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Preface

Nonlinear continuum mechanics is the kernel of the general course ‘Continuum
Mechanics’, which includes kinematics of continua, balance laws, general nonlin-
ear theory of constitutive equations, relations at singular surfaces. Moreover, in the
course of nonlinear continuum mechanics one also considers the theory of solids at
finite (arbitrary) deformations. This arbitrariness of deformations makes the equa-
tions describing the behavior of continua extremely complex — nonlinear (so that
sometimes the term ‘strongly nonlinear’ is used), as the relationships contained in
them cannot always be expressed in an explicit analytical way. If we drop the condi-
tion of the arbitrariness of continuum deformations and consider only infinitesimal
deformations — usually the deformations till 1%, then the situation changes: the
equations of continuum mechanics can be linearized. Hence for solving the applied
problems one can exploit the wide range of analytical and numerical methods. How-
ever, many practical tasks demand the analysis not of the infinitesimal, but just the
arbitrary (large) deformations of bodies, for example, such tasks include the rubber
structure elements design (shock absorbers, gaskets, tires) for which the ultimate
deformations can reach 100% and even higher. The various tasks of metal work-
ing under high pressure also belong to that class of problems, where large plastic
deformations play a significant role, as well as the dynamical problems of barrier
breakdown with a striker (aperture formation in the metal barrier while the break-
down is an example of large plastic deformations). Within this class of problems
one can also find many problems of ground and rock mechanics, where there usu-
ally appears the need to consider large deformations, and modelling the processes
in biological systems such as the functioning of human muscular tissue, and many
others.

The theory of infinitesimal deformations of solids appeared in the XVII cen-
tury in the works by Robert Hooke, who formulated one of the main assumptions
of the theory: stresses are proportional to strains of bodies. Translating the asser-
tion into mathematical language, this means that relations between stresses and
displacements gradients of bodies are linear. Nowadays the theory of infinitesimal
deformations is very deeply and thoroughly elaborated. On the different parts of this
theory such as elasticity theory, plasticity theory, stability theory and many others
there are many monographs and textbooks.
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But the well-known Hooke’s law does not hold for finite (or large) deformations:
the basic relations between stresses and displacement gradients become ‘strongly
non-linear’, and they cannot always be expressed analytically. The basis of fi-
nite deformations theory was laid in the XIX century by the eminent scientists
A.L. Cauchy, J.L. Lagrange, L. Euler, G. Piola, A.J.C. Saint-Venant, G.R. Kirchhoff,
and then developed by A.E.H. Love, G. Jaumann [28], M.A. Biot, ED. Murnaghan
[41] and other researchers. The works by M. Mooney and R.S. Rivlin written in the
1940s of the XX century contributed much to the formation of finite deformations
theory as an independent part of continuum mechanics. The fundamental step was
made in 1950-1960s of the XX century by the American mechanics school, first
of all by B.D. Coleman [9], W. Noll and C. Truesdell [43,54-56], who considered
the nonlinear mechanics from the point of view of the formal mathematics. Ac-
cording to D. Hilbert, they introduced the axiomatics of nonlinear mechanics which
structured the system of accumulated knowledge and made it possible to formu-
late the main directions of the further investigations in this theory. Together with
R.S. Rivlin and A.J.M. Spencer [10, 13,51] they elaborated the special mathemat-
ical apparatus for formulation of relationships, generalizing Hooke’s law for finite
deformations, namely the theory of nonlinear tensor functions. And also the tensor
analysis widely used in continuum mechanics was considerably adapted to the prob-
lems of nonlinear mechanics. Equations of continuum mechanics got the invariant
(i.e. independent of the choice of a reference system) form. The further development
of this direction was made by A.C. Eringen, A.E. Green, W. Zerna, J.E. Adkins and
others [1-7,11,12,14-27,29,30,32-35,38-40,42,47-50,52,53,57-60].

The role of Russian mechanics school in the development of contemporary non-
linear continuum mechanics principles is also quite substantial. In 1968 the first
edition of the fundamental two-part textbook ‘Continuum Mechanics’ by L.1. Sedov
was published, which is still one of the most popular books on continuum mechan-
ics in Russia. Outstanding results in the theory of finite elastic deformations were
obtained by A.L. Lurie [36,37], who wrote the principal monograph on the nonlin-
ear theory of elasticity and systemized in it the problem classes of the theory of
finite elastic deformations allowing for analytical solutions. Also the considerable
step was made by K.F. Chernykh [8], who developed the theory of finite deforma-
tions for anisotropic media and elaborated the methods for solving the problems
of nonlinear theory of shells and nonlinear theory of cracks. One can also mention
the works by mechanics scientists: B.E. Pobedrya, V.I. Kondaurov, V.G. Karnauhov,
A.A. Pozdeev, P.V. Trusov, Yu.l. Nyashin and many others who made considerable
contributions to the theory of viscoelastic, elastoplastic and viscoplastic finite de-
formations.

This book is based on the lectures which the author has been giving for many
years in Moscow Bauman State Technical University. The book has several funda-
mental traits:

1. It follows the mathematical style of course exposition, which assumes the usage
of axioms, definitions, theorems and proofs.

2. It applies the tensor apparatus, mostly in the indexless form, as the latter com-
bined with the special skills is very convenient in usage, and does not shade



Preface vii

the physical essence of the laws, and permits proceeding to any appropriate
coordinate system.

3. It uses the divergence form of dynamic equations of deformation compatibility,
that made it at last possible to write the complete system of balance laws of
nonlinear mechanics in a single generalized form.

4. The theory of constitutive equations being the key part of nonlinear mechanics is
for the first time exposed with the usage of all energetic couples of tensors, which
were established by R. Hill [26] and K.F. Chernykh [8] and ordered by the author
[12], and also with quasi-energetic couples of tensors found by the author [12].

5. To derive constitutive equations of nonlinear continuum mechanics, the author
applied the theory of nonlinear tensor functions and tensor operators, elabo-
rated by A.J.M. Spencer, R.S. Rivlin, J.L. Ericksen, V.V. Lokhin, Yu.I. Sirotin,
B.E. Pobedrya, the author of this book and others.

6. The bases of theories of large elastic, viscoelastic and plastic deformations are
explored from the uniform position.

7. The book uses a ‘reader-friendly‘ style of material exposition, which can be char-
acterized by the presence of quite detailed necessary mathematical calculations
and proofs.

The axiomatic approach used in this book differs a bit from the analogous ones
suggested by C. Truesdell [56] and other authors. The system of continuum mechan-
ics axioms in the book is composed so as to minimize their total number, and give
each axiom a clear physical interpretation. That is why the axioms by C. Truesdell
connected with the logic relations between bodies are not included in the general
list, the axioms on the bodies’ mass are united into one axiom, the mass conservation
law, and analogously the axioms on the existence of forces and inertial reference sys-
tems are united into one axiom, the momentum balance law. Though, the last axiom
is split into the two parts: first the Sect. 3.2 considers the case of inertial reference
systems, and then Sect.4.10 deals with non-inertial ones. Unlike the axiomatics by
C. Truesdell [56], in this book the axiom system includes so called principles of
constitutive equations construction which play a fundamental role in the formation
of a continuum mechanics equations system.

The axiomatic approach to the exploration of continuum mechanics possesses at
least one merit — it permits the separation of all the values into two categories: pri-
mary and secondary. These are introduced axiomatically and consequently within
the continuum mechanics there is no need to substantiate their appearance. The sec-
ondary category includes combinations of the first category’s values. The axiomatic
approach allows us also to distinguish from continuum mechanics statements be-
tween the definitions and corollaries of them (theorems); this is extremely useful for
the initial acquaintance with the course.

To get acquainted with the specific apparatus of tensor analysis the reader is
recommended to use the author’s book ‘Tensor Analysis and Nonlinear Tensor
Functions’ [12], which uses the same main notations and definitions. All the ref-
erences to the tensor analysis formulas in the text are addressed to the latter book.
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This book covers the fundamental classical parts of nonlinear continuum
mechanics: kinematics, balance laws, constitutive equations, relations at singular
surfaces, the basics of theories of large elastic deformations, large viscoelastic
deformations and large plastic deformations. Because of limits on space, important
parts such as the theory of shells at large deformations, and the theory of media with
phase transformations were not included in the book.

I would like to thank Professor B.E. Pobedrya (Moscow Lomonosov State
University), Professor N.N. Smirnov (Moscow Lomonosov State University) and
Professor V.S. Zarubin (Bauman Moscow State Technical University) for fruitful
discussions and valuable advice on different problems in the book.

I am very grateful to Professor G.M.L. Gladwell of the University of Waterloo,
Canada, who edited the book and improved the English text.

I also thank my wife, Dr. Irina D. Dimitrienko (Bauman Moscow State Technical
University), who translated the book into English and prepared the camera-ready
typescript.

I hope that the book proves to be useful for graduates and post-graduates of
mathematical and natural-scientific departments of universities and for investiga-
tors, academic scientists and engineers working in solid mechanics, mechanical
engineering, applied mathematics and physics. I hope that the book is of interest
also for material science specialists developing advanced materials.

Russia Yuriy Dimitrienko
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