(t):

• Top hat E(t) — current relaxation. In the first case we smoothly turn on E(t)

hold it at some constant value, and then turn it off again. This experiment will

confirm crucial aspects of the model, first and foremost, its stability. We confirm

that the system returns to a member of the family of equilibrium solutions at a rate

consistent with its longest lived QNMs. In particular we will examine the QNM

spectrum for different values of the momentum relaxation parameter k, and show its

imprint on current relaxation. We will see a qualitative change in the relaxation of

the heat current following a quench to an incoherent regime. Additionally, the return

to equilibrium will allow us to get a complete picture of the gravitational situation,

allowing the identification of the black hole event horizon.

• Step E(t) — nonlinear conductivity. For the second case, we smoothly turn

on E(t) and hold it at a constant value Ef . At sufficiently late times, transient

behaviour associated to the quenched electric field dies down and we enter a regime

6The y-component of (1.1) is trivially satisfied for the solutions here, since the electric field is taken in

the x-direction and O2 does not acquire a nonzero vev.
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where the system is effectively responding only to a constant E = Ef . When E is

constant we choose to characterise the response of the system using electrical (σ) and

thermoelectric (ᾱ) DC conductivities, defined as follows,

J = σEf , (1.6)

Q ≡ JE − µJ = ᾱT Ef (1.7)

where Q is the heat current in the absence of thermal gradients [8]. Here we have

restricted to the xx-entries in each conductivity matrix, with the yx-entries vanishing.

The thermal conductivity will not play a role since there is no temperature gradient.

Note that σ and ᾱ will be time dependent in general due to the effect of heating, and

they may also depend explicitly on Ef . Such examples of perpetually driven CFTs

are less well studied in favour of a system which eventually returns to equilibrium.

An interesting set of examples are provided in [43].

In the context of the second class of experiments we can gain analytic control over σ, ᾱ

in two limits of parameter space. For sufficiently small Ef , linear response can be used,

finding [8, 19]

σ = 1 +
µ2

k2
, ᾱ =

4πρ

k2
. (1.8)

In this regime 〈O1〉 = −Efρ/k and the right hand sides of (1.4) and (1.5) vanish at linear

order in Ef , corresponding to a steady state. For ρ = 0 one can go beyond linear response

analytically for any Ef , finding

σ = 1, ᾱ = 0. (1.9)

In fact, these expressions apply for any choice E(t), showing that J(t) responds instanta-

neously to E(t). These conductivities are extracted from a Vaidya-like spacetime which

can be constructed with axions [44]. This generalises the conductivity results of [36, 42]

to include a momentum relaxation parameter.7 In the absence of net charge, the added

feature of momentum relaxation may be somewhat redundant, nevertheless these solutions

serve as a useful reference point. Indeed we will show that an instantaneous electric current

is the first response of the system in the charged examples that follow.

Away from these two limits the responses of J and Q are subject to the nonlinearities

of the system. Remarkably, we find that the expression for σ in (1.8) provides an excellent

accounting of the evolution of J far from linear response, provided some local notion

of temperature during the evolution. This applies even when Joule heating introduces

significant time dependence of the black brane. On the other hand ᾱ does not appear

amenable to the same treatment, exhibiting nonlinear dependence on Ef .

The paper is organised as follows. In section 2, we present the equilibrium Einstein-

Maxwell-axion black branes. In section 3 we review Vaidya-like solutions to the Einstein-

axion system, and for the case of an electric field compute the nonlinear σ and ᾱ at ρ = 0,

as given in (1.9). We then turn to the numerical solutions for a top hat electric field profile

7There is a difference of convention of electric charge to [42], as can be seen by examining the action,

which accounts for the factor of 4 difference.
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in section 4 including a discussion of QNMs and the transition to an incoherent regime.

We examine nonlinear conductivity in section 5. We conclude in section 6. In appendix A

we detail the numerical setup used, with convergence tests presented in appendix B.

2 Gravitational model and equilibrium black branes

Let us briefly recap the model and present the black brane solutions of [19, 44], presented

in ingoing Eddington-Finkelstein coordinates and in a generalised coordinate frame on the

boundary. These give the equilibrium, finite temperature, charged metallic state which we

will later force out of equilibrium using E(t). We employ the action specialised to D = 4,

S =
1

2κ24

∫

M

√−g

[

R− 2Λ− 1

2

2
∑

I=1

(∂φI)
2 − 1

4
F 2

]

d4x (2.1)

where Λ = −3ℓ−2 and F = dA. The units employed throughout set 2κ24 = 1 and we set

ℓ = 1.8 This theory admits a family of equilibrium black branes which can be written in

the following form,

ds2 =
1

r2

(

−f(r)(uµdx
µ)2 + 2uµdx

µdr +(ηµν + uµuν) dx
µdxν

)

(2.2)

A = h(r)uµdx
µ, φI = knI

µx
µ (2.3)

where xµ = (v, x, y) with constant 3-vectors u and nI , I = 1, 2. The functions appearing

are given as follows,

f(r) = 1− 1

2
k2r2 −mr3 +

1

4
ρ2r4, h(r) = µ− ρ r (2.4)

which is a solution to the equations of motion provided we satisfy the following orthogo-

nality condition,

δIJn
I
µn

J
ν = ηµν + uµuν (2.5)

which is equivalent to the 6 relations, u2 = −1, ηµνn
µ
In

ν
J = δIJ , n

I
µu

µ = 0. The stress

tensor and current are given by,

〈Tµν〉 = ǫuµuν +
ǫ

2
(ηµν + uµuν) (2.6)

〈Jµ〉 = ρuµ (2.7)

where ǫ = 2m. For convenience we work in a fixed laboratory reference frame, setting

u = ∂v and nI = ∂xI , which satisfies all of the above conditions for a solution.

The thermodynamical quantities can be written most succinctly in a form parame-

terised using the event horizon coordinate location r0 (where f = 0),

T =
1

4πr0

(

3− k2r20
2

− µ2r20
4

)

, s =
4π

r20
(2.8)

ǫ = 2m =
2

r30

(

1− k2r20
2

+
µ2r20
4

)

(2.9)

ρ =
µ

r0
(2.10)

8As usual we also supplement S with appropriate Gibbons-Hawking terms and counterterms for holo-

graphic renormalisation.
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Linear response DC electric and thermoelectric conductivities for this background are given

by (1.8). Further results for the transport properties of this model are discussed in [8, 19,

28–30, 45].

3 Vaidya-like solutions with axions

It is also possible to construct Vaidya-like spacetimes in the presence of the axion sources [44].

Here we review these solutions and compute their nonlinear electric and thermoelectric con-

ductivities in the vein of [42]. Specifically, in the D = 4 Einstein-axion system, we can add

an additional stress tensor source, T̃ab, leading to the equations of motion

Rab + 3gab −
1

2

2
∑

I

∂aφI∂bφI = κ24

(

T̃ab −
1

2
gabT̃

)

(3.1)

�φI = 0. (3.2)

For a null stress tensor of the form, T̃vv = r2S(v) with other entries zero, the following

electrically neutral solution is obtained,

ds2 =
1

r2

(

−
(

1− 1

2
k2r2 −m(v)r3

)

dv2 − 2dvdr + dx2 + dy2
)

(3.3)

φI = kxI (3.4)

with the sourced energy conservation equation,

∂v(2m(v)) = 2κ24S(v). (3.5)

As pointed out in [44] an electric field can be used to generate a stress tensor of this type.

Specifically for a Maxwell field in the bulk, F = E(v)dx ∧ dv gives rise to a stress tensor

of the required form, with S(v) = E(v)2. For Einstein-Maxwell in the absence of axions

such solutions were given in [36, 42]. For this solution the electric and heat currents are

J = E and Q = 0 — specialising to a constant electric field E(v) = Ef we see that the

nonlinear electric and thermoelectric conductivities are given by (1.9). Note that this does

not straightforwardly extend to D 6= 4; the conductivity is no longer dimensionless and is

influenced by heating, as was explored in the Einstein-Maxwell context in [42]. Similarly

we have not been able to extend these results to ρ 6= 0; momentum is nonzero and the

solutions do not fit into the form above. The remainder of this paper is focussed on a

numerical study of the ρ 6= 0 case. The analytical results presented here have been used as

a test case for the numerical evolution described in the remainder of this paper.

Finally we note that the time dependent solution in this section can be used to quench

the system from an initial equilibrium state with ǫ < 0 to a final equilibrium state with

exactly ǫ = 0, which occurs at k =
√
2/r0. Despite the remarkable behaviour of the

perturbations of this state [28, 30] there appears to be nothing remarkable about a quench

so designed.
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4 Current relaxation

In this section we drive the system out of equilibrium and then let the energy and electrical

currents return to their equilibrium value — zero, in the laboratory frame defined by the

axion sources. We take the electric field profile

E(t) = (Θ(t)−Θ(t− t∗))Ec (4.1)

where Θ(t) ≡ 1
2

(

tanh
(

t
w

)

+ 1
)

where w is taken to be some short timescale compared to

the intrinsic dynamical response time of the system.

The return to equilibrium of the currents is governed by the QNM spectrum in the

vector sector of perturbations, which changes qualitatively with varying k/
√
ρ and T/

√
ρ.

4.1 Vector QNMs at ρ 6= 0

One universal statement is that for sufficiently small values of k2 there is a long lived QNM

with a purely imaginary frequency, well separated from the other QNMs. In this regime

the metal is coherent, with a Drude-peak appearing in the conductivity at low frequency.

One can then associate a momentum relaxation rate Γrel with the decay rate of this QNM,

which has been computed using a matching calculation [26],

Γrel = τ−1
rel =

sk2

6πǫ
. (4.2)

For larger values of k2 one must examine the QNM spectrum in detail.

The vector QNMs are given by ingoing, normalisable solutions to a pair of decoupled

equations for gauge invariant master fields, labelled by (±), for details see [19, 29]. At ρ = 0

the QNM spectrum indicates both coherent and incoherent behaviour is possible [28–30].

In [28] the transition between the two behaviours was demonstrated to coincide roughly

with the location of a pole collision, producing a damped-oscillatory pole as a dominant

contribution to 〈QQ〉. We find that this transition persists at ρ 6= 0 in the (−)-sector of

QNMs, whilst the (+)-sector is dominated by a longer lived purely decaying mode. Since in

the general case two-point functions of J and Q receive contributions from both (±)-sectors

of QNMs, the relaxation of J and Q are dominated by the longer-lived (+)-sector mode.

However, the currents can be decoupled — see [29] for details. To each of the (±)

sectors one can assign currents, J± ≡ a±(JE + γ±kJ), which satisfy 〈J±J∓〉 = 0, where a±
is an overall normalisation and

γ± = − 3ǫ

4kρ

(

1±
√

1 +
16k2ρ2

9ǫ2

)

. (4.3)

This relation allows one to relate the black hole QNM spectrum in each sector to the

thermoelectric response. However, as can be seen in the structure of (4.3), the precise

combination of physical currents which achieves this decoupling depends on the details of

this particular holographic model. Universal decoupling is achieved at ρ = 0 where simply

J+ = J and J− = JE = Q. But, there is a second limit, k → ∞ where remarkably J+ = J

and J− = Q [29]. In other words, if we take large enough k, the amplitude of the (−)-sector

QNMs become parametrically enhanced over the (+)-sector QNMs in the phenomenology

of Q, whilst the (+)-sector QNMs remain dominant for J .
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-1

0

(−), Re(ω) = 0

(−), Re(ω) 6= 0

(+), Re(ω) = 0

Imω√
ρ

k/
√
ρ

Figure 1. A subset of vector QNMs, including dominant QNMs in each (±)-sector, at T/
√
ρ =

7/10. The solid black curve is the (+)-sector of perturbations, these have Re(ω) = 0. The red

curve shows Re(ω) = 0 modes in the (−)-sector of perturbations, whilst the blue curve gives off-

axis modes in the (−)-sector– these curves are joined by a pole collision. The black dashed line is

the analytic small k approximation (4.2). The QNMs detailed here govern the relaxation of currents

to equilibrium (or to linear steady states). In particular at large k/
√
ρ the (−)-sector modes govern

Q, whilst the (+)-sector modes govern J , meaning that the structural changes in the (−)-sector

spectrum become observable in the relaxation of Q. This is shown using explicit quench examples

in section 4.2 at the parameters labelled by the dashed grey lines.

We have not performed an exhaustive analysis of this vector QNM spectrum. In

figure 1 we show the longest lived QNMs in each sector (±) as a function of k/
√
ρ at

T/
√
ρ = 7/10. We reiterate that even though the (−)-sector modes are shorter lived, they

can still contribute significantly to the response of Q provided k is large enough. From

figure 1 we see that the (+)-sector appears to show no significant features, but the (−)-

sector becomes dominated by oscillatory-decaying modes at large enough k/
√
ρ, just as in

the case ρ = 0. Fortunately, this behaviour is also the regime where the (−)-sector can

contribute to the response of Q. Thus the relaxation of Q will undergo a qualitative change

as k/
√
ρ is dialled.

At this temperature one can see this oscillatory mode results from a pole collision,

which closely resembles the neutral case. As one takes higher T/
√
ρ the case ρ = 0 is

approached an the red and black curves in figure 1 connect in the vicinity of their closest

approach, giving the behaviour observed in [28, 30] where the Drude pole continuously con-

nects to the pole collision. At lower T/
√
ρ the oscillatory mode remains but the dominant

Re(ω) = 0 piece of the (−)-sector disappears, along with the pole collision.

In the next subsection we examine the far from equilibrium dynamics of J and Q for

quenches which return to equilibrium in the two qualitatively different regimes of the QNM

spectrum shown in figure 1.
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J
ρ

JE
ρ3/2

r

√
ρv

AHEH

Figure 2. Evolution for the top hat electric field profile (4.1). Top panel: the electric current. The

red dashed curve gives E(t)/ρ. The blue dashed curve gives the approximation to σ discussed later

in section 5.3. Middle panel: energy current. Bottom panel: black brane event horizon (EH, black)

together with the apparent horizon for the evolution described in appendix A (AH, blue). The colour

illustrates the bulk distribution of the axion field with the linear x-dependence subtracted, φ1−kx.

4.2 Quenches

In this section we study electric field quenches which eventually settle down to equilibrium

states whose QNMs are given by the spectrum shown in figure 1. As argued, by dialling

k/
√
ρ we expect to see a qualitative change in the relaxation of Q, due to the pole collision

and off-axis mode at large k/
√
ρ. The parameters considered here are labelled by the

dashed grey lines in figure 1.

We first examine the general features of a quench at k/
√
ρ = 2. For this example we

choose Ec/ρ = 3 with
√
ρt∗ ≃ 5, with initial temperature Ti/

√
ρ = 3/10. In figure 2 we

show the behaviour of J, JE and the black brane horizon. During the quench in which E

is turned on, and shortly after, J(t) ≃ E(t) as in the neutral theory. After E returns to

zero the system returns to an equilibrium black brane with T/
√
ρ ≃ 0.690.

The relevant QNMs for this example are purely decaying, with the relaxation of J and

Q governed at late times by the (+)-mode, which for the specific T reached here is has

– 9 –
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√
ρt

√
ρt

√
ρt

Figure 3. Exponential decay of J (left panel) and Q (right panel) at k/
√
ρ = 2 following a quench

to T/
√
ρ ≃ 0.690. The QNM portrait near this temperature is shown in figure 1. The longest lived

QNM belongs to the (+)-sector and is purely decaying, dominating both J and Q at this value of

k. The red curves show a fit to this QNM.

ω/
√
ρ ≃ −0.44i. We demonstrate the agreement of the relaxation of J,Q with this QNM

in figure 3.

For our second example, in figure 4 we show J and Q in the case k/
√
ρ = 10, for

a quench which reaches equilibrium at T/
√
ρ ≃ 0.695. At this temperature the longest

lived (+)-sector mode has ω/
√
ρ ≃ −4.36i, and the longest lived (−)-sector mode has

ω/
√
ρ ≃ 4.58 − 6.73i. For Q we show a fit of a linear combination of these two QNMs.

For J we fit only the (+)-sector mode. As we previously argued, it is expected that the

(−)-sector make a dominant contribution to Q despite being much shorter lived, since in

the limit k → ∞, Q is sensitive only to this sector. Indeed in figure 4 we see the oscillatory-

decaying behaviour of Q (or ringdown, appropriating the dual black hole terminology), but

not of J , as expected. Eventually the contribution of the longer lived (+)-sector mode

appears in Q due to 1/k effects; we have verified that increasing k extends the time over

which the (−)-sector mode governs Q.

5 Nonlinear conductivity

In order to investigate nonlinear thermoelectric response we quench the system away from

equilibrium with a step profile,

E(t) = Θ(t)Ef (5.1)

where Θ(t) is defined in section 4.

5.1 Defining an effective temperature

In the numerical sections that follow it will be useful to have a notion of effective tempera-

ture, TE(t), during time evolution. We define TE(t) as the temperature of the equilibrium

state to which the system eventually settles down if we stop driving the system at time t.

This definition has the benefit of carrying a clear physical interpretation at any time, even

far from equilibrium, and it is precisely the temperature when the system is in a stable

– 10 –
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Figure 4. Exponential decay of J (left panel) and ringdown of Q (right panel) in an incoherent

regime at k/
√
ρ = 10 following a quench to T/

√
ρ ≃ 0.695. The QNM portrait near this temperature

is shown in figure 1. The longest lived QNM belongs to the (+)-sector and is purely decaying,

dominating J and the very late time behaviour of Q. Crucially, at large k a shorter-lived contribution

from the (−)-sector governs Q for some time, which is both oscillating and decaying, making an

incoherent regime easily recognisable. The red curves show a fit to these QNMs.

equilibrium. It also extends beyond the use of just the local energy density, ǫ(t), account-

ing for the possibility of other time dependent charges. In the presence of an instability,

determining TE(t) clearly can become an involved task, and whether or not it would be a

useful quantity in such cases remains to be seen.

In all the examples given here, no instabilities are seen and the late time equilibrium

solutions are known, given in section 2. Moreover at fixed k and ρ (which are both constants

for the evolution) equilibrium can be labelled by the energy density, ǫ, thus we can easily

compute TE(t) by computing the temperature of the equilibrium state with energy ǫ(t).

5.2 Linear regime

Here we take the example of Ef/ρ = 10−3 showing J(t)/Ef and Q(t)/Ef/T in figure 5

together with the expected values assuming DC linear response, (1.8). As anticipated the

immediate response is for J to track E during the quench, corresponding to the kink from

J/Ef = 0 to J/Ef = 1 around t = 0. Following this, momentum grows until it is balanced

by the momentum sink, and the charged, linear response steady state is achieved. In

figure 6 we verify the approach to the steady state is governed by the longest lived vector

QNM, by plotting the scalar vev, which in the steady state takes the value 〈O1〉 = −Efρ/k.

In this example the electric field is small but finite, and so there is a small Joule heating

effect, with a rate of temperature increase, ΓJoule. Near equilibrium the Ward Identity (1.4)

can be used to give,

ΓJoule ≡
1

T

∂T

∂t

∣

∣

∣

∣

ρ

=
1

T

1

cρ
σE2 (5.2)

where cρ is the specific heat, to be evaluated for the equilibrium black brane. Deviations

will occur for strong electric fields, or after significant heating. We show TE(t) in the right

panel of figure 6, together with the timescale ΓJoule.
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Figure 5. Electric and heat currents in the linear response regime. Here we begin at Ti/
√
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with k/
√
ρ = 1/2 and Ef/ρ = 10−3. The blue lines show the expected steady state values given

DC linear response electric and thermoelectric conductivities (1.8). The timescale of the approach

is set by the longest lived QNM of the equilibrium black brane.
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Figure 6. Approach to the linear steady state for the evolution presented in figure 5 in the linear

response regime. Left panel: convergence of 〈O1〉 to its steady state value, 〈O1〉 = −Efρ/k. The

red line shows the expected slope given by the momentum relaxation rate given by the longest

lived QNM at equilibrium. Right panel: time dependence of the effective temperature defined

in section 5.1. The red line shows the rate of effective temperature increase predicted from the

equilibrium black brane.

5.3 Examples with significant Joule heating

For a steady state we may reasonably expect J to depend on T/
√
ρ — as indeed it does in

linear response — but we may also expect J to depend nonlinearly on Ef . In the absence

of a steady state there is the additional complication of time dependence. However, if the

rate of heating, ΓJoule, is sufficiently low, we may approximate the time dependence of J

through its temperature dependence by promoting T → TE(t),

J = σ

(

k√
ρ
,
TE(t)√

ρ
,
Ef

ρ

)

Ef . (5.3)

Higher order corrections in the heating rate ΓJoule could also be considered systematically

in a derivative expansion, but for now we focus on this leading effect.

We shall demonstrate that the TE dependence is remarkably simple — good agreement

is achieved by taking the DC linear response result for σ, which may be written in terms
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of the temperature at equilibrium, T , and promoting T → TE(t). In other words, σ does

not appear to depend on Ef explicitly. Let us refer to σ computed in this way as σlin. A

practical short-cut for this is to first eliminate µ from σ (1.8) using the thermodynamic

relations (2.9) and (2.10) to obtain,

σlin = 1 +
µ(k, ρ, ǫ)2

k2
. (5.4)

Since ρ is conserved and k is fixed, it is only the energy density, ǫ, which we update

during the evolution. Note that the linear response result for ᾱ (1.8) is constant since ρ is

conserved.

In figure 7 we show J/Ef as measured during the evolution as a function of TE at

Ef/ρ = 1. After some transient period σ approaches the attractor governed by the linear

response approximation, independently of the initial temperature. We have verified that

in the regime where the linear response result applies, subleading corrections due to higher

derivatives of TE are small.9

We have also verified similar behaviour for the momentum relaxation values, k/
√
ρ =

1/2 and k/
√
ρ = 8. We note that for large k/

√
ρ one can construct examples where σ and

ᾱ are approximately constant in the presence of Joule heating, at non-negligible charge

densities. In particular σ and ᾱ are given by their linear response values. This closely

resembles the situation at ρ = 0, and it would be interesting to try and construct them in

perturbation theory about the Vaidya-like solutions of section 3.

The plateau emerging at low TE in figure 7 occurs during a period where E is still

time dependent, as indicated by the open circles, which indicate the point at which E(t)

becomes approximately constant. The dashed curve shows the value J = E for the run

Ti/
√
ρ = 10−2. The plateau coincides with a period of rapid temperature increase; one

possible explanation for it is then that the growth in temperature is much faster than the

response time due to the presence of charge and the system appears neutral, hence the

instantaneous J = E behaviour just as in section 3.

Finally we illustrate the dependence on Ef in figure 8, up to Ef/ρ = 10. The linear

response curve, σlin is eventually reached for each case. ΓJoule is higher for larger Ef ,

therefore the system is at a higher TE by the time any transients have settled down and

σlin is reached. For this reason, whether or not the σlin approximation applies for arbitrarily

large Ef/T
2
E becomes difficult to assess via a quench. Here we have at least good agreement

with σlin in cases where Ef/T
2
E ∼ 1.

We note that the linear response result for ᾱ does not give good agreement over the

same timescales indicating ᾱ has an explicit dependence on Ef . This is demonstrated in

figure 9, where at low enough Ti/
√
ρ at fixed Ef/ρ = 1 the effective temperature dependence

of ᾱ deviates from the linear response result, ᾱlin.

6 Final comments

We have presented the time evolution of a holographic metal under the influence of an

applied electric field at finite temperature. At ρ = 0 the system responds instantaneously

9Note similar agreement for the σ approximation can be observed in example of the top hat electric field

profile presented in section 4, corresponding to the dashed blue curve in figure 2.
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Figure 7. Nonlinear electrical current response at Ef/ρ = 1, as a function of effective temperature

TE (defined in section 5.1). Under the applied electric field TE increases and the system evolves

from left to right along the solid curves shown, which represent runs of differing initial temperatures

Ti/
√
ρ = 10−2, 10−1, 1/4, 1/2, 3/4, 1 as labelled. Constant E is reached after the open circles shown,

at which point (E − Ef )/Ef ≃ 10−5. After some time the attractor behaviour is reached, marked

by the black dashed line, which is the DC linear response conductivity after the equilibrium tem-

perature is promoted to TE , as described in the text. The blue dashed curve shows the behaviour

J = E for the run Ti/
√
ρ = 10−2. Here k/

√
ρ = 2.

to the applied electric field, encoded by a Vaidya-like geometry. There is Joule heating but

no momentum and no heat current. Such solutions may be useful reference points for the

construction of steady states, or as we have investigated here the addition of charge, where

they govern the initial response of the system.

At ρ 6= 0 we analysed the response of the system using a nonlinear, numerical evolu-

tion of the bulk Einstein-Maxwell-axion system of equations. First we studied finite-time

quenches after which which the system is allowed to return to equilibrium. In particular no

instabilities were encountered and the system behaved as expected, returning to equilibrium

with the approach governed by the vector QNMs associated to momentum relaxation.

As previously noted, the vector QNM spectrum can exhibit qualitatively different

behaviour depending on k. We showed the imprint of these features on the relaxation of J

and Q. Most notably in a large k incoherent regime, Q receives parametrically enhanced

contributions from a sector of QNMs which oscillate and decay, readily identifiable in the

relaxation of Q following an electric field quench. We note that at fixed k/
√
ρ a transition

from exponential decay to oscillatory decay of Q following a quench can also be obtained

by varying T/
√
ρ. These oscillatory QNMs generalise those studied at ρ = 0 where they

are important for the thermal conductivity [28] in the vicinity of a coherent to incoherent
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Figure 8. Nonlinear electrical current response for various Ef/ρ, as a function of effective temper-

ature TE starting from a temperature Ti/
√
ρ = 1/10. Under the applied electric field TE increases

and the system evolves from left to right along the solid curves shown, which represent runs of

differing Ef/ρ = 1/10, 1/2, 1, 3, 10 as labelled. Constant E is reached roughly after the open circles

shown, at which point (E − Ef )/Ef ≃ 10−5. After some time the attractor behaviour is reached,

marked by the black dashed line, which is the DC linear response conductivity after the equilibrium

temperature is promoted to TE , as described in the text. The amount of heating before the linear

response regime is reached increases with Ef , leading to a higher TE value when they eventually

agree. Here k/
√
ρ = 2.

transition. It would be interesting to understand whether the off-axis mode contributing

to the oscillations in Q in the incoherent regime are in any way generic.

We note that the situation described here resembles that of [46], where the exchange

of dominance of purely imaginary and off-axis QNMs impacted the order parameter equi-

libration after a quench in a holographic model of superfluidity.

Next we studied a step quench to a constant electric field. For sufficiently weak,

constant electric fields, an approximate steady state is reached described by linear response.

Since the electric field was small but finite, Joule heating still occurs but is only relevant over

much longer timescales. Going beyond linear response the effect of Joule heating becomes

significant, and the energy density grows. Nevertheless after some initial response time,

the electrical conductivity is well approximated by the equilibrium DC linear response

result once the increasing effective temperature (as defined in section 5.1) is taken into

account, σlin.

The agreement of the nonlinear evolution with σlin is somewhat surprising; in general

we should have expected a dependence on Ef . This is not unprecedented however, since

at ρ = 0 we showed that σ = 1 at any E(t), just as in the case ρ = k = 0. It would be
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Figure 9. Nonlinear heat current response at Ef/ρ = 1, as a function of effective temperature

TE (defined in section 5.1). Under the applied electric field TE increases and the system evolves

from left to right along the solid curves shown, which represent runs of differing initial temperatures

Ti/
√
ρ = 10−2, 10−1, 1/4, 1/2, 3/4, 1 as labelled. The black dashed line shows the DC linear response

thermoelectric conductivity. Here k/
√
ρ = 2.

interesting to consider corrections to this approximation by performing an expansion in

time derivatives of TE . It would also be interesting to perturbatively add charge to the

ρ = 0 solutions presented in section 3.

The problem considered here is inherently time dependent due to Joule heating. A

natural next step is to prevent the energy in the system from growing without bound, so

that we can reach a steady state at fixed temperature at late times. This may resemble a set

up where the system is coupled to an external heat bath. Indeed this is the interpretation

drawn in [37] for a steady state in the context of the D3/D5 probe brane system. A

first glance at the right hand side of (1.4) suggests the possibility of preventing energy

growth by turning on a time dependent source for an axion. Note that one example of

a stationary solution with a time dependent scalar source is given already in section 2,

by moving away from the present laboratory frame. Another possibility is considering an

electric field applied to a strip or to a finite region on the boundary, leaving an infinite

undriven heat bath.

Finally we note that the model considered here is a electrical conductor with an

AdS2×R2 infrared scaling behaviour at T = 0. It would be interesting to contrast nonlinear

transport for holographic metals and insulators across a variety of infrared behaviours.10

Another interesting direction includes different spacetime dimensions, where σ is not di-

10See [47, 48] for discussions of transport near quantum critical points.
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mensionless and can lead to qualitatively different behaviour [42]. Additionally it may be

worthwhile to consider the nonlinear response of other classes of momentum-relaxing black

branes, such as those which include a spatially modulated charge density.
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A Details of the numerical method

In this section we provide details of the characteristic method used to evolve the coupled

Einstein-Maxwell-axion system with boundary sources. Our method follows that of [46],

with some differences due to anisotropies and the continual injection of energy. We refer

to [49] for a review of related characteristic methods. A minimal ansatz in which is sufficient

for the task at hand is given by

ds2 =
1

r2

(

− F (v, r)dv2 − 2dvdr + 2eB(v,r)Fx(v, r)dvdx

+ S(v, r)
(

e2B(v,r)dx2 + e−2B(v,r)dy2
)

)

(A.1)

A = (E(v)x+ av(v, r))dv + ax(v, r)dx (A.2)

φ1 = k x+Φ(v, r) (A.3)

φ2 = k y (A.4)

where the AdS boundary lies at r = 0. With this ansatz the equation of motion for φ2 is

solved. The fields X ∈ {S,B, Fx,Φ, ax, av} each obey equations with principle part

∂v∂rX − (F 2
x + FSx)

2Sx
∂2
rX = 0 (A.5)

and 5 additional equations with principle parts

∂2
rF +

2Fx

S
∂2
rFx = 0 (A.6)

∂2
rS = 0 (A.7)

∂2
vS = 0 (A.8)

∂2
rax − eB

S

Fx
∂2
rav = 0 (A.9)

∂2
rFx − Fx∂

2
rB = 0. (A.10)

Note that there is no longer any xI dependence explicitly in the equations of motion.

Given the fields X and F at time v, we use Crank-Nicolson to obtain X at time v + ∆v
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using (A.5), getting F from (A.6), making sure to average it between times v and v +∆v

to ensure second order behaviour. The remaining equations are constraints; we ensure that

they are solved for our initial data and consequently they are preserved for the evolution,

provided we enforce energy conservation (1.4). As a note of caution, we have found that

using a different choice for (A.6) in order to perform the evolution can lead to a numerical

instability, which can seen by monitoring the constraints for sufficiently long times on an

equilibrium solution. With the choice made in (A.6) the scheme is numerically stable and

can be evolved for long times, and with good convergence as we show in appendix B.

We use Chebyschev collocation in the r-direction. It is convenient to factor out the

leading terms at the AdS boundary,

S = 1 + 2λ(v)r + λ(v)2r2 + hs(v, r)r
2 (A.11)

B = hb(v, r)r
2 (A.12)

Fx = hvx(v, r)r
2 (A.13)

F = 1 + 2λ(v)r +
1

2

(

2λ(v)2 − 4λ′(v)− k2
)

r2 + hvv(v, r)r
2 (A.14)

Φ = h(v, r)r2 (A.15)

av = hv(v, r) (A.16)

ax = hx(v, r) (A.17)

and work with Y ∈ {hvv, hvx, hs, hb, h, hv, hx}, which satisfy Y = 0 at the AdS boundary,

imposed as a Dirichlet boundary condition. The function λ(t) is a gauge parameter, arising

from the invariance of the form of the ansatz (A.1) under r → r/(1 + λ(t)r). For the

majority of evolutions in this paper we use λ to adjust the radial coordinate so that the

apparent horizon during evolution sits at r = 1. The only exception is the example shown

in figures 2 and 3, where we fix λ = 0. For initial data we use the analytical black brane

solutions presented in (2). Correspondingly we arrange our equilibrium initial data such

that its horizon is situated at r = 1, in practise this is achieved by adjusting ρ for some

fixed initial temperature, Ti/
√
ρ, and momentum relaxation parameter k/

√
ρ. This will

allow us to perform large injections of energy without the need for excision. We do not

impose any boundary conditions at r = 1.

The undetermined data near the boundary associated to the holographic stress tensor

and scalar vev is accessible via one radial derivative of the functions Y . In particular,

after performing holographic renormalisation (see for example [50] and in the context of

the axion model, [19])

〈Ttt〉 = −2h(1)vv (A.18)

〈Ttx〉 = 〈Txt〉 = 3h(1)vx (A.19)

〈Txx〉 = −h(1)vv + 6h
(1)
b (A.20)

〈Tyy〉 = −h(1)vv − 6h
(1)
b (A.21)

〈Ox〉 = 3h(1) (A.22)

〈Jt〉 = h(1)v (A.23)

〈Jx〉 = E(t) + h(1)x (A.24)
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Figure 10. Left panel: log of the norm of the constraint equations (A.7), (A.8), (A.9), (A.10)

as described in the text, for several values of
√
ρ∆v ≃ 0.915 × (2−2, 2−3, 2−4, 2−5), from top to

bottom. Right panel: the quantity Ξ20,∆v characterising the convergence rate for refined temporal

resolutions; the value 2 should be approached for the second order scheme used here. Here the

colouring corresponds to the ∆v label as used in the left panel.

with other entries zero. In addition these satisfy (1.1) and (1.2) courtesy of first order

equations amongst the Y (1) ≡ ∂rY |bdy, as well as 〈T µ
µ 〉 = 0.

B Convergence testing

In this section we present convergence tests over the full dynamical range of one of the

evolutions presented. A successful convergence test will show second order convergence with

∆v (for Crank-Nicolson) and exponential convergence with N , the number of Chebyschev

points in the r-direction. Note that due to the exponential convergence with N , the residual

becomes dominated by ∆v2-errors even for relatively small values of N , and inevitably it

becomes impractical to reduce ∆v in order to overcome this.

We show convergence towards zero for each of the constraints (A.7), (A.8), (A.9),

(A.10). At each time v we compute χN,∆v, defined as the L∞-norm of the vector of

constraints, and then take the L2-norm over the spatial grid. Following this we compute,

ΞN,∆v =
1

log 2
log

χN,∆v

χN, 1
2
∆v

(B.1)

as a function of time. For second order convergence in time, this quantity should approach

the value 2. We focus on a single example, Ef/ρ = 1, k/
√
ρ = 2, Ti/

√
ρ = 1/10. For

convergence in ∆v we show χ20,∆v for a variety of ∆v, and their corresponding Ξ20,∆v in

figure 10.
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