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Abstract. The notion of photon-like objects is introduced and briefly dis-

cussed. The nonlinear connection view on the Frobenius integrability theory

on manifolds is considered as a frame in which appropriate description of

photon-like objects to be developed.

1. The Notion Of Photon-Like Objects

We begin with giving the notion of photon-like object(s) (PhLO) which notion

will be considered further from the point of view of theoretical modeling under the

assuming that PhLO are free, i.e., interaction of any form of individual PhLO with

any other physical object(s) is excluded. The notion we are going to consider reads

as follows:

PhLO are real massless time-stable physical objects with

a consistent translational-rotational dynamical structure.

We give now some explanations concerning the above formulated notion of photon-

like objects. The feature “real” means:

• PhLO necessarily carry energy-momentum

• PhLO can be created and destroyed

• PhLO are spatially finite and they carry finite integral values of physical

quantities

• PhLO propagate and they do NOT move.

The feature “massless” means:

• their integral energy E and momentum p satisfy E = cp, where c is the

velocity of light in vacuum
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188 Stoil Donev and Maria Tashkova

• there exists an isotropic geodesic vector field ζ̄ = (0, 0,−ε, 1), ε = ±1,

in Minkowski space-time determining the straight-line direction of transla-

tional propagation

• the stress-energy-momentum tensor field Tµν satisfies TµνT
µν = 0.

The feature “time-stable” means:

• after their creation in appropriate conditions PhLO can be destroyed only

by external influence. The feature “translational-rotational” means:

∗ the propagation has two components: translational and rotational

∗ these both components are of local nature

∗ these both components exist simultaneously and consistently and each

of them shows definite constancy properties.

The feature “dynamical structure” means:

• some permanent local internal energy-momentum redistribution takes place

with time

• PhLO may have interacting, i.e., energy-momentum exchanging, subsys-

tems.

Our purpose now is to find corresponding to this notion appropriate mathematical

objects and equations these objects satisfy.

2. Non-Linear Connections

2.1. Projections

These are linear maps P in a linear space Wn satisfying: P.P = P [2]. If P is a

projection then n = dim(KerP ) + dim(ImP ). If (e1, . . . , en) and (ε1, . . . , εn)
are two dual bases in W and dim(KerP ) = p, dim(ImP ) = n − p, then the

bases may be chosen in such a way that P is represented by [3] (summation over

the repeated indexes is assumed)

P = εa ⊗ ea + (Ni)
aεi × ea, i = 1, . . . , p, a = p+ 1, . . . , n.

Such bases are usually called P -adapted.

2.2. Nonlinear Connections

Let Mn be a smooth (real) manifold with (x1, . . . , xn) be local coordinate system.

We have the corresponding local frames {dx1, . . . ,dxn} and {∂x1 , . . . , ∂xn}. Let

for each x ∈ M we are given a projection Px of constant rank p = dim(KerPx),
i.e., p does not depend on x, in the tangent space Tx(M). Under this condition we

say that a nonlinear connection is given on M [3]. The space Ker(Px) ⊂ Tx(M)
is called P -horizontal, and the space Im(Px) ⊂ Tx(M) is called P -vertical. Thus,
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we have two distributions on M . The corresponding integrabilities can be defined

in terms of P by means of the Nijenhuis bracket [P, P ] given by

[P, P ](X,Y ) = 2{[P (X), P (Y )] + P [X,Y ] − P [X,P (Y )] − P [P (X), Y ]}

where (X,Y ) are two vector fields. Now we add and respectively subtract the term

P [P (X), P (Y )], so, the right hand side expression can be represented by

[P, P ](X,Y ) = R(X,Y ) + R̄(X,Y )

where

R(X,Y ) = P ([(Id−P )X, (Id−P )Y ]) = P ([PHX,PHY ])

and

R̄(X,Y ) = [PX,PY ] − P ([PX,PY ]) = PH [PX,PY ].

Since P projects on the vertical subspace ImP , then (Id−P ) = PH projects on

the horizontal subspace. Hence, R(X,Y ) 6= 0 measures the nonintegrability of

the corresponding horizontal distribution, and R̄(X,Y ) 6= 0 measures the nonin-

tegrability of the vertical distribution.

If the vertical distribution is given before-hand and is integrable, then R(X,Y ) =
P ([PHX,PHY ]) is called curvature of the nonlinear connection P if there exist

at least one couple of vector fields (X,Y ) such that R(X,Y ) 6= 0.

3. Physics + Mathematics

Any physical system with a dynamical structure is characterized with some inter-

nal energy-momentum redistributions, i.e., energy-momentum fluxes, during evo-

lution. Any system of energy-momentum fluxes (as well as fluxes of other interest-

ing for the case physical quantities subject to change during evolution, but we limit

ourselves just to energy-momentum fluxes here) can be considered mathematically

as generated by some system of vector fields. A consistent and interrelated time-

stable system of energy-momentum fluxes can be considered to correspond to an

integrable distribution ∆ of vector fields according to the principle: local object

generates integral object.

An integrable distribution ∆ may contain various nonintegrable subdistributions

∆1,∆2, . . . which subdistributions may be interpreted physically as interacting

subsytems. Any physical interaction between two subsystems is necessarily ac-

companied with available energy-momentum exchange between them, this could

be understood mathematically as nonintegrability of each of the two subdistribu-

tions of ∆ and could be naturally measured by the corresponding curvatures. For



190 Stoil Donev and Maria Tashkova

example, if ∆ is an integrable three-dimensional distribution spent by the vec-

tor fields (X1, X2, X3) then we may have, in general, three non-integrable two-

dimensional subdistributions (X1, X2), (X1, X3), (X2, X3). Finally, some inter-

action with the outside world can be described by curvatures of nonintegrable dis-

tributions in which elements from ∆ and vector fields outside ∆ are involved (such

processes will not be considered in this paper).

4. Back to PhLO

Our base manifold will be the Minkowski space-time M = (R4, η), where η is the

pseudometric with sign η = (−,−,−,+), canonical coordinates (x, y, z, ξ = ct),
and canonical volume form ωo = dx ∧ dy ∧ dz ∧ dξ. We have the corresponding

vector field

ζ̄ = −ε
∂

∂z
+

∂

∂ξ
, ε = ±1

determining that the straight-line of translational propagation of our PhLO is along

the spatial coordinate z.

The vector field ζ̄ determines a set of completely integrable three-dimensional Pfaff

systems, denoted by ∆∗(ζ̄). Thus, any element of ∆∗(ζ̄) is generated by three

linearly independent one-forms (α1, α2, α3) which annihilate ζ̄, i.e.,

α1(ζ̄) = α2(ζ̄) = α3(ζ̄) = 0, α1 ∧ α2 ∧ α3 6= 0.

Instead of (α1, α2, α3) we introduce the notation (A,A∗, ζ) and define ζ by

ζ = εdz + dξ.

Now, since ζ defines one-dimensional completely integrable Pfaff system we have

the corresponding completely integrable distribution (Ā, Ā∗, ζ̄). We specify fur-

ther these objects according to the following

Definition 1. We shall call these dual systems electromagnetic if they satisfy the

following conditions (〈 , 〉 is the coupling between forms and vectors):

1. 〈A, Ā∗〉 = 0, 〈A∗, Ā〉 = 0

2. the vector fields (Ā, Ā∗) have no components along ζ̄

3. the one-forms (A,A∗) have no components along ζ

4. the vector fields (Ā, Ā∗) are η-corresponding to (A,A∗), respectively .

Further we shall consider only PhLO of electromagnetic nature.

From Conditions 2, 3 and 4 it follows that

A = u dx+ pdy, A∗ = v dx+ w dy

Ā = −u
∂

∂x
− p

∂

∂y
, Ā∗ = −v

∂

∂x
− w

∂

∂y
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and from Condition 1 it follows v = −εu, w = εp, where ε = ±1, and (u, p) are

two smooth functions on M . Thus, we have

A = u dx+ p dy, A∗ = −ε pdx+ ε u dy

Ā = −u
∂

∂x
− p

∂

∂y
, Ā∗ = ε p

∂

∂x
− ε u

∂

∂y
·

The completely integrable three-dimensional Pfaff system (A,A∗, ζ) contains three

two-dimensional subsystems: (A,A∗), (A, ζ) and (A∗, ζ). We have the following

Proposition 1. The following relations hold

dA ∧A ∧A∗ = 0, dA∗ ∧A∗ ∧A = 0

dA ∧A ∧ ζ = ε[u(pξ − εpz) − p(uξ − εuz)]ωo

dA∗ ∧A∗ ∧ ζ = ε[u(pξ − εpz) − p(uξ − εuz)]ωo.

Proof: Immediately checked. �

These relations say that the two-dimensional Pfaff system (A,A∗) is completely in-

tegrable for any choice of the two functions (u, p), while the two two-dimensional

Pfaff systems (A, ζ) and (A∗, ζ) are NOT completely integrable in general, and

the same curvature factor

R = u(pξ − εpz) − p(uξ − εuz)

determines their nonintegrability.

Correspondingly, the three-dimensional completely integrable distribution (or dif-

ferential system) ∆(ζ) contains three two-dimensional subsystems (Ā, Ā∗), (Ā, ζ̄)
and (Ā∗, ζ̄). We have the following proposition.

Proposition 2. The following relations hold ([X,Y ] denotes the Lie bracket)

[Ā, Ā∗] ∧ Ā ∧ Ā∗ = 0

[Ā, ζ̄] = (uξ − εuz)
∂

∂x
+ (pξ − εpz)

∂

∂y

[Ā∗, ζ̄] = −ε(pξ − εpz)
∂

∂x
+ ε(uξ − εuz)

∂

∂y
·

Proof: Immediately checked. �

From these last relations and in accordance with Proposition 1 it follows that the

distribution (Ā, Ā∗) is integrable, and it can be easily shown that the two distribu-

tions (Ā, ζ̄) and (Ā∗, ζ̄) would be completely integrable only if the same curvature

factor

R = u(pξ − εpz) − p(uξ − εuz)

is zero.
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We mention also that the projections

〈A, [Ā∗, ζ̄]〉 = −〈A∗, [Ā, ζ̄]〉 = εu(pξ − εpz) − εp(uξ − εuz) = εR

give the same factor R. The same curvature factor appears, of course, as coefficient

in the exterior products [Ā∗, ζ̄] ∧ Ā∗ ∧ ζ̄ and [Ā, ζ̄] ∧ Ā ∧ ζ̄. In fact, we obtain

[Ā∗, ζ̄] ∧ Ā∗ ∧ ζ̄ = −[Ā, ζ̄] ∧ Ā ∧ ζ̄ = −εR
∂

∂x
∧
∂

∂y
∧
∂

∂z
+ R

∂

∂x
∧
∂

∂y
∧
∂

∂ξ
·

On the other hand, for the other two projections we obtain

〈A, [Ā, ζ̄]〉 = 〈A∗, [Ā∗, ζ̄]〉 =
1

2

[

(u2 + p2)ξ − ε(u2 + p2)z

]

.

Clearly, the last relation may be put in terms of the Lie derivative Lζ̄ as

1

2
Lζ̄(u

2 + p2) = −
1

2
Lζ̄〈A, Ā〉 = −〈A,Lζ̄Ā〉 = −〈A∗, Lζ̄Ā

∗〉.

Remark. Further in the paper we shall denote
√

u2 + p2 ≡ φ, and shall assume

that φ is a spatially finite function, so, u and p must also be spatially finite.

Proposition 3. There is a function ψ(u, p) such, that

Lζ̄ψ =
u(pξ − εpz) − p(uξ − εuz)

φ2
=

R

φ2
·

Proof: It is immediately checked that ψ = arctan p
u

is such one. �

We note that the function ψ has a natural interpretation of phase because of the

easily verified now relations u = φ cosψ, p = φ sinψ, and φ acquires the status of

amplitude. Since the transformation (u, p) → (φ, ψ) is non-degenerate this allows

to work with the two functions (φ, ψ) instead of (u, p).

From Proposition 3 we have

R = φ2Lζ̄ψ = φ2(ψξ − εψz).

5. Back to Non-Linear Connections

The above relations show that we can introduce two nonlinear connections P
and P̃ . In fact, since the integrable distribution (Ā, Ā∗) lives in the (x, y)-plane

we present the coordinates in order (z, ξ, x, y) and the bases (dz,dξ,dx,dy),
(∂z, ∂ξ, ∂x, ∂y). We choose the vertical distribution to be generated by (∂x, ∂y).
The corresponding projections look like

PV = dx⊗
∂

∂x
+dy⊗

∂

∂y
−ε u dz⊗

∂

∂x
−u dz⊗

∂

∂y
−ε pdξ⊗

∂

∂x
−pdz⊗

∂

∂y

P̃V = dx⊗
∂

∂x
+dy⊗

∂

∂y
+p dz⊗

∂

∂x
+ε pdz⊗

∂

∂y
−u dξ⊗

∂

∂x
−ε u dξ⊗

∂

∂y
·
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The corresponding matrices look like

PV =

∥

∥

∥

∥

∥

∥

∥

∥

0 0 0 0
0 0 0 0

−εu −u 1 0
−εp −p 0 1

∥

∥

∥

∥

∥

∥

∥

∥

, PH =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
εu u 0 0
εp p 0 0

∥

∥

∥

∥

∥

∥

∥

∥

(PV )∗ =

∥

∥

∥

∥

∥

∥

∥

∥

0 0 −εu −εp
0 0 −u −p
0 0 1 0
0 0 0 1

∥

∥

∥

∥

∥

∥

∥

∥

, (PH)∗ =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 εu εp
0 1 u p
0 0 0 0
0 0 0 0

∥

∥

∥

∥

∥

∥

∥

∥

P̃V =

∥

∥

∥

∥

∥

∥

∥

∥

0 0 0 0
0 0 0 0
p εp 1 0
−u −εu 0 1

∥

∥

∥

∥

∥

∥

∥

∥

, P̃H =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 1 0 0
−p −εp 0 0
u εu 0 0

∥

∥

∥

∥

∥

∥

∥

∥

(P̃V )∗ =

∥

∥

∥

∥

∥

∥

∥

∥

0 0 p −u
0 0 εp −εu
0 0 1 0
0 0 0 1

∥

∥

∥

∥

∥

∥

∥

∥

, (P̃H)∗ =

∥

∥

∥

∥

∥

∥

∥

∥

1 0 −p u
0 1 −εp εu
0 0 0 0
0 0 0 0

∥

∥

∥

∥

∥

∥

∥

∥

.

The projections of the coordinate bases are:

(

∂

∂z
,
∂

∂ξ
,
∂

∂x
,
∂

∂y

)

.PV =

(

−εu
∂

∂x
− εp

∂

∂y
,−u

∂

∂x
− p

∂

∂y
,
∂

∂x
,
∂

∂y

)

(

∂

∂z
,
∂

∂ξ
,
∂

∂x
,
∂

∂y

)

.PH =

(

∂

∂z
+ εu

∂

∂x
+ ε p

∂

∂y
,
∂

∂ξ
+ u

∂

∂x
+ p

∂

∂y
, 0, 0

)

(dz,dξ,dx,dy).(PV )∗ = (0, 0,−εu dz − u dξ + dx,−εp dz − p dξ + dy)

(dz,dξ,dx,dy).(PH)∗ = (dz,dξ, εudz + u dξ, εpdz + p dξ) .

Consider now the two-forms

G = (PV )∗dx ∧ (PH)∗dx+ (PV )∗dy ∧ (PH)∗dy

= εu dx ∧ dz + εp dy ∧ dz + u dx ∧ dξ + pdy ∧ dξ

G̃ = (P̃V )∗dx ∧ (P̃H)∗dx+ (P̃V )∗dy ∧ (P̃H)∗dy

= −p dx ∧ dz + u dy ∧ dz − εp dx ∧ dξ + εu dy ∧ dξ.

It follows that G = A ∧ ζ, G̃ = A∗ ∧ ζ and G̃ = ∗G, where ∗ is the Hodge

star operator defined by η. Clearly, the two two-forms (G, ∗G) represent the two

nonintegrable Pfaff systems (A, ζ) and (A∗, ζ).
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The corresponding curvatures are

R = ε(uξ − εuz) dz ∧ dξ ⊗
∂

∂x
+ ε(pξ − εpz) dz ∧ dξ ⊗

∂

∂y

R̃ = −(pξ − εpz) dz ∧ dξ ⊗
∂

∂x
+ (uξ − εuz) dz ∧ dξ ⊗

∂

∂y
·

We obtain

R

(

PH
∂

∂z
, PH

∂

∂ξ

)

= [Ā, ζ̄], R̃

(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)

= [εĀ∗, ζ̄].

6. Again Physics + Mathematics

The two two-forms obtained (G, ∗G) suggest to test them as basic constituents of

classical electrodynamics, i.e., if they satisfy Maxwell equations. However, it turns

out that dG 6= 0 and d ∗ G 6= 0 in general. As for the energy-momentum part of

Maxwell theory, determined by the corresponding energy-momentum tensor

Tµ
ν =

1

2

[

GµσG
νσ + (∗G)µσ(∗Gνσ

]

and T44 = u2 + p2 = φ2

we obtain the following relations

∇νT
ν
µ =

1

2

[

Gαβ(dG)αβµ + (∗G)αβ(d ∗G)αβµ

]

Gαβ(dG)αβµdxµ = (∗G)αβ(d ∗G)αβµdxµ =
1

2
Lζ̄(u

2 + p2).ζ =
1

2
Lζ̄φ

2.ζ

and
〈

A,R

(

PH
∂

∂z
, PH

∂

∂ξ

)〉

=

〈

εA∗, R̃

(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)〉

=
1

2
Lζ̄(u

2 + p2) =
1

2
Lζ̄φ

2.

On the other hand

(∗G)αβ(dG)αβµdxµ = −Gαβ(d ∗G)αβµdxµ

=
[

u(pξ − εpz) − p(uξ − εuz)
]

ζ = R.ζ.

Also, we find
〈

A, R̃

(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)〉

= −

〈

εA∗,R

(

PH
∂

∂z
, PH

∂

∂ξ

)〉

= −R.

So, if Lζ̄φ = 0 we can say that our two two-forms G = A ∧ ζ and ∗G = A∗ ∧ ζ,

having zero invariants, are nonlinear solutions to the nonlinear equations

Gαβ(dG)αβµ = 0, (∗G)αβ(d ∗G)αβµ = 0

Gαβ(d ∗G)αβµ + (∗G)αβ(dG)αβµ = 0.
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From physical point of view these three equations say that the two subsystems of

our PhLO, mathematically represented by the two two-forms G and ∗G keep the

energy-momentum they carry, and are in permanent energy-momentum exchange

with each other in equal quantities, i.e., in permanent dynamical equilibrium [1].

The mathematical quantity that guarantees the dynamical nature of this equilibrium

is the nonzero curvature R or R. The permanent nature of this dynamical equi-

librium suggests to look for corresponding quantities/parameter(s), which should

represent relation(s), charavterizing the state at a given moment of PhLO and its

intrinsical capability to overcome the destroying tendencies of the existing nonin-

tegrabilities by means of appropriate propagation properties.

We note the relations
〈

A,PH
∂

∂ξ

〉

=

〈

A∗, P̃H
∂

∂z

〉

= −

〈

A,PV
∂

∂ξ

〉

= ε

〈

A,PH
∂

∂z

〉

= −ε

〈

A,PV
∂

∂z

〉

= ε

〈

A∗, P̃H
∂

∂ξ

〉

= −

〈

A∗, P̃V
∂

∂

〉

= −ε

〈

A∗, P̃V
∂

∂ξ

〉

= u2 + p2 = φ2 = −η(A,A) = −η(A∗, A∗)

≡ S2.

On the other hand,
〈

(PV )∗(dx) ∧ (PV )∗(dy),R

(

PH
∂

∂z
, PH

∂

∂ξ

)

∧ R̃

(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)〉

=

〈

(P̃V )∗(dx) ∧ (P̃V )∗(dy),R

(

PH
∂

∂z
, PH

∂

∂ξ

)

∧ R̃

(

P̃H
∂

∂z
, P̃H

∂

∂ξ

)〉

= ε
[

(uξ − εuz)
2 + (pξ − εpz)

2
]

= ε (R)2 ≡ εZ2.

Hence, the relation

S2

Z2
=

u2 + p2

[

(uξ − εuz)2 + (pξ − εpz)2
] =

φ2

φ2(ψξ − εψz)2
=

1

(Lζ̄ψ)2
≡ (lo)

2

defines the quantity κlo, κ = ±1 as an appropriate such parameter.

7. Translational-Rotational Consistency and Equations of Motion

In order to introduce mathematically the translational-rotational consistency we

recall the relations

Ā ∧ Ā∗ = εφ2
∂

∂x
∧
∂

∂y
6= 0, [Ā, ζ] ∧ [Ā∗, ζ] = εφ2(Lζ̄ψ)2

∂

∂x
∧
∂

∂y
6= 0.

Thus, we have two frames (Ā, Ā∗, ∂z, ∂ξ) and ([Ā, ζ̄], [Ā∗, ζ̄], ∂z, ∂ξ). The internal

energy-momentum redistribution during propagation is strongly connected with
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the existence of linear map transforming the first frame into the second one since

both are defined by the dynamical nature of our PhLO. Taking into account that

only the first two vectors of these two frames change during propagation we write

down this relation in the form

([Ā, ζ], [Ā∗, ζ]) = (Ā, Ā∗)

∥

∥

∥

∥

α β
γ δ

∥

∥

∥

∥

.

Solving this system with respect to the real numbers (α, β, γ, δ) we obtain
∥

∥

∥

∥

α β
γ δ

∥

∥

∥

∥

=
1

φ2

∥

∥

∥

∥

∥

−1

2
Lζ̄φ

2 εR

−εR −1

2
Lζ̄φ

2

∥

∥

∥

∥

∥

= −
1

2

Lζ̄φ
2

φ2

∥

∥

∥

∥

1 0
0 1

∥

∥

∥

∥

+ εLζ̄ψ

∥

∥

∥

∥

0 1
−1 0

∥

∥

∥

∥

.

Assuming the conservation law Lζ̄φ
2 = 0, we obtain that the rotational component

of propagation is governed by the matrix εLζ̄ψJ , where J denotes the canonical

complex structure in R
2, and since φ2Lζ̄ψ = R we conclude that the rotational

component of propagation is available if and only if the Frobenius curvature is

NOT zero: R 6= 0. We may also say that a consistent translational-rotational

dynamical structure is available if the amplitude φ2 = u2 + p2 is a running wave

along ζ̄ and the phase ψ = arctg p
u

is NOT a running wave along ζ̄.

As we have noted before the local conservation law Lζ̄φ
2 = 0, being equivalent to

Lζ̄φ = 0, gives one dynamical linear first order equation. This equation pays due

respect to the assumption that our spatially finite PhLO, together with its energy

density, propagates translationally with the constant velocity c. We need one more

equation in order to specify the phase function ψ. If we pay corresponding respect

also to the rotational aspect of the PhLO nature it is desirable this equation to intro-

duce and guarantee the conservative and constant character of this aspect of PhLO

nature. Since rotation is available only if Lζ̄ψ 6= 0, the simplest such assumption

respecting the constant character of the rotational component of propagation seems

to be Lζ̄ψ = const, i.e., lo = const. Thus, the equation Lζ̄φ = 0 and the frame

rotation (Ā, Ā∗, ∂z, ∂ξ) → ([Ā, ζ̄], [Ā∗, ζ̄], ∂z, ∂ξ), i.e., [Ā, ζ̄] = −εĀ∗Lζ̄ψ and

[Ā∗, ζ̄] = εĀLζ̄ψ, give the following equations for the two functions (u, p)

uξ − εuz = −
κ

lo
p, pξ − εpz =

κ

lo
u.

If we now introduce the complex valued function Ψ = uI + pJ , where I is the

identity map in R
2, the above two equations are equivalent to

Lζ̄Ψ =
κ

lo
J(Ψ)

which clearly confirms once again the translational-rotational consistency in the

form that no translation is possible without rotation, and no rotation is possible

without translation, where the rotation is represented by the complex structure J .

Since the operator J rotates to angle α = π/2, the parameter lo determines the
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corresponding translational advancement, and κ = ±1 takes care of the left/right

orientation of the rotation. Clearly, a full rotation (i.e., 2π-rotation) will require

a 4lo-translation, so, the natural time-period is T = 4lo/c = 1/ν, and 4lo is

naturally interpreted as the PhLO size along the spatial direction of translational

propagation.

In order to find an integral characteristic of the PhLO rotational nature in action

units we correspondingly modify (i.e., multiply by κlo/c) and consider any of the

two equal Frobenius four-forms

κlo
c

dA ∧A ∧ ζ =
lo
c

dA∗ ∧A∗ ∧ ζ =
κlo
c
εRωo.

Integrating this four-form over the four-volume R
3 × 4lo we obtain the quantity

H = εκET = ±ET , where E is the integral energy of the PhLO, which clearly is

the analog of the Planck formula E = hν, i.e., h = ET .
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