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Abstract—In this paper, we address the energy maxi-
mization problem of wave energy converters (WEC) subject
to nonlinearities and constraints, and present an efficient
online control strategy based on the principle of adap-
tive dynamic programming (ADP) for solving the associ-
ated Hamilton-Jacobi-Bellman (HJB) equation. To solve the
derived constrained nonlinear optimal control problem, a
critic neural network (NN) is used to approximate the time-
dependant optimal cost value and then calculate the prac-
tical suboptimal causal control action. The proposed novel
WEC control strategy leads to a simplified ADP framework
without involving the widely used actor NN. The signifi-
cantly improved computational efficacy of the proposed
control makes it attractive for its practical implementation
on a WEC to achieve a reduced unit cost of energy output,
which is especially important when the dynamics of a WEC
are complicated and need to be described accurately by
a high-order model with nonlinearities and constraints.
Simulation results are provided to show the efficacy of the
proposed control method.

Index Terms—Wave energy converters, adaptive dy-
namic programming, constrained optimal control.

I. INTRODUCTION

S
EA waves provide a promising renewable energy resource

for wave energy, which can be potentially harnessed.

However, despite decades of research efforts, wave energy

is still far from being mature for commercialization due to

higher unit cost of generated electricity than other renewable

energies, e.g., solar and wind [1]. Reducing the unit cost of

energy output of a wave energy converter (WEC) relies on

both good device design and an efficient control strategy. It

has been recognized that development of advanced control

strategies for WECs is one of the most promising cost-

reduction pathways. Early conventional WEC control methods,
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e.g., latching control [2] and declutching control, are mainly

based on the impedance matching principle, that is, maximum

energy can be harvested when the resonance frequency of

the WEC matches the dominant frequency of the incoming

waves [3]. These control methods can be easily implemented

in idealized regular waves but may become complicated for

its implementation in real irregular waves.

The control of WEC is essentially an energy maximization

problem subject to the wave excitation forces as the persistent

disturbances, which is essentially different from traditional

optimal control for reference tracking or regulation problems.

Hence, a new branch of advanced optimal control strategies

need to be developed to resolve the WEC control problem.

Specifically, model predictive control (MPC) has been tailored

for WEC systems in recent years [4]–[8]. MPC has the

ability to explicitly incorporate constraints into the WEC

control problem and utilize wave prediction information to

satisfy the non-causal optimal control requirement [3]. It is

shown that MPC-based control can double the energy output

compared with the conventional WEC control strategies [7].

However, one critical problem of implementing the MPC

strategy is its heavy online computational burden since a

direct maximization control target of the WEC control can

result in a non-convex optimization problem. This problem can

become numerically intractable if the dynamics of a WEC are

complicated and need to be described accurately by a high-

order model with nonlinearities to retain the modeling fidelity

and constraints for safe operations. To address this issue, some

alternative methods have been proposed, such as control based

on convex optimization with a modified objective function

[9], adaptive control [10], nonlinear MPC with pseudospectral

control [11], and nonlinear MPC based on a combination of

the pseudospectral method and the differential flatness [12],

where the plant model is assumed to be accurate.

To handle modeling uncertainties and nonlinearities in the

control systems, function approximations (e.g., neural net-

works (NN) or fuzzy logic systems (FLS)) have been adopted

in the adaptive control designs [13]–[15]. However, these

adaptive control approaches cannot be directly used for WEC

systems since they cannot solve the energy maximization

problem. To achieve optimal performance requirement, the

idea of reinforcement learning (RL) [16] has been used in the

optimal control design, which leads to a new online optimal

control design approach, named adaptive dynamic program-

ming (ADP). In this method, NNs are trained to approximate
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the solution of the Hamilton-Jacobi-Bellman (HJB) equation

and the required control actions [17]. The well-known actor-

critic based ADP framework [18] has been initially developed

for discrete-time optimal control [19], [20]. Substantial work

has also been reported for continuous-time systems [21] with

unknown nonlinearities [22], control constraints [23] and

tracking command [24], [25]. However, these available ADP

methods have been proposed to solve regulation or tracking

problems only, and thus they cannot be directly used to solve

the energy maximization of WECs [26].

In this paper, we propose a novel fast adaptive suboptimal

causal control strategy, which can efficiently tackle the con-

strained WEC optimal control problem without involving the

wave prediction information. Although various WEC devices

have been reported, e.g., [27], [28], we will use a benchmark

point absorber type of WEC as described in [12] for demon-

stration and comparison purpose in this paper, where only the

vertical heave motion dynamics are considered. To develop an

online suboptimal causal control for nonlinear WECs without

using offline learning and wave prediction, this paper exploits

the applicability of ADP to address the WEC control problem,

of which the control objective is to maximize the output

energy [8], while constraints imposed on the control input and

system states are guaranteed. We firstly reformulate the WEC

control as a constrained energy maximisation control problem,

where the input constraint is explicitly incorporated into a

modified cost function and can be strictly guaranteed. This is

a nontrivial advancement compared with the recent work [26],

and directly contributes to the reduction of the levelized cost

of electricity (LCOE). As a commonly encountered problem in

many control applications, actuator saturation is an important

issue which needs to be accounted for in power take-off

(PTO) design and the hardware selection for feedback control

implementation in a WEC control system. The control input

constraints are associated with the limits of the components

such as the torque limits of hydraulic actuators and hydraulic

synchro-generators used in the hydraulic PTO, the torque and

excursion limits of the linear generators of a electric PTO

and the current/voltage limits of the converters. It is not

only critical for safety but also a key factor influencing the

trade-off between hardware cost and control performance. A

control system fully incorporating the hardware constraints

into the controller design can normally outperform its coun-

terpart controlled by an unconstrained controller. Moreover,

the proposed control can also tackle the nonlinearities of

the WEC dynamics, which cannot be effectively handled by

the approach of [26]. The nonlinear effects of the wave-

structure interactions can become prominent for large waves.

Ignoring these nonlinear effects in the WEC control design

can lead to performance degradation. The proposed approach

can effectively tackle such nonlinear effects using a lumped

term, which helps to reduce the model order and thus the

computational burden compared to the approach of [26]. A

direct comparison of the proposed constrained control strategy

based on ADP with that of [26] using simulations demonstrates

the advantages of the proposed one.

The main contributions of this paper can be summarized as

follows:

float
sea surface

cylinder

piston

zw
zv

seabed

Fig. 1. Structure diagram of the point absorber [12]

1) The cost function adopted in [26] has been further modified

to explicitly address the control input constraint. The

subsequent ADP synthesis has been also tailored such that

the input constraint can be strictly fulfilled in this paper,

which helps retain safe operations of WEC and generates

more reliable energy output in practice.

2) The nonlinear wave excitation force dynamics are consid-

ered directly in the adopted WEC model, such that the

order of the WEC model used for the control design and

implementation can be reduced compared with [26]. Hence,

this ADP based control is more computationally efficient.

The paper is organized as follows. The modeling of a typical

WEC and the problem formulation are presented in Section II.

The design of online constrained optimal control with ADP

is introduced in Section III. Simulation results are given in

Section IV. The paper is concluded in Section V.

II. WEC MODELING AND CONTROL FORMULATION

The point absorber to be controlled is shown in Fig. 1. For

completeness, we first briefly introduce the nonlinear dynamics

and modeling of this WEC plant. The point absorber has a

float on the sea surface with a variational radius. Note that

in the WEC studied in this paper (Fig.1) the heave motion of

the float drives a hydraulic system for power generation (see

e.g., [29]–[33] for more details about the power generation

subsystem with hydraulic generators or linear generators),

where a hydraulic cylinder with a piston inside it is vertically

installed below the float; the other end of the cylinder is

attached to the seabed or anti-heave plate with negligible

heave motion relative to the float. The aim of this paper is to

propose a new ADP control design methodology to solve the

WEC control problem. Hence, we are only concerned with the

control of the float vertical motion which can be influenced by

manipulated forces acting on the float, while the modeling and

control of the PTO mechanisms are not explicitly considered;

see [34] and the references therein for more details on the

wave-to-wire modeling issues.

We define zw and zv as the sea surface level and the height

of the float, fu as the control input (the force acting on the

float). It is noted that the motion velocity of the float v = żv
can drive the energy generator, such that the extracted energy

over a period [0, T ] is

E = −

∫ T

0

fuvdt (1)
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Fig. 2. The structure of the float for the calculation of nonlinear hydraulic
stiffness [12].

Two constraints have to be considered in the WEC control

designs to guarantee safe operation of WECs: first, the relative

motion between the float and the sea surface cannot be too

large to avoid device damage, and thus the first constraint is

given by

|zw − zv| ≤ zmax. (2)

for a given constant zmax. Second, the required control effort

on the device must be within the actuator saturation. Hence,

the other constraint is on the required control force fu as

|u| = |fu| ≤ umax. (3)

for a given constant umax. The control objective is to maximize

the energy (1) converted from waves subject to the constraints

(2) and (3).

The dynamic equation of the float motion is given by

msz̈v = fs − fr − ff + fu (4)

where ms is the mass of the float, fs is the buoyancy force,

fr is the radiation force, and ff is the friction force.

The radiation force is calculated by the Cummins’ equation

fr = m∞z̈v +

∫ t

−∞

hr(τ)[żv(t− τ)− żw(t− τ)]dτ (5)

where m∞ is the added mass when the frequency approaches

the infinite frequency.

The friction force is proportional to the heave velocity as

ff = Df żv (6)

with Df as the friction coefficient.

The nonlinearity considered in this WEC model comes from

the buoyancy force owing to the nonconstant cross sectional

area of the float. The nonlinear function is

fs = κ(z) =







κ0h2 + κn(z), if h2 < z ≤ h1;

κ0z, if |z| ≤ h2;

−κ0h2 − κn(−z), if −h1 ≤ z < −h2.
(7)

where z := zw − zv , κ0 := πρgd21/4, with ρ as the density of

sea water, g as the standard gravity and

κn(z) =
πgρ

4
[d21(z − h2)− (z − h2)

2d1ξ

+ (z − h2)
3ξ2/3]

(8)

with

ξ := 2 tan θ =
d1 − d2
h1 − h2

.

The other notations d1, d2, h1, h2 and θ are shown in Fig. 2.

Substituting (5), (6) and (7) into (4), it follows

mz̈v = κ(z)−

∫ t

−∞

hr(τ)[żv(t−τ)−żw(t−τ)]dτ−Df żv+fu

(9)

where m = ms +m∞ is the lumped mass.

The convolution kernel hr(τ) can be obtained from ma-

ture fluid dynamics software packages, which can be further

described by a state-space model

ẋr = Arxr +Br(żv − żw) (10a)

yr = Crxr (10b)

with yr :=
∫ t

−∞
hr(τ)[żv(t− τ)− żw(t− τ)]dτ .

By choosing the system state vector as x = [x1, x2, xr]
⊤ ∈

R
n, the state-space model of the WEC system (4) is given by

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (11a)

y(t) = Cyx(t) (11b)

with x1 := zw − zv , x2 := żv , u := fu, w := żw, y := żv and

A =





0 −1 01×nr

κ(·)/m −Df/m −Cr/m
0nr×1 Br Ar



 , Bu =





0
1/m
0



 ,

Bw =
[

1 0 −Br

]

, Cy =
[

0 1 01×nr

]

.

Note that (11) describes a more realistic nonlinear WEC

plant than its simplified, linear counterpart studied in the

previous literature [7], [9], which assumes a constant float

radius. Moreover, since the nonlinear term κ(z) denoting the

buoyancy force dynamics is included in the matrix A directly,

the WEC model (11) in this paper has lower order than

the full-order WEC model studied in [26], where buoyancy

force dynamics have to be represented in an extra state-space

model and induced into the whole WEC model. This property

may make other optimal control designs (e.g., linear MPC)

infeasible.

The aim of WEC control design is thus to solve the

following constrained optimization problem:

max
u(t)

∫ T

0

−u(t)y(t)dt

s.t. ẋ(t) = Ax(t) +Buu(t) +Bww(t)

|x1| ≤ zmax, |u(t)| ≤ umax, ∀t ∈ [t0, T )

(12)

In this paper, we aim to resolve the constrained optimal

WEC control problem (12) using ADP, where the wave

prediction algorithm is not needed. Hence, compared with

other control strategies (e.g., MPC), the ADP-based control

to be presented provides a suboptimal causal control solution.

In some WEC operation scenarios, it is recognized that the

loss of energy with a suboptimal causal control can be trivial

[35], especially when compared to the obvious benefit of

computation load reduction and the avoidance of the cost and

maintenance of wave prediction hardware.

III. CONSTRAINED OPTIMAL CONTROL DESIGN VIA ADP

In this section, the optimization problem (12) is first refor-

mulated to explicitly address the constraints on the heave mo-
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tion x1 in (2) and the control input u in (3), and then resolved

using the principle of ADP. Then the online implementation

will be investigated by developing a recently proposed adaptive

law to update the critic NN weight.

A. Optimal control design for WECs with constraints

To guarantee safe operation of a WEC, the constraints

imposed on the output x1 in (2) and the input u in (3) should

be fulfilled. Hence, these factors must be considered in the

cost function used to synthesis the control. For this purpose,

the following modified cost function is introduced:

V (x, t) =

∫ T

t

(

x2(τ)u(τ) +
ϵ

zmax − |x1(τ)|
+ U(u(τ))

)

dτ

(13)

where ε > 0 is a small constant, zmax denotes the constraint

on the state x1. U(u(τ)) is a positive definite function of the

control input u, which is set as a nonsquare function as [23]

U(u(τ)) = 2

∫ u

0

umax tanh
−1

(

v

umax

)

Rdv (14)

where tanh(·) is the hyperbolic function, umax is the satu-

ration bound of u. R > 0 is a positive constant to make a

trade-off between the control action and energy output (e.g.,

a large R can reduce the amplitude of control u).

Remark 1. In the modified cost function (13) with (14), the

first term represents the extracted energy output. It is clear that

the maximization of the cost function in (12) is equivalent to

the minimization of the first term in the modified cost function

(13). The second term is a barrier function of x1, which is used

to address the constraint (2) as [7]. Since ε
zmax−|x1|

→ ∞

holds for |x1| → zmax, minimizing this term with a small

bounded constant ϵ can prevent the system output x1 from

approaching the boundary defined in (2). The final term is a

nonquadratic function of u to constrain the control input [23],

which is different to the cost function with a quadratic term

u⊤Ru adopted in [26]. Hence, as shown in the subsequent

developments, the derived control u based on this further

modified cost function can strictly guarantee the constraint (3).

Thus, the original optimal control problem (12) is converted to

the minimization of cost function (13) subject to system (11).

To obtain the control action, the optimization problem with

the cost function (13) and system (11) needs to be solved.

This constrained optimal control can be solved by the dynamic

programming (DP) algorithm [7], where heavy computational

costs may be problematic for practical application, in particular

when the WEC is described by a high-order model. In the fol-

lowing, we present an efficient solution using the Hamiltonian

method, which needs a Hamiltonian defined as follows [17]

H(x, u, V, t) =V ⊤
x (Ax+Bww +Buu)

+ x2u+
ε

zmax − |x1|
+ U(u)

(15)

where Vx := ∂V (x, t)/∂x is the partial derivative of V (x, t)
in (13) with respect to x.

Denote V ∗(x, t) as the optimal cost function of the optimal

control u∗, which is given by

V ∗(x, t) = min
u

∫ T

t

(

x2u
∗ +

ϵ

zmax − |x1|
+ U(u∗)

)

dτ

(16)

Then based on the optimal control theory [17], we know that

the optimal control u∗ satisfies the following HJB equation:

−V ∗
t = min

u
H(x, u∗, V ∗(x, t), t)

= V ∗T
x (Ax+Bww +Buu

∗) + x2u
∗ +

ε

zmax − |x1|

+ 2

∫ u∗

0

umax tanh
−1

(

v

umax

)

Rdv

(17)

where V ∗
t := ∂V ∗(x, t)/∂t and V ∗

x := ∂V ∗(x, t)/∂x.

Then according to the stationary condition [17], we can

solve ∂H(x, u∗, V ∗)/∂u∗ = 0 for the suboptimal causal

control action u∗ given as

u∗ = −umax tanh

[

1

2Rumax

(x2 +B⊤
u V ∗

x )

]

= −umax tanh (Ψ)

(18)

where Ψ = 1
2Rumax

(x2 +B⊤
u V ∗

x ).
Clearly, the obtained control of (18) is different to that in

[26] and can guarantee the satisfaction of the saturation |u| ≤
umax for all t > 0. Considering the property of hyperbolic

function and substituting (18) into (14), we have

U(u∗) = 2

∫ u∗

0

umax tanh
−1

(

v

umax

)

Rdv

= 2umax tanh
−1 (u∗/umax)Ru∗

+ u2
maxR ln

[

1− (u∗/umax)
2
]

= 2umaxΨRumax tanh(Ψ)

+ u2
maxR ln

[

1− tanh2(Ψ)
]

= umax(x2 +B⊤
u V ∗

x ) tanh(Ψ)

+ u2
maxR ln

[

1− tanh2(Ψ)
]

.

(19)

We further substitute (19) into HJB equation (17), so that

−V ∗
t = V ∗⊤

x (Ax+Bww)− (V ∗⊤
x Bu + x2)umax tanh(Ψ)

+
ε

zmax − |x1|
+ umax(x2 +B⊤

u V ∗
x ) tanh(Ψ)

+ u2
maxR ln

[

1− tanh2(Ψ)
]

= V ∗⊤
x (Ax+Bww) +

ε

zmax − |x1|

+ u2
maxR ln

[

1− tanh2(Ψ)
]

(20)

If we solve the HJB equation (20) for the optimal cost value

V ∗, then the suboptimal causal control given by (18) can be

obtained. Since the optimal cost function (13) has a finite-

horizon, we know that V ∗, V ∗
t and V ∗

x are dependent on time

t [36], [37], and V ∗
t appears in the HJB equation (20) though it

is not involved in the control (18) explicitly. For this case, the

HJB equation (20) is nonlinear and with time-varying nature,

and thus it is generally difficult or even not possible to find
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its analytical solution. Hence, in the next subsection we will

present an alternative solution using the principle of ADP,

where a critic NN is online trained to estimate the optimal

cost-to-go function by further tailoring the idea presented in

[26].

B. Online implementation with ADP

The idea of ADP [17] is to online solve the HJB equation

in terms of adaptive methods, where the optimal cost function

can be online estimated in terms of a critic NN as [22], [23].

However, as mentioned in the last subsection, the above cost-

to-go function V ∗(x, t) for WEC is time dependent, which is

more difficult to handle than that derived for other optimal

control as in [22], [23]. To address this time-dependent issue,

several researchers have attempted to further tailor the idea

of ADP for optimal regulation problem [36]–[38]. In [36],

a critic NN with time-dependent weight was introduced to

approximate the time-dependant cost function (13). However,

the time-dependent weight were calculated through a back-

ward integration, which is time-consuming and computation-

ally demanding. Alternatively, a critic NN with time-varying

activation function (taking time-to-go as its input) and constant

weight was suggested in [37], [38]. In this paper, to implement

the resulting control algorithm online, we introduce a critic NN

with time-varying activation functions as [37], [38].

Without loss of generality, the optimal value function

V ∗(x, t) is assumed to be a continuous function on a compact

set Ω × [0, T ] [23], and then it can be approximated by the

following critic NN with a time-varying regressor function:

V ∗(x, t) = W ∗⊤ϕ(x, T − t) + εn (21)

where W ∗ ∈ R
l is the unknown constant NN weight, ϕ(x, T−

t) = [ϕ1(x, T−t), · · · , ϕl(x, T−t)]⊤ ∈ R
l is the time-varying

NN regressor vector, which is a function of the state x and

the time-to-go T − t as [37], [38]; here l denotes the number

of neurons, and εn defines the residual NN error.

Then its derivatives with respect to x and t are given by

∂V ∗(x, t)

∂x
= ∇ϕ⊤(x, T − t)W ∗ +∇εn (22a)

∂V ∗(x, t)

∂t
= ∇ϕt

⊤(x, T − t)W ∗ +∇εnt (22b)

where ∇ϕ(x, T − t) = ∂ϕ/∂x, ∇ϕt(x, T − t) = ∂ϕ/∂t,
∇εn = ∂εn/∂x and ∇εnt = ∂εn/∂t are defined as the partial

derivatives of ϕ, εn regarding to x and t, respectively.

We make the assumption as used in [23] and other ADP

references:

Assumption 1. The ideal NN weight W ∗, regressor ϕ and

its derivatives ∇ϕ,∇ϕt of the critic NN are bounded by

∥W ∗∥ ≤ WN , ∥ϕ∥ ≤ ϕN , ∥∇ϕ∥ ≤ ϕM , ∥∇ϕt∥ ≤ ϕt. More-

over, the derivatives of approximation errors, e.g., ∇εn,∇εnt,
are bounded by ∥∇εn∥ ≤ ϕεn and ∥∇εnt∥ ≤ ϕεnt

.

Based on (18) and (22), the suboptimal causal control u∗

given by (18) is reformulated as

u∗ = −umax tanh

(

1

2Rumax

[

x2 +B⊤
u (∇ϕ⊤W ∗ +∇εn)

]

)

(23)

In practical implementation, the ideal NN weight W ∗ is un-

known. Hence, we can only use the estimate Ŵ of W ∗, which

is online updated by using appropriate adaptive algorithms. In

this case, a practical critic NN with the estimated NN weight

Ŵ is given by

V̂ (x, t) = Ŵ⊤ϕ(x, T − t) (24)

Substituting the estimated cost function (24) into (18) will

yield the practical control as

u = −umax tanh

(

1

2Rumax

(x2 +B⊤
u ∇ϕ⊤(x, T − t)Ŵ )

)

(25)

Next we investigate a new adaptive algorithm to online

calculate the NN weight Ŵ , which can guarantee that Ŵ
converges to a small set around W ∗ even with the NN

approximation error εn. Using this new adaptive law, the

widely used actor NN (e.g. [21], [24]) can be avoided since

the convergent critic NN weight Ŵ can be used to derive

the practical control action in (25) directly. This results in

a simplified ADP framework in comparison to most of the

existing ADP results.

To design an adaptive law based on the HJB equation (20)

and the critic NN (22), we have

0 =W ∗⊤∇ϕt(t, T − t) +W ∗⊤∇ϕ(x, T − t)(Ax+Bww)

+
ε

zmax − |x1|
+ u2

maxR ln
[

1− tanh2(Ψ)
]

+ εHJB

(26)

where εHJB = ∇ε⊤n (Ax+Bww)+∇εnt is the residual error

embedded in the HJB equation, which stems from the bounded

NN approximation errors εn, ∇εn and ∇εnt. In this case,

εHJB is bounded. Specifically, this error can be arbitrarily

small as the number of NN nodes l → +∞ [21], [23].

We can further represent (26) in a more compact form.

Hence, define Ξ := ∇ϕt + ∇ϕ(Ax + Bww) and Θ :=
ε

zmax−|x1|
+ u2

maxR ln
[

1− tanh2(Ψ)
]

, and then (26) can be

rewritten as

Θ = −W ∗⊤Ξ− εHJB (27)

Now, the unknown NN weight W ∗ is in a linearly param-

eterized form in (27) associated with the regressor vector Ξ.

With this observation, we can further tailor the idea initially

suggested in our recent work [22], [39] to design an adaptive

law driven by the estimation error. Thus, the first step should

be to extract the estimation error by defining a matrix M and

a vector N by applying the following filter operations on the

known dynamics Ξ,Θ as
{

Ṁ = −ιM + ΞΞ⊤,M(0) = 0

Ṅ = −ιN + ΞΘ, N(0) = 0
(28)

where ι > 0 is a constant used to retain the boundedness of

M,N .

Then another variable can be online calculated based on M
and N as

ϖ = MŴ +N (29)

We can prove that this introduced variable ϖ can represent the

unknown estimation error between the unknown weight W ∗
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and the estimated weight Ŵ . This can be summarized as the

following lemma:

Lemma 1. [22] The auxiliary variable ϖ calculated based

on (29) with (28) can be represented as

ϖ = −MW̃ + φ (30)

where W̃ = W ∗ − Ŵ defines the estimation error of the NN

weight, and φ = −
∫ t

0
e−ι(t−r)εHJB(r)Ξ(r)dr denotes the

effect of the residual HJB error, which is also bounded, i.e.,

∥φ∥ ≤ εN for a positive constant εN > 0.

Proof: By solving (28), one can obtain its solution as
{

M(t) =
∫ t

0
e−ι(t−r)Ξ(r)Ξ⊤(r)dr

N(t) =
∫ t

0
e−ι(t−r)Ξ(r)Θ(r)dr

(31)

Substituting (27) into (31), we can verify that

N = −MW ∗ + φ (32)

Then from (29) and (32), it can be verified that (30) holds.

On the other hand, the boundedness of φ can be proved by

considering the definition φ and the fact that the regressor ϕ
and the estimation error εn are all bounded. ⋄

Based on Lemma 1, we can find that the variable ϖ
includes the estimation error W̃ perturbed by a bounded

variable φ, which can be made arbitrarily small and assumed

as a disturbance. Then based on the analysis in [22], the

adaptive law driven by this estimation error can help to prove

the convergence of Ŵ to W ∗ with fast convergence rate.

Therefore, we can present the following adaptive law (33)

driven by ϖ to online calculate the critic NN weight Ŵ as

˙̂
W = −Γϖ (33)

where the learning gain Γ > 0 can be set as a positive constant

matrix.

Moreover, before proving the convergence of the proposed

adaptive law, we need to investigate the positive definiteness

of the matrix M . Define λmax(·), λmin(·) as the maximum

and minimum matrix eigenvalues. Then we have the following

lemma.

Lemma 2. [39] The condition λmin(M) > σ > 0 holds for

a constant σ > 0 (i.e., M is positive definite) provided that Ξ
defined below (26) is persistently excited (PE).

Based on (28), the matrix M is a filtered version of ΞΞ⊤ as

shown in (31). Then by applying straightforward mathematical

manipulations based on the definition of PE for Ξ, the positive

definiteness of M can be proved. We refer to [39] for a similar

proof.

The main results of this paper can be given as the following

Theorem:

Theorem 2. Consider nonlinear WEC system (11) with cost

function (13), suboptimal causal control (25) and adaptive law

(33) with the regressor Ξ being PE, then W̃ converges to a

neighborhood around zero, and the derived control u given in

(25) converges to a neighborhood around the optimal solution

(23). Specifically, for the case when the NN errors are zero

(i.e., εn,∇εn,∇εnt = 0), W̃ exponentially converges to zero,

and the derived control u in (25) converges to the optimal

solution in (23).

Proof: Based on Lemma 2, we can validate that if Ξ in

(26) is PE, then the matrix M is positive definite, such that

λmin(M) > σ > 0 is true for a constant σ > 0. Now, we select

a Lyapunov function V = 1
2W̃

⊤Γ−1W̃ , then the derivative of

V with respect to time t can be calculated along (33) as

V̇ = W̃⊤Γ−1 ˙̃W = −W̃⊤MW̃ + W̃⊤φ

≤ −σ∥W̃∥2 + ∥W̃∥εN

≤ −(σ −
1

2η
)∥W̃∥2 +

η

2
ε2N

≤ −αV + γ

(34)

where α = 2(σ − 1/2η)/λmax(Γ
−1), γ = ηε2N/2 are positive

constants for appropriately selected constant η > 1/2σ.

From the Lyapunov Theorem, we can claim from (34)

that the NN weight error W̃ is bounded, and will expo-

nentially converge to a set defined by Ωw = {W̃ |∥W̃∥ ≤
√

2γ/αλmin(Γ−1). It is shown that the size of this set is

determined by the NN error εN , the learning gain Γ and

the excitation level σ. Moreover, considering the continuous

property of function tanh(·) and comparing (25) with (23), it

can be verified that the approximated control u in (25) can

also converge to a neighborhood around the optimal solution

u∗ in (23).

In particular case when the NN approximation error is zero,

i.e., εn = 0, one can validate that φ = 0 is true. Thus, (34)

can be represented to

V̇ = −W̃⊤MW̃ < −σ∥W̃∥2 ≤ −µV (35)

where µ = 2σ/λmax(Γ
−1) is a positive constant. Conse-

quently, we can claim that W̃ exponentially converges to zero,

and thus the proposed control u given in (25) converges to the

optimal control u∗ given in (23). This finishes the proof. ⋄

Remark 2. The regressor ϕ(x, T − t) of the critic NN can be

appropriately selected so that {ϕi : i = 1, . . . , l} can provide

a completely independent basis. Then from the Weierstrass

theorem [23], the NN approximation error can be made

sufficiently small by choosing sufficient neurons in the critic

NN, which means εn, ∇εn, ∇εnt → 0 as l → +∞. However,

in practice, the selection of NN nodes should be taken as

a trade-off between the convergence performance and the

required computational costs.

Remark 3. Compared to the existing ADP methods, e.g., [21],

[24], where another actor NN are needed, this paper presents

a new adaptive law (33), which can estimate the unknown

parameter with guaranteed convergence. Thus, we can use the

estimated critic NN weight Ŵ to calculate the control action

directly without training another actor NN. This simplified

ADP framework can help to reduce computational costs, and

tackle the problem of ‘curse of dimensionality’ encountered in

the classical dynamic programming methods.

Remark 4. Lemma 2 states that the well-known PE condition

is sufficient for the required condition λmin(M) > σ > 0,
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which is required in the proof of the convergence of (33). This

condition can be true for generic WEC systems since there is

external sea wave input w in the system (11). In particular,

it is possible to numerically online verify this condition by

testing the minimum eigenvalue of M based on Lemma 2.

Remark 5. To implement the proposed control (25), several

parameters need to be selected by the designer. The regressor

of critic NN is set based on the analysis shown in Remark

2. As shown in the proof of the above Theorem 2, a large

learning gain Γ can enhance the convergence speed of the

critic NN weight, while a too large adaptive gain can lead to

oscillations. Hence, Γ can be chosen as a trade-off between the

convergence rate and robustness. The filter constant ι in (28)

is used to retain the boundedness of M,N since it can serve

as a forgetting factor in the differential equation (28), and it

also determines the convergence rate of M and N . Hence, ι
cannot be set too large in general to avoid introducing too

large DC gains in (28).

The implementation of the proposed ADP based WEC

control algorithm described in Section III can be given in

Algorithm 1.

Algorithm 1 Implementation of the proposed WEC control

1: Measure the system state x and the current wave w.

2: Construct the regressor ϕ(x, T − t) for the critic NN, and

then derive the HJB equation (27).

3: Calculate the auxiliary variables M,N as given in (28),

and then online update the unknown weight Ŵ based on

(30) and (33).

4: Derive the practical control action based on (25), and

apply it on the WEC plant.

Go back to Step 1.

IV. SIMULATIONS

This section presents numerical simulations to show the effi-

cacy of the proposed control method. The model parameters of

the used point absorber are given in Table I, and the radiation

force matrices Ar, Br are the same as those used in [7], which

represent the dynamics of a medium-sized point absorber. The

float diameter is d = 9 m and at a height of h = 2.4 m above

the sea bottom, which leads to the float heave motion limits

as [−1.2, 1.2] m. This means the output constraint is given

by zmax = 1.2 m. The maximum allowable control input is

umax = 3× 105 N. The dimensions of the float in Fig. 2 are

d1 = 4.5 m, d2 = 2 m, h1 = 1.2 m and h2 = 1 m.

Numerical simulations of the proposed ADP control for

nonlinear WEC system are run on a PC with Intel(R)

Core (TM) i7 CPU @ 2.70 GHz, 8.00 GB memory, 64-

bit OS. A simulator was built in Simulink MATLAB, where

the sampling interval is set as 0.05 sec. The parameters

used in the proposed ADP based control are chosen as:

ϕ(x, T − t) = [x1t
4
n, x2t

5
n, 0.5x

2
1t

4
n, 0.5x

2
2t

4
n, x1x2t

4
n]

⊤ with

tn = (T − t)/T, T = 50 being the normalised time-to-

go, Ŵ (0) = [0, 0, 0, 0, 0]⊤, R = 1/(3.8 × 105), ε = 1,

zmax = 1.2, Γ=diag([1,1,1,1,1]) and ι = 1.5.

TABLE I
PARAMETERS USED FOR THE WEC MODEL

Description Notation Values

Density of sea water ρ 1025 kg/m3

Gravity g 9.8 N/kg

Float radius r 4.5 m

Damping (friction) Df 2× 103 Nm/s

Float mass ms 1× 104 kg

Added mass m∞ 7× 104 kg

Stiffness Df 6.39× 105 N/m

Input force limit umax 3× 105 N
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Fig. 3. Real sea wave profile No. 1: wave elevation magnitude and its
first derivative with respect to time.

Two real sea wave profiles gathered from the coast of

Cornwall, UK are used in the simulations. In the first case,

a wave profile with large amplitude (as shown in Fig.3) is

used to validate the proposed ADP control. Simulation results

are provided in Fig. 4 and Fig. 5. It can be observed from

Fig. 4 that the constraints imposed on the control input u and

the system output x1 can be strictly fulfilled and the control

signal is very smooth, which makes an easy implementation

of this control input on hardware actuators. Moreover, Fig.

5 shows the extracted power and the energy output with the

ADP control algorithm, which clearly illustrates stable energy

output with the proposed ADP control. Finally, Fig. 6 gives the

profile of the estimated critic NN weight Ŵ , which illustrates

the effectiveness of the introduced adaptive law for retaining

the convergence as proved in the Theorem 2.

In the second case, a small wave profile used in [12] as

shown in Fig. 7 is adopted for simulation. Comparative results
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Fig. 4. Control signal u and the heave motion x1 for Wave No.1.
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Fig. 5. The power output and the extracted energy with ADP control.
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of the MPC and ADP control are given in Fig.8 to Fig. 11.

Fig. 8 shows the power outputs of the WEC controlled by

the MPC and ADP control algorithms respectively when no

model mismatch is assumed. Note that the simulation results of

using MPC in [12] show the case when an extra constraint on

unidirectional power flow (i.e., from WEC to grid) is imposed.

This extra constraint in the MPC simulation is removed here

for fair comparison purpose,since the unidirectional power

flow cannot be guaranteed by the proposed ADP control.

Most of the existing optimal WEC control strategies result

in bidirectional energy flow (see [40], [41]) due to the nature

of the WEC control problem: although the power flow can

be negative (from grid to waves) at some instants, the energy

output over a finite period can be more extracted compared

to the case when the power flow is constrained always to be

positive, as also demonstrated in [12]. As stated in [41], the

bidirectional energy flow can be achieved by development of

hydraulic PTO mechanisms (e.g. [31]) or electric generators

(e.g. [30]). The PTO design for unidirectional energy flow

may be less complicated than the case of bi-directional flow

in some cases; it is thus an open question regarding the

tradeoff between the increased energy output by allowing

bidirectional flow and the PTO hardware cost for achieving

this bidirectional flow, which depends on specific cases.

Because non-causal wave prediction information is not

used, the proposed ADP control results in less energy output

than MPC by about 11% as shown in Fig.9. However, the

proposed ADP control shows better robustness performance

against model uncertainties. When the WEC model used in

the control design has model mismatches (e.g., added mass

md = 0.4m and radiation force yrd = 20yr), there is a

TABLE II
COMPARISONS BETWEEN MPC AND ADP FOR SIMULATION INTERVAL

T = 50 S

Control method Extracted Energy (J) Time (sec)

ADP 1.39× 107 0.92
MPC 1.56× 107 42.59

significant decrease by 19% of the energy output from the

WEC controlled by MPC, while the energy output decrease

using the ADP control is negligible. Another advantage of the

proposed ADP control is its ability to handle constraints. As

shown in Fig.10, the constraints imposed on the heave motion

x1 can be retained for both controllers. Additionally, one may

find from Fig.11 that the control signal of the ADP control

is smoother than that from MPC [12], which is preferable for

control implementation in practice.

Finally, to show the necessity for using a nonsquare function

U(u(τ)) (14) in the cost function (13) to strictly guarantee

the input constraint |u| ≤ umax, we also implement the

ADP control in [26], where only a quadratic term u⊤Ru
is used. Note the adopted WEC model and wave profile in

this paper are different to [26], thus the weight parameter

R of the ADP control [26] is retuned. First, we tune the

parameter R = 2.9 × 10−7 to get a similar energy output

as the ADP control with input constraint introduced in this

paper. Fig. 12 shows the generated energy and the required

control actions, from which we can see that the control input

via the ADP without input constraint in [26] exceeds the

control saturation, which in turn affects the safe operation of

WEC system. Following the analysis in [26], we then increase

the parameter to R = 4.9 × 10−7 for the ADP control in

[26] to reduce the amplitude of the control input to fulfill the

saturation condition. However, as shown in Fig. 13 the energy

output via the ADP without input constraint [26] decreases

about 36.2%. From these comparative simulations, it is evident

that explicitly incorporating constraints into the cost function

for the ADP control design can obtain better performance in

terms of the satisfaction of the control input constraint and the

generated energy.

Apart from the smooth control signal, strictly guaranteed

constraints and the robustness, a major attractive feature of the

proposed ADP control compared to MPC lies in its reduced

computational cost and significantly improved computational

efficiency in the online implementation. To further show this

feature explicitly, we compare the simulation time and the

generated energy of the proposed ADP control with the MPC

method in [12]. Table II summarizes the results for the simu-

lation interval T = 50 s, which shows that the computational

time of MPC used in the simulation is clearly much longer than

that of the ADP control. This is very attractive in practical real-

time application, in particular for high-order WEC systems,

where the resulting WEC optimal control problem becomes

intractable.

V. CONCLUSIONS

In this paper, we propose an efficient adaptive suboptimal

causal control strategy for WEC systems subject to nonlinear-
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Fig. 7. Real sea wave profile No. 2: wave elevation magnitude and its
first derivative with respect to time.
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0 5 10 15 20 25 30 35 40 45 50

Time (s)

-5

0

5

Co
nt

ro
l in

pu
t (

N)

1050 5 10 15 20 25 30 35 40 45 50
0

5

10

15

Ex
tra

cte
d 

En
er

gy
 (J

)

106

ADP without input constraint
ADP witht input constraint

Fig. 12. Energy output and control inputs of ADP control with/without
input constraint with R = 2.9× 10

−7.

ities and constraints. We propose a modified optimization cost

function to solve the problem of maximizing the generated

energy, the control saturation and the constraint imposed on

the system state. A constructive method is investigated to

online solve the derived HJB equation by using the principle

of ADP, where a critic NN is used to approximate the

optimal cost function and calculate the control action. A

new adaptive law is developed to online update the critic

NN weight with guaranteed convergence. It has been proved

that the input constraint can be strictly guaranteed, and the

obtained control can converge to a small set around the optimal

solution. This leads to a simplified ADP framework with

very high computational efficiency. Comparative simulations

demonstrate that the proposed online ADP control achieves

energy output less than that of MPC but yields smoother
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control input, much faster computational time and exhibits

more robustness. Although the proposed control is causal and

can only achieve a suboptimal solution compared with MPC,

the significantly reduced computational burden can be a major

benefit to promote its practical implementation especially for

WECs with complicated models. The proposed approach has

the potential to be extended to the control of other types of

WECs, and even other energy maximization control problems.

Future work will focus on modeling and control of full wave

energy harvest system including the electricity generation

subsystem.
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