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Conjugate gradient methods for energy minimization in micromagnetics are com-

pared. The comparison of analytic results with numerical simulation shows that

standard conjugate gradient method may fail to produce correct results. A method

that restricts the step length in the line search is introduced, in order to avoid this

problem. When the step length in the line search is controlled, conjugate gradient

techniques are a fast and reliable way to compute the hysteresis properties of perma-

nent magnets. The method is applied to investigate demagnetizing effects in NdFe12

based permanent magnets. The reduction of the coercive field by demagnetizing effects

is µ0∆H = 1.4 T at 450 K. © 2017 Author(s). All article content, except where oth-

erwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4981902]

I. INTRODUCTION

The computation of hysteresis properties of large ferromagnetic systems such as sensor elements

or permanent magnets require fast and reliable solvers. Hysteresis simulations are based on the theory

of micromagnetics “Brown (1963)”. The primary purpose of these simulations is to understand the

influence of the microstructure on magnetization reversal. In this work we are focusing on the role

of demagnetizing fields in platelet shaped grains of permanent magnets. We also describe the key

elements of a micromagnetic solver suitable for simulating large magnetic systems.

After discretization of the total Gibbs free energy with finite elements or finite differences the

states along the demagnetization curve can be computed by subsequent minimization of the energy for

decreasing applied field as outlined in “Kinderlehrer and Ma (1997)”. The system is in a metastable

state. A change of the applied field shifts the position of the local energy minimum. At a critical field,

the magnetization becomes unstable. An irreversible switching occurs which is seen as a kink in the

demagnetization curve. Then the system either accesses a different metastable state or if fully reversed

the magnetization is in a stable state. A reliable numerical method for energy minimization must track

all local minima along the demagnetization curve. The resulting algebraic minimization problem is

large. Typically the number of unknowns is in the order of 10 to 50 million for a model magnet

consisting of around 10 grains of a rare earth based permanent magnet. Therefore fast numerical

methods are required to obtain results in a reasonable time. Xu et al. (1994) used the conjugate

gradient method to minimize the micromagnetic energy whereby the magnetization direction was

represented using polar coordinates. Here we focus on methods which use Cartesian coordinates to

represent the magnetization. Viallix et al. (1988) compared a Newton solver and a gradient descent
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method for the computation of domain structures in thin films. In finite element micromagnetics the

conjugate gradient method “Koehler and Fredkin (1992)” has been used to compute the hysteresis

curve of magnets. These techniques go back to the seminal paper of “Cohen et al. (1989)” on relaxation

and gradient method for the calculation of the molecular orientation in liquid crystals. There are three

reasons why it is useful to revisit conjugate gradient methods in micromagnetics:

(1) Since the early use of the conjugate gradient methods in the early 1990s in micromagnetics

several new conjugate gradient schemes have been developed that show better properties than

the original methods.

(2) The application of standard out of the box conjugate gradient methods from numerical libraries

fails to produce correct results for complex micromagnetic systems.

(3) The advance of hardware makes it possible to apply numerical micromagnetics for large

systems. This requires algorithms that correctly track the local minima of the system.

“Exl et al. (2014a)” and “Furuya et al. (2015)” introduced steepest descent methods for large

scale micromagnetics. In this work we focus on conjugate gradient methods and required modi-

fications for their use in numerical micromagnetic simulations. We test the method by simulating

magnetization reversal in a permanent magnet and in a soft magnetic permalloy element. The grains

of the permanent magnet are assumed to be separated by a non-magnetic grain boundary phase.

Switching off the demagnetizing field in the micromagnetic simulations the permanent magnet turns

into a system of Stoner-Wohlfarth particles. Thus we can test the results obtained for different con-

jugate gradient methods against an analytic solution. Comparing the numerical results which were

computed with and without magnetostatics we can quantify the reduction of coercivity owing to the

self demagnetizing field. In soft magnetic thin film elements metastable magnetic states are found

along the demagnetization curve. These states may give rise to jitter in magnetic sensor elements

“Bachleitner-Hofmann et al. (2016)”. We will show how conjugate gradient methods need to be tuned,

in order to access these states during the computation of the demagnetization curve. For comparison

we also include results obtained with a limited memory quasi-Newton method into our study.

II. NUMERICAL BACKGROUND

A. Discrete micromagnetics

In order to apply numeric optimization methods we reformulate the micromagnetic problem as

an algebraic minimization problem. Let us introduce the following notation. Each node of a finite

element mesh or cell of a finite difference scheme holds a unit magnetization vector m. We gather

these vectors into the vector x which has the dimension 3n, where n is the number of nodes or cells so

that x3i = mi ,x, x3i+1 = mi ,y, and x3i+2 = mi ,z. The node or cell index i runs from 0 to n ☞ 1. Similarly

the external field and the demagnetizing fields at the nodes or cells are hext and hd, respectively. Then

the total Gibbs free energy is

F (x)=
1

2
xTCx − 1

2
hT

dMx − hT
extMx (1)

The first, second, and last term of the right hand side of (1) are the sum of the exchange and anisotropy

energy, the magnetostatic self energy, and the Zeeman energy, respectively. The matrix C contains

to grid information associated with the exchange and anisotropy energy. The matrixM is related to

the mass matrix in a the finite element method and accounts for the local variation of the saturation

magnetization Ms within the magnet. Within the framework of the finite element method with linear

basis functionsϕi the matrix entries in C can be derived as follows. Approximated on the finite element

grid, the unit magnetization vector is m(r) =
∑n−1

i=0 miϕi(r) = miϕi(r). It’s Cartesian components are

mk(r) = x3i+k-ϕi(r) with k = 0, 1, 2. Here we use the Einstein summation convention and the notation

ϕi,k = ∂ϕi/∂rk for the partial derivative of ϕi with respect to direction k. The sum of the exchange

and anisotropy energy of a ferromagnetic body is

Fexani (m)=

∫
V

A
{
(∇m0)2 + (∇m1)2 + (∇m2)2

}
dV −

∫
V

K (ukmk)2 dV (2)
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where A and K are the exchange constant and the uniaxial magneto-crystalline anisotropy constants.

u = (u0, u1, u2)T is the unit vector along the anisotropy direction. Replacing mk by x3i+kϕi(r) we

obtain

Fexani (m)=

∫
V

A
{
x3iϕi,sϕj,sx3j + x3i+1ϕi,sϕj,sx3j+1 + x3i+2ϕi,sϕj,sx3j+2

}
dV

−
∫

V

K
(

x3i+kukϕiϕjulx3j+l

)

dV (3)

the indices i, j run from 0 to n☞1, and s, k, l run from 0 to 2. Comparing (1) and (3) we get the elements

of the matrix C

C3i+k,3j+l =

∫
V

2Aδklϕi,sϕj,sdV +

∫
V

2K
(

ukϕiϕjul

)

dV . (4)

The matrixM is a diagonal matrix whose entries are the modulus of the magnetic moment associated

with the node or cell i. In a finite difference setting we define

M3i,3i =M3i+1,3i+1 =M3i+2,3i+2 =

∫
Vi

µ0MsdV . (5)

Ms is the magnetization and the integral is over the volume of cell i. For a finite element discretization

with linear basis functions ϕi theM3i+k,3i+k are the solution of the linear system

∫
V

M3i+k,3i+kϕidV =

∫
V

µ0MsϕidV . k = 0, 1, 2 (6)

The matrices C andM depend on the intrinsic magnetic properties, the geometry, and the computa-

tional grid. Similar expression for the discretized micromagnetic energy are given by “Koehler and

Fredkin (1992)” and “Schrefl et al. (2007)”. A basic assumption of micromagnetics is the length of

the magnetization vector is a function of temperature only and does not depend on the applied field,

|M| = Ms(T ) “Brown (1963)”. This translates into the following constraint

|mi | = 1. i= 0, . . . , n − 1 (7)

The minimization of (1) with respect to x subject to (7) gives a metastable or stable equilibrium state

of the magnetization.

B. Conjugate gradient methods

The conjugate gradient method is an efficient method for large scale optimization. The conjugate

gradient method was originally introduced by “Hestenes and Stiefel (1952)” for the solution of a

linear system of equation Cx = ☞b, where C is symmetrix and positive definite, which is equivalent to

minimize the quadratic function Q(x) = (1/2)xTCx + bTx + c. The conjugate gradient method has been

extended for the minimization of non-quadratic functions by “Fletcher and Reeves (1964)”, “Polyak

(1969)”, and “Polak and Ribiere (1969)”. The conjugate gradient method is given in algorithm 1.

Algorithm 1. Nonlinear conjugate gradient method.

Minimize F(x):

take an initial guess x0 and compute the energy gradient g0 =∇F (x0) (8)

set the initial search direction d0 = − g0 (9)

for i = 0, 1, 2, 3 . . . do

compute a step length αi by minimizing F(xi+αidi) with respect to αi (line search)

set new solution value xi+1 = xi + αidi (10)

compute energy gradient gi+1 =∇F (xi+1) (11)

exit if convergence criteria are fulfilled

compute a new search direction di+1 = −gi+1 + βidi (12)



045310-4 Fischbacher et al. AIP Advances 7, 045310 (2017)

There are various different ways to compute the factor βi in (12). Most prominent are the Fletcher-

Reeves conjugate gradient method, which uses

βFR
i =

gT
i+1

gi+1

gT
i

gi

, (13)

the Polak-Ribiere-Polyak conjugate gradient method

βPRP
i =

(gi+1 − gi)
T gi+1

gT
i

gi

, (14)

and the Hestenes-Stiefel conjugate gradient method

βHS
i =

(gi+1 − gi)
T gi+1

(gi+1 − gi)
T di

. (15)

The search direction of the Hestenes-Stiefel fulfills

(gi+1 − gi)
T di+1 = 0 (16)

which can be seen by multiplying (12) with (gi+1 ☞ gi) and using (15). Equation (16) is called the

conjugacy condition. In the quadratic case (gi+1 ☞ gi) is parallel to Cdi and thus (16) reads dT
i

Cdi+1 = 0

which means the search direction are conjugate.

Since the invention of the conjugate gradient many modified conjugate gradient methods have

been proposed “Dai (2011)”. Some of them show very good properties for the solution of large

optimization problems. “Andrei (2007)” shows that their performance is comparable with fast quasi-

Newton solvers. In the remainder of the paper we will test different conjugate gradient methods for

their use in micromagnetics.

From the chain rule we have ∂F(xi +αdi)/∂α |α=0 = gT
i

di and ∂F(xi +αdi)/∂α |α=αi
= gT

i+1
di. For

an minimization method we require the search direction (12) to be a descent direction: gT
i+1

di+1 < 0.

When the line search is exact gT
i+1

di = 0. Then it follows from multiplying (12) with gT
i+1

that gT
i+1

di+1

=−|gi+1 |2. An exact line search is normally to expensive as it requires many function and/or gradient

evaluations. Nonlinear conjugate gradient methods normally apply an inexact line search that satisfies

the strong Wolfe conditions:

F (xi + αidi) ≤ F (xi) + c1αig
T
i di (17)

���gT
i+1di

��� ≤ c2
���gT

i di
��� (18)

With 0 < c1 < c2 < 1/2 “Nocedal and Wright (2006)”. The step size αi is chosen such that the new

point has a sufficiently smaller energy and sufficiently smaller gradient along the search direction

than the previous point. In particular, condition (18) guarantees that the step size is large enough and

that the new point is close to a local minimum. A line search algorithm that finds a step length which

fulfills the strong Wolfe conditions is given by “Moré and Thuente (1994)”. Alternatively, a modified

Armijo line search is often used in conjugate gradient methods “Bartholomew-Biggs (2008)”.

A well known modification of the Polak-Ribiere-Polyak conjugate gradient method is to set β

to zero if βPRP < 0:

βPRP+
=max(βPRP, 0). (19)

This ensures that (12) is a descent direction with a line search that satisfies modified Wolfe conditions.

One class of modified conjugate gradient method changes (12) so that the new search directions are

sufficient descent independent of the line search. One such method was proposed by “Cheng (2007)”

di+1 =− *,1 + βPRP+
i

gT
i+1

di

|gi+1 |2
+
- gi+1 + βPRP+

i di. (20)

The search direction (18) always fulfills gT
i+1

di+1 =− |gi+1 |2. When the line search is exact the second

term in the bracket of the right hand side vanishes. A second class of modified conjugate gradient

methods changes (12) so that the conjugacy condition (16) is always satisfied independent of the line
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search “Lukšan et al. (2008)”. A modified Polak-Ribiere-Polyak method with guaranteed conjugacy

is

di+1 =


− (gi+1−gi)

Tdi

|gi |2
gi+1 + βPRP

i
di if βPRP

i
> 0

−gi+1 otherwise
. (21)

We also test a modified Hestenes-Stiefel conjugate gradient method

βZA
i =di+1 =


βHS

i
if |gi+1 |2> |gT

i+1
gi |

0 otherwise
(22)

which was proposed by “Salleh and Alhawarat (2016)”. Hybrid conjugate gradient method combine

two or more methods. “Touati-Ahmed and Storey (1990)” suggested

βTaS
i =


βPRP

i if 0 ≤ βPRP
i ≤ βFR

i

βFR
i otherwise

, (23)

“Hu and Storey (1991)” proposed

βHuS
i =max(0, min

(

βPRP
i , βFR

i

)

). (24)

Setting β = 0, such as it is done occasionally in the PRP+ , ZA, and HuS method, restarts the

conjugate gradient algorithms with di+1 = ☞gi+1. The convergence of the conjugate gradient method

can be improved by periodic restarts. If the problem size is large we can restart the algorithm after

every m steps.

C. Quasi Newton methods

In a quasi-Newton method the search direction is computed using an approximation of the inverse

of the Hessian matrix. In particular equation (12) is replaced by

di+1 =−B−1
i+1gi+1 (25)

whereby the Hessian Bi+1 is updated during the iterations. In practical applications of quasi-Newton

methods instead of the Hessian matrix B an approximation of the inverse is stored. “Liu and Nocedal

(1989)” give an efficient implementation of the quasi-Newton method which stores an approximation

of B☞1 implicitly using a few vector pairs (xi+1 ☞ xi) and (gi+1 ☞ gi). Then product B−1
i+1

gi+1 can be

computed performing a sequence of inner products and vector summations. Usually only about five

of the latest vector pairs are used to compute the search direction.

For optimal performance the approximation of the matrices Bi+1 should be symmetric and positive

definite “Nocedal and Wright (2006)”. This can be enforced using a line search that fulfills the Wolfe

conditions (17) and (18). Some implementations are less strict on the line search but skip the update

of the inverse of the Hessian by B−1
i+1
=B−1

i
when a new vector pair would cause the Hessian to be

indefinite. This happens when the curvature condition

(gi+1 − gi)
T (xi+1 − xi)>0 (26)

is violated. If the updates are skipped to often the curvature information gets poor and the algorithm

may fail.

D. The conjugate gradient method for micromagnetics

The energy (1) is a quadratic function. However the constraints (7) makes the micromagnetic

problem highly nonlinear. “Cohen et al. (1989)” introduced an efficient way to treat the constraints

|mi | = 1 in combination with the conjugate gradient method. The vectors mi should stay on the unit

sphere. During updates the vectors should only change their direction. Therefore “Cohen et al. (1989)”

project the energy gradient on its component perpendicular to the local orientation vector. After each

update the orientation vector is normalized. “Exl (2014b)“ showed that this approach is equivalent

to the approach adopted by “Koehler and Fredkin (1992)” who formally replaced m with m/|m|

in (1). “Cohen et al. (1989)” used the Polak-Ribiere-Polyak conjugate gradient method. “Koehler

and Fredkin (1992)” used the Fletcher-Reeves conjugate gradient method. In micromagnetics the
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evaluation of energy and its gradient is expensive. “Koehler and Fredkin (1992)” pointed out that too

many function and gradient evaluations are prohibitive in micromagnetics. Therefore they propose

an inexact line search based on cubic interpolation.

“Cohen et al. (1989)” used the Polak-Ribiere-Polyak conjugate gradient method with periodic

restarts for the calculation of the molecular orientation in liquid crystals. “Koehler and Fredkin

(1992)” applied the Fletcher-Reeves conjugate gradient methods. They restart the scheme whenever

a sudden drop of the total energy occurs. “Koehler and Fredkin (1992)” also point out that a strict

convergence criterion is required. They stop the search for the next local minimum when the relative

change in the energy between two steps is less than 10☞10.

In our simulation we apply Cohen’s approach for treating the constraints (7). Equations (8) and

(11) are modified. The gradient is replaced by the projection of ∇F onto its component perpendicular

to m. Then elements of the vector g are defined as

g3i+k = (∇F)3i+k −
[
δij (∇F)3j+l x3j+l

]
x3i+k . (27)

As previously the index i runs over all nodes from 0 to n–1. Indices k, l denote the Cartesian com-

ponents and run from 0 to 2. The bracket in (27) is the inner product between the ∇F and m at node

i. We compute the step length by minimizing F
(

xi+αidi

|xi+αidi |
)

with respect to αi and replace (10) with

xi+1 =
xi+αidi

|xi+αidi | .

With advance in computer hardware micromagnetic simulations of complex granular structures

are possible. Such systems may have several local minima that are accessed during magnetization

reversal. A simple example is a permanent magnet consisting of multiple isolated grains with slightly

different anisotropy directions. Each grain has its distinct switching field leading to kinks in the

demagnetization curve. The naı̈ve use of standard library routines for energy minimization may

lead to a step length which is too large. Instead of accessing the next local minimum along the

demagnetization curve the system will jump to another local minimum. This leads to the switching of

two or more grains at one field point. Kinks in the demagnetization curves are missed (see figure 2).

Given a magnetic state during at a conjugate gradient iteration we aim to find a step length that is

short enough so that no local minima along the demagnetization curve is missed. On the other hand

the step should be selected in a way that the iterative minimization scheme makes sufficient progress.

We compute the curvature of the energy along the search direction by forward finite differences

from the energy gradients and apply a single Newton step in one dimension to get an estimate for

the required step size. A second estimate can be found by quadratic extrapolation from the previous

function values and the first derivative. We use the minimum of both estimates as the initial step in

a backtracking line search that only reduces the step size. Standard line search routines may also

increase the line search in order to fulfill the curvature condition (18). Algorithm 2 outlines our line

search method.

In order to balance the discretization error and the rounding errors the finite difference interval,

h, is chosen as suggested by “Derreumaux et al. (1994)”. In (28) ǫm is the machine precision. We set

c1 = 0.1.

For stopping the iterations we apply the convergence criteria proposed by “Gill et al. (1981)”.

These criteria are based on the function tolerance, τF , which is related to the number of correct

significant figures, a, in the energy. In our implementation the energy is scaled so that |F | ≈ 1. Scaling

can be achieved by normalizing the energy with µ0M2
s V , where V is the total volume of the magnet.

Algorithm 2. Backtracking line search with extrapolated initial step.

compute αi so that the first Wolfe condition (17) is fulfilled:

compute finite difference interval h=min

(

2
√
ǫm(1+|x|)
|d| ,

√
ǫm

|d|∞

)

(28)

compute initial step length: αi,0 =min

(�����
gT

i
di

(

g(xi+hdi)
T

di−g(xi)
T

di

)

/h

����� ,
2(F(xi)−F(xi−1))

gT
i

di

)

(29)

for k = 0, 1, 2, 3 . . . do

if F
(

xi + αi,kdi

)

≤ F (xi) + c1αi,kgT
i

di then step length found:αi =αi,k (30)

otherwise reduce step length αi,k+1 = 0.5αi,k (31)
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Algorithm 3. Check convergence.

Choose the number of required correct significant digits a

set the function tolerance τF = 10−a (32)

convergence is reached if all of the following three conditions are satisfied:

change in function values small enough F(xi) − F(xi+1) <τF (1 + |F(xi+1) |) (33)

change in solution vector small enough |xi − xi+1 |∞ <
√
τF

(

1 + |xi+1 |∞
)

(34)

gradient small enough |gi+1 |∞ <
3
√
τF (1 + |F(xi+1) |) (35)

Following “Koehler and Fredkin (1992)” we set a = 10 for most of our computer experiments. We

summarize the check for convergence in Algorithm 3. |x|∞ is the infinity norm of the vector x.

In micromagnetics the torque or the right hand side of the Landau-Lifshitz-Gilbert equation is

often used as a stopping criterion. With the above convergence criteria with 10 significant digits the

algorithms the normalized torque, we achieve

|µ0M ×Heff |∞
µ0M2

s

<C (36)

at the computed stationary states at all nodes of the finite element mesh. Here M and Heff are the

magnetization vector and the effective magnetic field at the nodes of the magnetization vector. The

value of the threshold depends on the nature of the sample. We found C = 0.002 for permanent

magnets and C = 0.001 for soft magnetic thin films when τF = 10☞10.

E. Implementation

The numerical tests presented in section III were done with a custom made finite element solver

for micromagnetics. The magnet and an open space surrounding the magnet are discretized with

tetrahedral finite element. For generating the granular structure the software package Neper “Quey

et al. (2011)” is used. For mesh generation we use the software Netgen “Schöberl (1997)” as integrated

in the preprocessing tool Salome “Ribes and Caremoli (2007)”. The mesh size depends on the magnet

investigated. For the hard magnet grain (see section III A) we used a mesh size of 2.5 nm. For the soft

magnet film (see section III B) we used a mesh size of 5 nm. The external mesh is used to treat the

magnetostatic open boundary problem “Chen and Konrad (1997)”. The size of the problem domain

surrounding the magnet has five times the extension of the magnet. Therefore we used a graded mesh.

The mesh size increases gradually from the magnet towards the boundary of the outer space.

The components of unit magnetization the vector and the magnetic scalar potential are approx-

imated with linear basis function on the tetrahedral grid. The matrices C andM, which appear in

the discrete from of the Gibbs free energy – see equations (1), (4), and (6) – are computed using

the finite element tool box escript “Gross et al. (2007)”. We implemented the modified non-linear

conjugate gradient method as described above using a vector expression template library for OpenCL

“Demidov et al. (2013)”. For solving the linear equations associated with the magnetic scalar potential

we use a conjugate gradient method whereby an algebraic multigrid method is used as precondi-

tioner. Again we apply an OpenCL implementation by Demidov (2017). Thus the computation of the

demagnetization curve can be done on graphic processing units (GPUs).

III. RESULTS AND DISCUSSION

A. Permanent magnets

We first compute the demagnetization curve of an assembly of 9 hard magnetic grains. We choose

a NdFe12 based permanent magnet material which has been investigated by “Suzuki et al. (2016)”.

In NdFe12 the fraction of rare earth is lower than in Nd2Fe14B whereas similar or better magnetic

properties are expected especially at elevated temperature. In particular at elevated temperatures the

magnetization remains higher than in Nd2Fe14B. This may help to obtain a large energy density

product at the operating temperature of a motor but strong demagnetizing effects may harm the

coercive field.
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FIG. 1. Granular sample for the computation of the demagnetization curve. The sample size is 460 x 460 x 100 nm3. It consist

of 9 grains which are separated by a non-magnetic grain boundary phase as shown on the right hand side. The thickness of

the grain boundary phase is 5 nm.

In our sample (see figure 1) the anisotropy axes of the grains are slightly misaligned with an

average misalignment angle of 3.46 degrees. The flat sample shape is take on purpose, in order to

maximize the effect of demagnetizing fields. We used the following intrinsic magnetic properties

for a temperature T = 450 K: magnetocrystalline-anisotropy constant K = 2.37 MJ/m3, saturation

magnetization µ0Ms = 1.61 T, exchange constant A = 9.2 pJ/m. The sample is discretized with

tetrahedral finite elements. The grain boundary phase is assumed to be non-magnetic with a thickness

of 5 nm. The grain structure and an enlarged section showing a slice through the finite element is shown

in figure. 1. For computing the demagnetizing field we extend the finite element mesh outside the

magnetic structure. We use a standard finite element scheme to compute the magnetic scalar potential

from which we derive the demagnetizing field. The linear system of equation for the magnetic scalar

potential is solved with an algebraic multigrid method.

Before computing demagnetizing effects in this sample we want to check our micromagnetic

solver and the influence of different energy minimization schemes on the results. In particular we

can choose between different energy minimization methods (quasi Newton or various variants of the

conjugate gradient method) and different line search methods. Table I lists the various methods used.

If we switch off the computation of the magnetostatic field our sample reduces to 9 isolated

hard magnetic grains whose switching field is given by the Stoner-Wohlfarth formula “Stoner and

TABLE I. Energy minimization schemes within this work. The columns list the following information. method: energy

minimization method described in section II; initial: initial step length for line search algorithm, EXT: quadratic extrapolation

from previous step, MIN: minimum between a single Newton step and EXT, MIN1 minimum(EXT,1); search: line search

algorithm: MT Moré Thuente, MA modified Armijo, SB simple backtracking; details: equations or algorithms used.

method initial search detail

LBFGS MIN1 MT limited memory Broyden-Fletcher–Goldfarb-Shanno method, “Liu and Nocedal (1989)”

LBFGS MIN SB Same as above, but line search as in algorithm 2

PRP+ EXT MA conjugate gradient, eq. (19), line search as in “Bartholomew-Biggs (2008)”

PRP+ MIN MA Same as above, initial step length for line search according to eq. (27)

PRP+ MIN SB Same as above but line search according to algorithm 2

TMPRP+ EXT MA conjugate gradient, eq. (20), line search as in “Bartholomew-Biggs (2008)”

TMPRP+ MIN MA Same as above, initial step length for line search according to eq. (27)

TMPRP+ MIN SB Same as above but line search according to algorithm 2

LMV+ EXT MA conjugate gradient, eq. (21), line search as in “Bartholomew-Biggs (2008)”

LMV+ MIN MA Same as above, initial step length for line search according to eq. (27)

LMV+ MIN SB Same as above but line search according to algorithm 2

ZA EXT MA conjugate gradient, eq. (22), line search as in “Bartholomew-Biggs (2008)”

ZA MIN MA Same as above, initial step length for line search according to eq. (27)

ZA MIN SB Same as above but line search according to algorithm 2

TaS MIN SB conjugate gradient, eq. (23), line search according to algorithm 2

HuS MIN SB conjugate gradient, eq. (24), line search according to algorithm 2
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Wohlfarth (1948)”. Owing to the slight misalignment the grains have different switching fields. This

leads to steps in the demagnetization curve. A proper numerical scheme shall find all these steps even

if the switching field between two grains differs only by a small amount. When a grain switches,

the system accesses a different local minimum. During energy minimization we have to track all the

local minima along the demagnetization curve. The solid line of figure 2 gives the demagnetization

curve according to the analytic switching field.

For computing the demagnetization curves in figure 2 we started with an external field Hext = 0.

Then we decreased the external field in steps of µ0∆Hext = 0.005 T. The final field value was µ0Hext

= ☞3.7 T. The magnetic state from the previous field is used as initial guess for energy minimization

(algorithm 1). In figure 2 we compare the analytic solution (solid line) with standard minimization

algorithm as discussed in textbooks: A conjugate gradient method “Bartholomew-Biggs (2008)”

(dotted line), a limited memory quasi-Newton method “Nocedal and Wright (2006)” (dashed-dotted

line). These method miss some kinks in the demagnetization curve. A conjugate gradient method

with line search algorithm 2 (dashed line) correctly tracks find all steps in the demagnetization

curve.

We tested various combinations of conjugated gradient and line search methods. In Table II we

summarize the results. Most method that use a back tracking algorithm only can find all kinks in the

demagnetization curve. If the line search algorithm also increases the step like in the More Thuente

line search or the modified Armijo line search the algorithm may miss the next local minimum

and jump to a different local minimum. This leads to too big a step in the demagnetization curve.

Depending on where the missed steps occur along the demagnetization curve, missed steps can lead to

a wrong coercive field. The 5th column in Table II gives the error in the coercive field owing to missed

local minima of the energy. This may also happen with the TMPRP+ conjugate gradient method and

backtracking line search. We found methods that are fast (low number of function evaluations) and

correct (zero kinks missed in the demagnetization curve). The results show that modified conjugate

gradient methods that enforce conjugacy between successive search directions work best in terms of

the number of function evaluations.

Limited memory quasi-Newton method are expected to perform better than the conjugate gradient

methods “Liu and Nocedal (1989)”. Unfortunately, standard schemes that use the Moere-Thuente

line search fail to reproduce the analytic demagnetization curve of figure 2. We also tried the limited

memory quasi-Newton method with the line search method given by algorithm 2. Here the initial

step length is estimated by the local curvature and the step length can only decrease. However, then

FIG. 2. A model system of 9 isolated grains of a permanent magnet serves a test case for the algorithm. The demagnetization

curve can be computed analytically (solid line). Standard method optimization methods such as a limited memory quasi Newton

method (LBFGS/MIN1/MT) and a conjugate gradient method (PRP+/EXT/MA) may miss kinks in the demagnetization curve.

Conjugate gradient methods with special line search (PRP+/MIN/SB) work well. For the particular numerical models used

see Table I. Please note that the analytic solution does not include the slight reversible rotation of the magnetization.
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TABLE II. Performance of various energy minimization schemes (see Table I) for the test problem. In order to compare with

an analytical solution the magnetostatic field is switched off for the results presented in this table. misses: kinks missed in the

demagnetization curve. The algorithm is correct if this value is 0. µ0∆Hc: Error in the coercive field owing to missed kinks;

iterations: average number of iterations per field step, eval: average number of function evaluations per field step.

method initial search misses µ0∆Hc(T) iterations eval

LBFGS MIN1 MTa 8 0.405 23 15

LBFGS MIN SBb 6 0.280 15 30

PRP+ EXT MA 3 0 30 67

PRP+ MIN MA 2 0 30 90

PRP+ MIN SB 0 0 37 75

TMPRP+ EXT MA 5 0.280 28 61

TMPRP+ MIN MA 3 0 30 90

TMPRP+ MIN SB 1 0 31 63

LMV+ EXT MA 5 0 28 61

LMV+ MIN MA 5 0.405 28 84

LMV+ MIN SB 0 0 31 63

ZA EXT MA 3 0 30 65

ZA MIN MA 0 0 31 94

ZA MIN SB 0 0 31 64

TaS MIN SB 0 0 32 66

HuS MIN SB 1 0 33 68

ac1 = 0.0001 in (17), c2 = 0.9 in (18).
bc1 = 0.0001 in (28).

the curvature condition (24) is often violated and the updates are skipped. The search directions are

computed with a bad approximations of the inverse hessian matrix. The algorithm fails to reproduce

the demagnetization curve correctly.

Having identified suitable minimization algorithms we compute the demagnetization curve of

the permanent magnetic grains under the influence of the self-demagnetizing field. “Grönefeld and

Kronmüller (1989)” showed that strong demagnetizing fields occur near the edges and the corners of

a grain. These fields drastically reduce the coercive field “Bance et al. (2014)”. Figure 3 compares

the computed demagnetization curves with magnetostatics switched on and off in the micromagnetic

solver. The difference between the two curves has to be attributed to demagnetizing effects and

FIG. 3. Influence of the demagnetizing field on magnetization reversal in NdFe12 based permanent magnets at a temperature

of 450 K. For the simulation of the dashed line the demagnetizing field was switched off. The solid line is the result of full

micromagnetic simulations including magnetostatics. The granular sample used for the simulations is shown in figure 1.
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TABLE III. Performance of various energy minimization schemes (see Table I) for the permanent magnet and the soft

magnetic thin film.; ∆Hext : Field interval between two points in the demagnetization curve; steps: total number of field steps.

iterations: average number of iterations per field step; eval: average number of function evaluations per field step; demag

iter: average number of iterations per field step for solving the linear system for the magnetic scalar potential.

method initial search sample µ0∆Hext(T) steps iterations eval demag iter

PRP+ MIN SB hard magnet 0.005 741 23 47 1293

LMV+a MIN SB hard magnet 0.005 741 23 47 1285

ZA MIN SB hard magnet 0.005 741 23 47 1273

TaS MIN SB hard magnet 0.005 741 23 47 1274

LBFGS MIN1 MTb soft film 0.001 101 228 230 9156

LMV+a MIN SB soft film 0.001 101 534 1069 31019

ZA MIN SB soft film 0.001 101 282 565 16628

awith restart every 50 steps.
bc1 = 0.0001 in (17), c2 = 0.9 in (18).

magnetostatic interactions. The maximum misalignment angle of the grains is only 7.5 degrees. The

local angle between the demagnetizing field and the anisotropy axes near corners and edges will

be much higher. “Thielsch et al. (2013)” showed that magnetization reversal will start at the point

where the sum of the external field and the demagnetizing field exceeds the local Stoner-Wohlfarth

switching field. All grains but the one which is perfectly aligned (misalignment angle of only 0.1

degrees) switch at the same value of the external field. The demagnetizing field reduces the coercivity

by 1.4 T.

The performance of the different solvers was also evaluated for full micromagnetic simulations

including magnetostatics. In order to avoid very short search directions |d| it turned out to be useful

to restart the conjugate gradient iterations periodically for the LMV+ method. Table III gives the

number of average number of iterations per field step, the average number of function evaluations

per field step, and the average number of iterations per field step for solving the linear system for

the magnetostatic field. All methods perform. All methods were found to perform equally well. On

average there are 23 conjugate gradient iterations per field step, 2 function evaluations per conjugate

gradient iteration, and 27 iterations of the linear solver for the magnetic scalar potential per function

evaluation.

B. Soft magnetic thin film elements

We also checked the performance of the different solvers for the micromagnetic standard

problem #1 “McMichael and Donahue (1997)”. The sample is a permalloy film with dimensions

1000× 2000× 20 nm3. The material parameters are a magnetization of µ0Ms = 1.01 T, an exchange

constant of A = 13 pJ/m. There is uniaxial magneto-crystalline anisotropy along the long axis of the

sample with an anisotropy constant of K = 500 J/m3. We compute the demagnetization curve with

the external field applied at one degree with respect to the long axis of the sample. The external field

is varied from +0.05 T to ☞0.05 T.

For our simulations with use a tetrahedral finite element mesh with a mesh size of 5 nm. We

choose a field step of µ0∆Hext = 0.001 T. Figure 4 shows the computed demagnetization curve. We

obtain the very same curve for all minimization methods. It seems that for this particular sample the

result is less sensitive to the features of line search algorithm. The performance of algorithms in terms

of iterations and function evaluations per field step is listed in Table III. The limited memory quasi-

Newton solver performs best showing the lowest number of iterations. In contrast to the permanent

magnet example there is a significant performance difference between the different conjugate gradient

methods. The fastest conjugate gradient method is the modified Hestenes-Stiefel method (22). It is

about a factor 1.5 times slower than the limited memory quasi Newton method. The conjugate

gradient variants PRP+ and TaS require more than 2×105 conjugate iterations at an external field

of µ0Hext = 0.03 T and of µ0Hext = ☞0.008 T, respectively. Thus they are not suitable for practical

simulations.
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FIG. 4. Computed demagnetization curve for the field applied one degree of the long axes for the micromagnetic standard

problem #1. For all investigated solvers (see Table III) the computed results are identical.

IV. CONCLUSIONS

We compared various conjugate gradient methods for their use in static micromagnetic simu-

lations. Accurate and efficient computation of the coercive field of hard magnetic grains requires

modification of the line search. The results show that a single one dimensional Newton step followed

by backtracking is a successful line search procedure in combination with variants of the conjugate

gradient method that preserve conjugacy between successive search direction. With these methods

the minima along the demagnetization curve for had magnetic materials can be accurately tracked

despite the use of an inexact line search algorithm.

Applying the newly developed method to magnetization reversal in NdFe12 based permanent

magnets show that demagnetizing effects reduce the coercive field in high temperature applications.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF): F4112 SFB ViCoM and the pio-

neering program “Development of magnetic material technology for high-efficiency motors” (2012–)

commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Andrei, N., “Numerical comparison of conjugate gradient algorithms for unconstrained optimization,” Studies in Informatics

and Control 16(4), 333–352 (2007).

Bachleitner-Hofmann, A., Abert, C., Bruckner, F., Palmesi, P., Satz, A., and Suess, D., “Unexpected width of minor magnetic

hysteresis loops in nanostructures,” IEEE Transactions on Magnetics 52(7), 1–4 (2016).

Bance, S., Seebacher, B., Schrefl, T., Exl, L., Winklhofer, M., Hrkac, G., and Ito, M., “Grain-size dependent demagnetizing

factors in permanent magnets,” Journal of Applied Physics 116(23), 233903 (2014).

Bartholomew-Biggs, M., “Nonlinear optimization with engineering applications,” Springer Science & Business Media 19

(2008).

Brown, W. F., “Micromagnetics,” Interscience Publishers (1963).

Chen, Q. and Konrad, A., “A review of finite element open boundary techniques for static and quasi-static electromagnetic

field problems,” IEEE Transactions on Magnetics 33(1), 663–676 (1997).

Cheng, W., “A two-term PRP-based descent method,” Numerical Functional Analysis and Optimization 28(11-12), 1217–1230

(2007).

Cohen, R., Lin, S. Y., and Luskin, M., “Relaxation and gradient methods for molecular orientation in liquid crystals,” Computer

Physics Communications 53(1-3), 455–465 (1989).

Dai, Y. H., “Nonlinear conjugate gradient methods,” Wiley Encyclopedia of Operations Research and Management Science

(2011).

Demidov, D., Ahnert, K., Rupp, K., and Gottschling, P., “Programming CUDA and OpenCL: A case study using modern C++

libraries,” SIAM Journal on Scientific Computing 35(5), C453–C472 (2013).

Demidov, D., AMGCL Documentation, http://amgcl.readthedocs.io/en/latest/, last accessed April 6, 2017.

Derreumaux, P., Zhang, G., Schlick, T., and Brooks, B., “A truncated Newton minimizer adapted for CHARMM and

biomolecular applications,” Journal of Computational Chemistry 15(5), 532–552 (1994).

Exl, L., Bance, S., Reichel, F., Schrefl, T., Stimming, H. P., and Mauser, N. J., “LaBonte’s method revisited: An effective

steepest descent method for micromagnetic energy minimization,” Journal of Applied Physics 115, 17D118 (2014a).

http://dx.doi.org/10.1109/tmag.2016.2533166
http://dx.doi.org/10.1063/1.4904854
http://dx.doi.org/10.1109/20.560095
http://dx.doi.org/10.1080/01630560701749524
http://dx.doi.org/10.1016/0010-4655(89)90178-1
http://dx.doi.org/10.1016/0010-4655(89)90178-1
http://dx.doi.org/10.1137/120903683
http://amgcl.readthedocs.io/en/latest/
http://dx.doi.org/10.1002/jcc.540150506
http://dx.doi.org/10.1063/1.4862839


045310-13 Fischbacher et al. AIP Advances 7, 045310 (2017)

Exl, L., “Tensor grid methods for micromagnetic simulations,” Ph.D. Thesis, TU Wien, (2014b).

Furuya, A., Fujisaki, J., Shimizu, K., Uehara, Y., Ataka, T., Tanaka, T., and Oshima, H., “Semi-implicit steepest descent method

for energy minimization and its application to micromagnetic simulation of permanent magnets,” IEEE Transactions on

Magnetics 51(11), 1–4 (2015).

Fletcher, R. and Reeves, C. M., “Function minimization by conjugate gradients,” The Computer Journal 7(2), 149–154 (1964).

Gill, P. E., Murray, W., and Wright, M. H., Practical optimization (Academic Press, 1981).
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