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Abstract In this study, the time-dependentmechanics ofmultilayered thick hyperelastic beams are investigated
for the first time using five different types of shear deformation models for modelling the beam (i.e. the
Euler–Bernoulli, Timoshenko, third-order, trigonometric and exponential shear deformable models), together
with the von Kármán geometrical nonlinearity and Mooney–Rivlin hyperelastic strain energy density. The
laminated hyperelastic beam is assumed to be resting on a nonlinear foundation and undergoing a time-
dependent external force. The coupled highly nonlinear hyperelastic equations of motion are obtained by
considering the longitudinal, transverse and rotation motions and are solved using a dynamic equilibrium
technique. Both the linear and nonlinear time-dependent mechanics of the structure are analysed for clamped–
clamped and pinned–pinned boundaries, and the impact of considering the shear effect using different shear
deformation theories is discussed in detail. The influence of layering, each layer’s thickness, hyperelastic
material positioning andmany other parameters on the nonlinear frequency response is analysed, and it is shown
that the resonance position, maximum amplitude, coupled motion and natural frequencies vary significantly
for various hyperelastic and layer properties. The results of this study should be useful when studying layered
soft structures, such as multilayer plastic packaging and laminated tubes, as well as modelling layered soft
tissues.

Keywords Layered beams · Soft beams · Hyperelastic beams · Nonlinear vibration · Nonlinear dynamics ·
Laminated beams · Multilayered beams · Sandwich beams

1 Introduction

Layering structures is an effective method for optimising their mechanical, physical and electrical properties
for a specific purpose. For instance, in the automotive industry, reducing the weight of the structure and
increasing the stiffness lead to significant environmental benefits (lowering the fuel consumption and increasing
automobile’s performance [1,2]) which is made feasible by fabricating multilayered parts.
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In many engineering applications, structures are fabricated with three layers (e.g. in laminated packaging);
the outer layers are called the skins (upper skin and lower skin) and the middle layer is the core. If the purpose
of the design is to increase the strength against bending loads, the core is usually made of a softer material with
a higher thickness and the outer skins are thinner and stiffer. If the structure is used in an uncertain environment,
the outer skins are made of softer materials to propagate the force throughout the structure and avoid cracks
in a brittle core. In some other engineering structures, researchers gradually change the material properties to
fabricate functionally graded structures which have been studied in Refs. [3–6].

Over the past few years, researchers have analysed different layered elastic (versus hyperelastic in this
paper) structures to understand theirmechanical behaviour under diverse conditions. A brief review of previous
studies in this field is given in this section; however, interested readers seeking a more detailed literature review
are referred to Refs. [7–10].

For bending analysis of layered elastic beams [11,12], researchers have used different beam theories and
analysed layered beam structures. By neglecting the shear effects, Chai and Yap [13] examined the bending
behaviour of layered composite structures using classic beam theory (CBT). By comparing the results with
those of a finite element modelling (FEM), it was shown that the coupling terms between the layers play a
significant role in predicting the mechanical behaviour accurately. Chen et al [14] added the shear influence
to the model using the first-order shear deformable beam theory; it was shown that the bending deformation
of the Timoshenko beam model is higher than the CBT and the difference is higher for any lower thickness-
to-length ratio. Özütok and Madenci [15] used a higher-order shear deformation theory together with FEM
for timed-independent analysis of layered composite beams and verified the results by comparing them with
those available in the literature.

For linear vibration analysis of layered elastic beams [16–18], Emam and Nayfeh [19] investigated the free
vibration of layered composites using the Euler–Bernoulli beam theory. The axial motion was considered in the
formulation and was substituted in the transverse equation of motion. Natural frequencies were obtained for
different axial loads and boundary conditions; itwas reported that for the studied six-layer beammodel, the layer
positioning has a significant effect in varying the fundamental frequency for different axial loads. A first-order
shear deformable beam theorywas used byBanerjee and Sobey [20] to examine the free oscillation of laminated
structures under axial loading. A closed-form analytical solution was presented showing accuracy in predicting
the natural frequencies and mode shapes of layered beams. Damanpack and Khalili [21] used higher-order
beam theory to model the longitudinal–transverse coupled motion of layered structures. Hamilton’s principle
was used to reach the equations of motion showing that the natural frequencies obtained from this model agree
with the experimental results presented in Ref. [22].

For nonlinear vibration analysis of elastic beams, Zhang et al. [23] studied the nonlinear forced oscillation
of laminated beams in a humid thermal condition.Only the transversemotionwas considered in the formulation,
and a nonlinear energy sink was added to the model. The equations of motion were solved using a fourth-order
Rung–Kutta (RK4) method and a two-term harmonic balance (HB) scheme. It was shown that the nonlinear
studiedmodel has a hardeningbehaviour and adding anonlinear energy sink can reduce themaximumamplitude
of the transverse vibration significantly. Shen et al. [24] examined the nonlinear free oscillation behaviour of
layered graphene-strengthened beams; Halpin–Tsai model was employed to predict the physical properties of
the combination of thematrix andfibres.Ahigher-order shear deformable theory, togetherwith the von-Kármán
geometrical nonlinearity, was used to model the beam. By employing a two-step perturbation technique, it was
shown that the layering and positioning of fibres has a significant effect in varying the nonlinear frequency
ratio and the natural frequencies. Three-layered and bi-layered shear deformable elastic beams have been
studied by Ghayesh et al. [25]; it was shown that the resonance region change based on the layer sorting and
both hardening and softening behaviour can be observed while considering geometrical imperfections. Other
types of layered structures have also been examined by researchers, and interested authors are referred to Refs.
[26,27] for more information about layered-plate and layered-shell structures focused investigations.

The previously mentioned studies focus on elastic structures that undergo small strains while facing dif-
ferent types of loadings; even the nonlinear ones are based on geometric nonlinearities and small strains. Soft
structures cannot be modelled as a linear elastic material and require more accurate hyperelastic assumptions
and formulations; in other words, a material nonlinearity should be taken into account, as done in this paper.

Multilayered hyperelastic structures have been used widely in many products. For instance, multilayer
plastic packaging is used for packaging different products, such as food packaging which has been a trending
topic over the last few years in waste management, recycling and optimised packaging [28–31]. Furthermore,
human body organs act as hyperelastic components and many parts are made of different layers, such as the
artery, which is made of three hyperelastic layers (intima, media and adventitia) [32].
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Previously, axiallymovinghyperelastic structures andporous-hyperelastic structures havebeen investigated
by Khaniki et al. [33,34]; however, until now, there have been no studies on the time-dependent mechanics
of layered hyperelastic structures. In this study, a comprehensive analysis of the mechanics of multilayered
thick hyperelastic structures is presented for the first time as having different boundary conditions via different
shear theories. Large strain modelling, together with large-amplitude displacements, is modelled using the
Mooney–Rivlin strain energy model (for material nonlinearity) and the von Kármán geometrical nonlinearity.
Different types of shear deformable beam theories (Euler–Bernoulli, Timoshenko, third-order, trigonometric
and exponential shear deformablemodels) are used tomodel the layered structures and the influence of layering,
material positioning and the thickness of the core and skins is discussed in detail.

2 Layered hyperelastic shear deformable beam formulation

For a thick-layered shear deformable beam (Fig. 1), considering the plane motion, the axial and transverse
deformations are written as [35]

u (x, z, t) = χ (z) wx (x, t) − χ (z) φ (x, t) + u (x, t) − zwx (x, t) , (1)

w (x, z, t) = w (x, t) , (2)

where u and w are the axial and transverse displacements in the x and z directions (Fig. 1), respectively,
subscript x indicates derivations with respect to x , φ is the rotation and χ(z) is the higher-order shear function,
which the definition depends on the shear deformable theory used. In this study, five different definitions for
χ(z) are used, which are defined as [36–39]

Case 1 (Euler−Bernoulli beam theory) : χ (z) = 0, (3)

Case 2 (Timoshenko beam theory) : χ (z) = z, (4)

Case 3 (Third−order beam theory) : χ (z) = z

(
1 − 4

3

z2

h2

)
, (5)

Case 4 (Exponential beam theory) : χ (z) = ze−2(z/h)2 , (6)

Case 5 (Trigonometric beam theory) : χ (z) = h

π
sin

(π z

h

)
, (7)

where Case 1 indicates that the shear deformation effect is neglected, following the Euler–Bernoulli beam
assumption (classic beam theory) when the rotary inertia is also neglected; the advantage of using this model
is that the model is simplified by neglecting the rotational degree of freedom by only considering axial and
transverse motions. Case 2 defines a linearly varying shear deformation through the thickness of the beam,
which represents the Timoshenko beam theory. In this model, the transverse normal plates do not necessarily
remain perpendicular (to the mid-surface) after deformation leading to an extra degree of freedom for the
rotary inertia. Case 3 shows the shear deformation using a higher-order model following the third-order shear
deformable beam theory [36,37]. In this model, the transverse shear stress in the Cases 4 and 5 defines the shear
deformation of the beam using an exponential [38] and trigonometric [39] functions, which follow the beam
theories of exponential shear deformable and trigonometric, respectively. For all the five cases, the strains are
written as

εxx (x, y, t) = ux (x, t) − zwxx (x, t) + χ (z) wxx (x, t) − χ (z) φx (x, t) + 1

2
wx

2 (x, t) , (8)

γxz (x, y, t) = 2εxz (x, y, t) = χz (z) wx (x, t) − χz (z) φ (x, t) , (9)

εzz �= 0, (10)

where εxx is the axial strain, γxz is the shear strain and εzz is the transverse strain that is not equal to zero
and should satisfy the incompressibility condition of hyperelastic structures. The deformation gradient (F)
is given in Refs. [33,40] which can be used for defining the left Cauchy–Green strain tensor (C) for planar
motion as

C = FT F =
⎡
⎣ (1 + εxx )

2 + εxz
2 0 εxz (2 + εxx + εzz)

0 1 0
εxz (2 + εxx + εzz) 0 (1 + εzz)

2 + εxz
2

⎤
⎦ , (11)
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Fig. 1 Schematics of three-layered hyperelastic beam with (a) fixed and (b) simply supported boundary conditions and (c) layer
characteristics

where the higher-order strain terms are due to the soft behaviour of hyperelastic materials, which undergo large
strains and cannot be ignored. The strain term εzz can be obtained as a function of εzz and εzz by considering
det(C) = 0 (the incompressibility condition). For linear elastic models, by neglecting the higher-order strain
terms, the Cauchy–Green strain tensor will be [27]
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C = FT F =
⎡
⎣1 + 2εx 0 2εxz

0 1 0
2εxz 0 1 + 2εz

⎤
⎦ , (12)

which is equal to the elastic material strain tensor model. By using the Mooney–Rivlin hyperelastic strain
energy density model [41,42], the variation of the total potential energy of the system is written as

δU =
L∫

0

∫
A

[U1 (x, z) δux (x, t) +U2 (x, z) δwx (x, t)

+U3 (x, z) δwxx (x, t) +U4 (x, z) δφ (x, t) +U5 (x, z) δφx (x, t)] dAdx, (13)

where

U1 (x, z) = 8CT ux (x, t) + 8CT [χ (z) − z]wxx (x, t) + 4CTwx
2 (x, t) − 8CTχ (z) φx (x, t)

− 12CT ux
2 (x, t) − 24CT [χ (z) − z] ux (x, t) wxx (x, t) + 24CTχ (z) ux (x, t) φx (x, t)

− 12CT ux (x, t) wx
2 (x, t) − 12CT [χ (z) − z]2wxx

2 (x, t) + 12CTχ (z) wx
2 (x, t) φx (x, t)

+ 24CTχ (z) [χ (z) − z]wxx (x, t) φx (x, t) − 12CT [χ (z) − z]wx
2 (x, t) wxx (x, t)

− 3CTwx
4 (x, t) − 12CTχ(z)2φx

2 (x, t) − CTχz
2 (z) wx

2 (x, t)

+ 2CTχz
2 (z) wx (x, t) φ (x, t) − CTχz

2 (z) φ2 (x, t) , (14)

U2 (x, z) = 8CT ux (x, t) wx (x, t) + 8CT [χ (z) − z]wx (x, t) wxx (x, t) + 4CTwx
3 (x, t)

− 8CTχ (z) wx (x, t) φx (x, t) − 12CT ux
2 (x, t) wx (x, t)

− 24CT [χ (z) − z] ux (x, t) wx (x, t) wxx (x, t) + 24CTχ (z) ux (x, t) wx (x, t) φx (x, t)

−12CT ux (x, t) wx
3 (x, t) − 12CT [χ (z) − z]2wx (x, t) wxx

2 (x, t)

+ 24CTχ (z) [χ (z) − z]wx (x, t) wxx (x, t) φx (x, t) + 12CTχ (z) wx
3 (x, t) φx (x, t)

− 12CT [χ (z) − z]wx
3 (x, t) wxx (x, t) − 3CTwx

5 (x, t) − 12CTχ(z)2wx (x, t) φx
2 (x, t)

−CTχz
2 (z) wx

3 (x, t) + 2CTχz
2 (z) wx

2 (x, t) φ (x, t) − CTχz
2 (z) wx (x, t) φ2 (x, t)

+ 2CTχz
2 (z) wx (x, t) − 2CTχz

2 (z) φ (x, t) − 2CTχz
2 (z) ux (x, t) wx (x, t)

+ 2CTχz
2 (z) ux (x, t) φ (x, t) − 2CTχz

2 (z) [χ (z) − z]wx (x, t) wxx (x, t)

−CTχz
2 (z) wx

3 (x, t) + 2CTχz
2 (z) χ (z) wx (x, t) φx (x, t)

+ 2CTχz
2 (z) [χ (z) − z]wxx (x, t) φ (x, t) + CTχz

2 (z) wx
2 (x, t) φ (x, t)

− 2CTχz
2 (z) χ (z) φ (x, t) φx (x, t) , (15)

U3 (x, z) = 8CT [χ (z) − z] ux (x, t) + 8CT [χ (z) − z]2wxx (x, t) + 4CT [χ (z) − z]wx
2 (x, t)

− 8CTχ (z) [χ (z) − z]φx (x, t) − 12CT [χ (z) − z] ux
2 (x, t)

− 24CT [χ (z) − z]2ux (x, t) wxx (x, t) + 24CTχ (z) [χ (z) − z] ux (x, t) φx (x, t)

− 12CT [χ (z) − z] ux (x, t) wx
2 (x, t) − 12CT [χ (z) − z]3wxx

2 (x, t)

+ 24CTχ (z) [χ (z) − z]2wxx (x, t) φx (x, t) + 12CTχ (z) [χ (z) − z]wx
2 (x, t) φx (x, t)

− 12CT [χ (z) − z]2wx
2 (x, t) wxx (x, t) − 3CT [χ (z) − z]wx

4 (x, t)

− 12CTχ(z)2 [χ (z) − z]φx
2 (x, t) − CTχz

2 (z) [χ (z) − z]wx
2 (x, t)

+ 2CTχz
2 (z) [χ (z) − z]wx (x, t) φ (x, t) − CTχz

2 (z) [χ (z) − z]φ2 (x, t) , (16)

U4 (x, z) = −2CTχz
2 (z) wx (x, t) + 2CTχz

2 (z) φ (x, t)

+ 2CTχz
2 (z) ux (x, t) wx (x, t) − 2CTχz

2 (z) ux (x, t) φ (x, t)

+ 2CTχz
2 (z) [χ (z) − z]wx (x, t) wxx (x, t) + CTχz

2 (z) wx
3 (x, t)

− 2CTχ (z) χz
2 (z) wx (x, t) φx (x, t) − CTχz

2 (z) wx
2 (x, t) φ (x, t)

− 2CTχz
2 (z) [χ (z) − z]wxx (x, t) φ (x, t)

+ 2CTχ (z) χz
2 (z) φ (x, t) φx (x, t) , (17)
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U5 (x, z) = −8CTχ (z) ux (x, t) − 8CTχ (z) [χ (z) − z]wxx (x, t)

− 4CTχ (z) wx
2 (x, t) + 8CTχ2 (z) φx (x, t) + 12CTχ (z) ux

2 (x, t)

+ 24CTχ (z) [χ (z) − z] ux (x, t) wxx (x, t) − 24CTχ2 (z) ux (x, t) φx (x, t)

+ 12CTχ (z) ux (x, t) wx
2 (x, t) + 12CTχ (z) [χ (z) − z]2wxx

2 (x, t)

− 24CTχ2 (z) [χ (z) − z]wxx (x, t) φx (x, t) − 12CTχ2 (z) wx
2 (x, t) φx (x, t)

+ 12CTχ (z) [χ (z) − z]wx
2 (x, t) wxx (x, t) + 3CTχ (z) wx

4 (x, t)

+ 12CTχ3 (z) φx
2 (x, t) + CTχ (z) χz

2 (z) wx
2 (x, t)

− 2CTχ (z) χz
2 (z) wx (x, t) φ (x, t) + CTχ (z) χz

2 (z) φ2 (x, t) , (18)

for which, by assuming the hyperelastic beam has three layers (Fig. 1) with layers attached perfectly (with no
delamination), the stiffness parameters (Aii , Bii , Dii and Eii ) are defined as

A11 =
∫
A

CT dA =
∫
A1

CT 1dA1 +
∫
A2

CT 2dA2 +
∫
A3

CT 3dA3, (19)

B11 =
∫
A

CTχ (z) dA =
∫
A1

CT 1χ (z) dA1 +
∫
A2

CT 2χ (z) dA2 +
∫
A3

CT 3χ (z) dA3, (20)

B22 =
∫
A

CT [χ (z) − z] dA =
∫
A1

CT 1 [χ (z) − z] dA1 +
∫
A2

CT 2 [χ (z) − z] dA2 +
∫
A3

CT 3

[χ (z) − z] dA3, (21)

D11 =
∫
A

CTχ2 (z)dA =
∫
A1

CT 1χ
2 (z)dA1 +

∫
A2

CT 2χ
2 (z)dA2 +

∫
A3

CT 3χ
2 (z)dA3, (22)

D22 =
∫
A

CT [χ (z) − z]2dA =
∫
A1

CT 1[χ (z) − z]2dA1 +
∫
A2

CT 2[χ (z) − z]2dA2

+
∫
A3

CT 3[χ (z) − z]2dA3, (23)

D33 =
∫
A

CTχ (z) [χ (z) − z]dA =
∫
A1

CT 1χ (z) [χ (z) − z]dA1

+
∫
A2

CT 2χ (z) [χ (z) − z]dA2 +
∫
A3

CT 3χ (z) [χ (z) − z]dA3, (24)

D44 =
∫
A

CTχz
2 (z)dA =

∫
A1

CT 1χz
2 (z)dA1 +

∫
A2

CT 2χz
2 (z)dA2 +

∫
A3

CT 3χz
2 (z)dA3, (25)

E11 =
∫
A

CTχ3 (z) dA =
∫
A1

CT 1χ
3 (z) dA1 +

∫
A2

CT 2χ
3 (z) dA2 +

∫
A3

CT 3χ
3 (z) dA3, (26)

E22 =
∫
A

CTχ2 (z) [χ (z) − z] dA =
∫
A1

CT 1χ
2 (z) [χ (z) − z] dA1

+
∫
A2

CT 2χ
2 (z) [χ (z) − z] dA2 +

∫
A3

CT 3χ
2 (z) [χ (z) − z] dA3, (27)

E33 =
∫
A

CTχ (z) [χ (z) − z]2dA =
∫
A1

CT 1χ (z) [χ (z) − z]2dA1
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+
∫
A2

CT 2χ (z) [χ (z) − z]2dA2 +
∫
A3

CT 3χ (z) [χ (z) − z]2dA3, (28)

E44 =
∫
A

CT [χ (z) − z]3dA =
∫
A1

CT 1[χ (z) − z]3dA1

+
∫
A2

CT 2[χ (z) − z]3dA2 +
∫
A3

CT 3[χ (z) − z]3dA3, (29)

E55 =
∫
A

CTχz
3 (z) dA =

∫
A1

CT 1χz
3 (z) dA1 +

∫
A2

CT 2χz
3 (z) dA2 +

∫
A3

CT 3χz
3 (z) dA3, (30)

E66 =
∫
A

CTχz
2 (z) [χ (z) − z] dA =

∫
A1

CT 1χz
2 (z) [χ (z) − z] dA1

+
∫
A2

CT 2χz
2 (z) [χ (z) − z] dA2 +

∫
A3

CT 3χz
2 (z) [χ (z) − z] dA3, (31)

E77 =
∫
A

CTχ (z) χz
2 (z) dA =

∫
A1

CT 1χ (z)χz
2 (z) dA1 +

∫
A2

CT 2χ (z)χz
2 (z) dA2

+
∫
A3

CT 3χ (z) χz
2 (z) dA3, (32)

which, for the case considering the Timoshenko beam model (χ(z) = z), uses a shear correction factor of
κ = 5/6 [43]. Accordingly, by using Eqs. (19–32), the potential energy of a three-layered hyperelastic beam

(a)

(b)

(c)

pinned-pinned

pinned-pinned

pinned-pinned clamped-clamped

clamped-clamped

clamped-clamped

Fig. 2 Mode shapes of the first (a) transverse, (b) longitudinal and (c) rotation vibration modes with clamped–clamped and
pinned–pinned boundary conditions
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can be rewritten, which is not presented here for the sake of brevity. It should be mentioned that for having
more layers in the laminated hyperelastic beam model, Eqs. (19–32) should be rewritten on the right side,
based on the number of layers. The kinetic energy of the structure is written as

δK E =
L∫

0

∫
A

ρ (z) [ut (x, t) + (χ (z) − z) wxt (x, t) − χ (z) φt (x, t)] δut (x, t) dAdx

+
L∫

0

∫
A

ρ (z) (χ (z) − z) [ut (x, t) + (χ (z) − z) wxt (x, t) − χ (z) φt (x, t)] δwxt (x, t) dAdx

−
L∫

0

∫
A

ρ (z)χ (z) [ut (x, t) + (χ (z) − z) wxt (x, t) − χ (z) φt (x, t)] δφt (x, t) dAdx

+
L∫

0

∫
A

ρ (z)wt (x, t) δwt (x, t) dAdx, (33)

which, by defining the moment of inertia in terms of area (Ii ) for a three-layered hyperelastic thick beam, is
written as

I0 =
∫
A

ρ (z)dA =
∫
A1

ρ1dA1 +
∫
A2

ρ2dA2 +
∫
A3

ρ3dA3, (34)

I1 =
∫
A

ρ (z)χ (z) dA =
∫
A1

ρ1χ (z) dA1 +
∫
A2

ρ2χ (z) dA2 +
∫
A3

ρ3χ (z) dA3, (35)

I2 =
∫
A

ρ (z) [χ (z) − z] dA =
∫
A1

ρ1 [χ (z) − z] dA1 +
∫
A2

ρ2 [χ (z) − z] dA2 +
∫
A3

ρ3 [χ (z) − z] dA3,

(36)

I3 =
∫
A

ρ (z) χ2 (z)dA =
∫
A1

ρ1χ
2 (z)dA1 +

∫
A2

ρ2χ
2 (z)dA2 +

∫
A3

ρ3χ
2 (z)dA3, (37)

I4 =
∫
A

ρ (z)[χ (z) − z]2dA =
∫
A1

ρ1[χ (z) − z]2dA1

+
∫
A2

ρ2[χ (z) − z]2dA2 +
∫
A3

ρ3[χ (z) − z]2dA3, (38)

I5 =
∫
A

ρχ (z) [χ (z) − z]dA =
∫
A1

ρ1χ (z) [χ (z) − z]dA1

+
∫
A2

ρ2χ (z) [χ (z) − z]dA2 +
∫
A3

ρ3χ (z) [χ (z) − z]dA3, (39)

and by substituting Eqs. (34–39) into Eq. (33), one can reach the kinetic energy of layered thick hyperelastic
beams, as

δK E =
L∫

0

− [I0utt (x, t) + I2wxtt (x, t) − I1φt t (x, t)] δu (x, t)

+ [I2uxtt (x, t) + I4wxxtt (x, t) − I5φxtt (x, t)] δw (x, t)

−I0wt t (x, t) δw (x, t) + [I1utt (x, t) + I5wxtt (x, t) − I3φt t (x, t)] δφ (x, t) dx . (40)
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Moreover, the beam is assumed to be lying on a nonlinear elastic foundation (Fig. 1) and externally actuated
by a periodic load, which gives the external work on the beam as

δUF =
L∫

0

(Flinear (x, t) + Fnonlinear (x, t) + Fshear (x, t)) δwdx + L∫
0
F cos (ωt) δwdx

=
L∫

0

[−KLw (x, t) − KNLw3 (x, t) + KSwxx (x, t) + F cos (ωt)
]
δw, (41)

where KL , KNL and KS are the linear, nonlinear and shear coefficients of the foundation, respectively, and
F is the external force acting periodically with a frequency of ω. Using Hamilton’s principle, the coupled
longitudinal, transverse and rotation equations of motion are obtained as

I0utt (x, t) + I2wxtt (x, t) − I1φt t (x, t) − 8A11uxx (x, t) − 8B22wxxx (x, t) + 8B11φxx (x, t)

+ 12A11
∂

∂x

[
ux

2 (x, t)
] + 24B22

∂

∂x
[ux (x, t) wxx (x, t)] − 24B11

∂

∂x
[ux (x, t) φx (x, t)]

− (4A11 − D44)
∂

∂x

[
wx

2 (x, t)
] + 12D22

∂

∂x

[
wxx

2 (x, t)
] − 2D44

∂

∂x
[wx (x, t) φ (x, t)]

− 24D33
∂

∂x
[wxx (x, t) φx (x, t)] + D44

∂

∂x

[
φ2 (x, t)

] + 12D11
∂

∂x

[
φx

2 (x, t)
]

+ 12A11
∂

∂x

[
ux (x, t) wx

2 (x, t)
] + 12B22

∂

∂x

[
wx

2 (x, t) wxx (x, t)
]

− 12B11
∂

∂x

[
wx

2 (x, t) φx (x, t)
] + 3A11

∂

∂x

[
wx

4 (x, t)
] = 0, (42)

−I2uxtt (x, t) + I0wt t (x, t) − I4wxxtt (x, t) + I5φxtt (x, t) − 8B22uxxx (x, t) − 2D44wxx (x, t)

− 8D22wxxxx (x, t) + KLw (x, t) − KSwxx (x, t) + 2D44φx (x, t) + 8D33φxxx (x, t)

+ 12B22
∂2

∂x2
[
ux

2 (x, t)
] + 24D22

∂2

∂x2
[ux (x, t) wxx (x, t)]

− (8A11 − 2D44)
∂

∂x
[ux (x, t) wx (x, t)] − 24D33

∂2

∂x2
[ux (x, t) φx (x, t)]

− 2D44
∂

∂x
[ux (x, t) φ (x, t)] − (4B22 − E66)

∂2

∂x2
[
wx

2 (x, t)
]

− (8B22 − 2E66)
∂

∂x
[wx (x, t) wxx (x, t)] + 12E44

∂2

∂x2
[
wxx

2 (x, t)
]

− 2E66
∂2

∂x2
[wx (x, t) φ (x, t)] + (8B11 − 2E77)

∂

∂x
[wx (x, t) φx (x, t)]

− 2E66
∂

∂x
[wxx (x, t) φ (x, t)] − 24E33

∂2

∂x2
[wxx (x, t) φx (x, t)]

+ E66
∂2

∂x2
[
φ2 (x, t)

] + 2E77
∂

∂x
[φ (x, t) φx (x, t)] + 12E22

∂2

∂x2
[
φx

2 (x, t)
]

+ 12A11
∂

∂x

[
ux

2 (x, t) wx (x, t)
] + 12B22

∂2

∂x2
[
ux (x, t) wx

2 (x, t)
]

+ 24B22
∂

∂x
[ux (x, t) wx (x, t) wxx (x, t)] − 24B11

∂

∂x
[ux (x, t) wx (x, t) φx (x, t)]

− (4A11 − 2D44)
∂

∂x

[
wx

3 (x, t)
] + KNLw3 (x, t) + 12D22

∂

∂x

[
wx (x, t) wxx

2 (x, t)
]

+ 12D22
∂2

∂x2
[
wx

2 (x, t) wxx (x, t)
] − 12D33

∂2

∂x2
[
wx

2 (x, t) φx (x, t)
]

− 3D44
∂

∂x

[
wx

2 (x, t) φ (x, t)
] − 24D33

∂

∂x
[wx (x, t) wxx (x, t) φx (x, t)]



790 H. B. Khaniki et al.

+ D44
∂

∂x

[
wx (x, t) φ2 (x, t)

] + 12D11
∂

∂x

[
wx (x, t) φx

2 (x, t)
]

+ 12A11
∂

∂x

[
ux (x, t) wx

3 (x, t)
] + 3B22

∂2

∂x2
[
wx

4 (x, t)
] + 12B22

∂

∂x

[
wx

3 (x, t) wxx (x, t)
]

− 12B11
∂

∂x

[
wx

3 (x, t) φx (x, t)
] + 3A11

∂

∂x

[
wx

5 (x, t)
]

= F cos (ωt) , (43)

−I1utt (x, t) − I5wxtt (x, t) + I3φt t (x, t) + 8B11uxx (x, t) − 2D44wx (x, t) + 8D33wxxx (x, t)

− 8D11φxx (x, t) + 2D44φ (x, t) − 12B11
∂

∂x

[
ux

2 (x, t)
] − 24D33

∂

∂x
[ux (x, t) wxx (x, t)]

+ 2D44ux (x, t) wx (x, t) + 24D11
∂

∂x
[ux (x, t) φx (x, t)] − 2D44ux (x, t) φ (x, t)

+ (4B11 − E77)
∂

∂x

[
wx

2 (x, t)
] − 12E33

∂

∂x

[
wxx

2 (x, t)
] + 2E66wx (x, t) wxx (x, t)

+ 2E77
∂

∂x
[wx (x, t) φ (x, t)] + 24E22

∂

∂x
[wxx (x, t) φx (x, t)] − 2E77wx (x, t) φx (x, t)

− 2E66wxx (x, t) φ (x, t) − 12E11
∂

∂x

[
φx

2 (x, t)
] − E77

∂

∂x

[
φ2 (x, t)

] + 2E77φ (x, t) φx (x, t)

− 12B11
∂

∂x

[
ux (x, t) wx

2 (x, t)
] − 12D33

∂

∂x

[
wx

2 (x, t) wxx (x, t)
] + D44wx

3 (x, t)

+ 12D11
∂

∂x

[
wx

2 (x, t) φx (x, t)
] − D44wx

2 (x, t) φ (x, t) − 3B11
∂

∂x

[
wx

4 (x, t)
] = 0. (44)

It can therefore be seen that the equations of motion are highly nonlinear and coupled, which emphasises the
importance of having the axial motion while analysing the mechanical behaviour of the structure. The linear
coupling sources between the axial and transverse motions are the stiffness terms B11 and B22 and inertia terms
I1 and I2, for which, for a single-layer hyperelastic beam, due to the homogeneity in the thickness direction,
these terms will be equal to zero and the linear coupling terms vanish. In the next section, the equations of
motion are nondimensionalised, discretised and solved.

3 Solution procedure

For the first step of solving the equations of motion, the new nondimensional parameters are defined as

γ ∗ = x

L
, β∗ = w

h
, α∗ = u

h
, φ∗ = φ, A11

∗ = A11

A110
, B11

∗ = B11

A110h
, B22

∗ = B22

A110h
, D44

∗ = D11

A110
,

D11
∗ = D11

A110h2
, D22

∗ = D11

A110h2
, D33

∗ = D11

A110h2
, E11

∗ = E11

A110h3
, E22

∗ = E22

A110h3
,

E33
∗ = E33

A110h3
, E44

∗ = E44

A110h3
, E55

∗ = E55

A110
, E66

∗ = E66

A110h
, E77

∗ = E77

A110h
,

I0
∗ = I0

I00
, I1

∗ = I1
I00h

, I2
∗ = I2

I00h
, I3

∗ = I3
I00h2

, I4
∗ = I4

I00h2
, I5

∗ = I5
I00h2

,

η = h

L
, � = ω

√
I00L3

A110h
, t∗ = t

√
A110h

I00L3 ,

F∗ = F
L2

A11h
, KL

∗ = KL
L2

A11
, KNL

∗ = KNL
h2L2

A11
, KS

∗ = KS
1

A11
, (45)

and by using these terms, the equations of motion are nondimensionalised as

I0ηαt t (γ, t) + I2η
2βγ t t (γ, t) − I1ηφt t (γ, t) − 8A11αγγ (γ, t) − 8B22ηβγγ γ (γ, t) + 8B11φγγ (γ, t)
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+ 12A11η
∂

∂γ

[
αγ

2 (γ, t)
] + 24B22η

2 ∂

∂γ

[
αγ (γ, t) βγ γ (γ, t)

] − 24B11η
∂

∂γ

[
αγ (γ, t) φγ (γ, t)

]

− η (4A11 − D44)
∂

∂γ

[
βγ

2 (γ, t)
] + 12D22η

3 ∂

∂γ

[
βγγ

2 (γ, t)
] − 2D44

∂

∂γ

[
βγ (γ, t) φ (γ, t)

]

− 24D33η
2 ∂

∂γ

[
βγγ (γ, t) φγ (γ, t)

] + D44
1

η

∂

∂γ

[
φ2 (γ, t)

] + 12D11η
∂

∂γ

[
φγ

2 (γ, t)
]

+ 12A11η
2 ∂

∂γ

[
αγ (γ, t) βγ

2 (γ, t)
] + 12B22η

3 ∂

∂γ

[
βγ

2 (γ, t) βγ γ (γ, t)
]

− 12B11η
2 ∂

∂γ

[
βγ

2 (γ, t) φγ (γ, t)
] + 3A11η

3 ∂

∂γ

[
βγ

4 (γ, t)
] = 0, (46)

−I2η
2αγ t t (γ, t) + I0ηβt t (γ, t) − I4η

3βγγ t t (γ, t) + I5η
2φγ t t (γ, t) − 8B22ηαγγ γ (γ, t)

− 2D44βγγ (γ, t) − 8D22η
2βγγ γ γ (γ, t) + KLβ (γ, t) − KSβγγ (γ, t) + 2D44

1

η
φγ (γ, t)

+ 8D33ηφγγ γ (γ, t) + 12B22η
2 ∂2

∂γ 2

[
αγ

2 (γ, t)
] + 24D22η

3 ∂2

∂γ 2

[
αγ (γ, t) βγ γ (γ, t)

]

− η (8A11 − 2D44)
∂

∂γ

[
αγ (γ, t) βγ (γ, t)

] − 24D33η
2 ∂2

∂γ 2

[
αγ (γ, t) φγ (γ, t)

]

− 2D44
∂

∂γ

[
αγ (γ, t) φ (γ, t)

] − η2 (4B22 − E66)
∂2

∂γ 2

[
βγ

2 (γ, t)
]

− η2 (8B22 − 2E66)
∂

∂γ

[
βγ (γ, t) βγ γ (γ, t)

] + 12E44η
4 ∂2

∂γ 2

[
βγγ

2 (γ, t)
]

− 2E66η
∂2

∂γ 2

[
βγ (γ, t) φ (γ, t)

] + η (8B11 − 2E77)
∂

∂γ

[
βγ (γ, t) φγ (γ, t)

]

− 2E66η
∂

∂γ

[
βγγ (γ, t) φ (γ, t)

] − 24E33η
3 ∂2

∂γ 2

[
βγγ (γ, t) φγ (γ, t)

]

+ E66
∂2

∂γ 2

[
φ2 (γ, t)

] + 2E77
∂

∂γ

[
φ (γ, t) φγ (γ, t)

] + 12E22η
2 ∂2

∂γ 2

[
φγ

2 (γ, t)
]

+ 12A11η
2 ∂

∂γ

[
αγ

2 (γ, t) βγ (γ, t)
] + 12B22η

3 ∂2

∂γ 2

[
αγ (γ, t) βγ

2 (γ, t)
]

+ 24B22η
3 ∂

∂γ

[
αγ (γ, t) βγ (γ, t) βγ γ (γ, t)

] − 24B11η
2 ∂

∂γ

[
αγ (γ, t) βγ (γ, t) φγ (γ, t)

]

− η2 (4A11 − 2D44)
∂

∂γ

[
βγ

3 (γ, t)
] + KNLβ3 (γ, t) + 12D22η

4 ∂

∂γ

[
βγ (γ, t) βγ γ

2 (γ, t)
]

+ 12D22η
4 ∂2

∂γ 2

[
βγ

2 (γ, t) βγ γ (γ, t)
] − 12D33η

3 ∂2

∂γ 2

[
βγ

2 (γ, t) φγ (γ, t)
]

− 3D44η
∂

∂γ

[
βγ

2 (γ, t) φ (γ, t)
] − 24D33η

3 ∂

∂γ

[
βγ (γ, t) βγ γ (γ, t) φγ (γ, t)

]

+ D44
∂

∂γ

[
βγ (γ, t) φ2 (γ, t)

] + 12D11η
2 ∂

∂γ

[
βγ (γ, t) φγ

2 (γ, t)
]

+ 12A11η
3 ∂

∂γ

[
αγ (γ, t) βγ

3 (γ, t)
] + 3B22η

4 ∂2

∂γ 2

[
βγ

4 (γ, t)
]

+ 12B22η
4 ∂

∂γ

[
βγ

3 (γ, t) βγ γ (γ, t)
] − 12B11η

3 ∂

∂γ

[
βγ

3 (γ, t) βγ (γ, t)
]

+ 3A11η
4 ∂

∂γ

[
βγ

5 (γ, t)
]

= F cos (�t) , (47)
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−I1ηαt t (γ, t) − I5η
2βγ t t (γ, t) + I3ηφt t (γ, t) + 8B11αγγ (γ, t) − 2D44

1

η
βγ (γ, t) + 8D33ηβγγ γ (γ, t)

− 8D11φγγ (γ, t) + 2D44
1

η2
φ (γ, t) − 12B11η

∂

∂γ

[
αγ

2 (γ, t)
] − 24D33η

2 ∂

∂γ

[
αγ (γ, t) βγ γ (γ, t)

]

+ 2D44αγ (γ, t) βγ (γ, t) + 24D11η
∂

∂γ

[
αγ (γ, t) φγ (γ, t)

] − 2D44
1

η
αγ φ (x, t)

+ (4B11 − E77) η
∂

∂γ

[
βγ

2 (γ, t)
] − 12E33η

3 ∂

∂γ

[
βγγ

2 (γ, t)
] + 2E66ηβγ (γ, t) βγ γ (γ, t)

+ 2E77
∂

∂γ

[
βγ (γ, t) φ (γ, t)

] + 24E22η
2 ∂

∂γ

[
βγγ (γ, t) φγ (γ, t)

] − 2E77βγ (γ, t) φγ (γ, t)

− 2E66βγγ (γ, t) φ (γ, t) − 12E11η
∂

∂γ

[
φγ

2 (γ, t)
] − E77

1

η

∂

∂γ

[
φ2 (γ, t)

] + 2E77
1

η
φ (γ, t) φγ (γ, t)

− 12B11η
2 ∂

∂γ

[
αγ (γ, t) βγ

2 (γ, t)
] − 12D33η

3 ∂

∂γ

[
βγ

2 (γ, t) βγ γ (γ, t)
] + D44ηβγ

3 (γ, t)

+ 12D11η
2 ∂

∂γ

[
βγ

2 (γ, t) φγ (γ, t)
] − D44βγ

2 (γ, t) φ (γ, t) − 3B11η
3 ∂

∂x

[
βγ

4 (γ, t)
] = 0. (48)

For the sake of brevity and ease notation, the superscript * is neglected in the formulation. Using the Galerkin
scheme, each motion component can be written in a series expansion of orthogonal spatial functions as⎧⎨

⎩
α
φ
β

⎫⎬
⎭ =

N∑
n=1

⎧⎨
⎩
Un (γ ) rn (t)
�n (γ ) pn (t)
Wn (γ ) qn (t)

⎫⎬
⎭, (49)

where Un, �n,Wn are the set of trial functions that should satisfy the boundary conditions of longitudinal,
rotation and transverse motions at the middle of the thickness. (Studies on layered structures based on various
thickness assumptions can be found inRefs. [44–50].) For pinned–pinned and fixed–fixed boundary conditions,
these trial functions are written as

Up (γ ) = sin
(
μpγ

)
, (50){

Fixed−Fixed → Wp (γ )=−cos
(
μpγ

)+cosh
(
μpγ

)−ψ
(
μp

) [−sin
(
μpγ

)+sinh
(
μpγ

)]
,

Pinned − Pinned → Wp (γ ) = sin
(
μpγ

)
,

(51)

�p (γ ) =
(

1

μp

)(
∂Wp (γ )

∂x

)
, (52)

where

ψ
(
μp

) = − cos
(
μp

) + cosh
(
μp

)
− sin

(
μp

) + sinh
(
μp

) , (53)

and the equations of motion are rewritten as⎡
⎣M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤
⎦

⎧⎨
⎩
r̈n
p̈n
q̈n

⎫⎬
⎭ +

⎡
⎣ ξ 0 0
0 ξ 0
0 0 ξ

⎤
⎦

⎧⎨
⎩
ṙn
ṗn
q̇n

⎫⎬
⎭

+
⎡
⎣KL11 KL12 KL13
KL21 KL22 KL23
KL31 KL32 KL33

⎤
⎦

⎧⎨
⎩
rn
pn
qn

⎫⎬
⎭ =

⎧⎨
⎩
0
0
Fexternal
n

⎫⎬
⎭ +

⎧⎨
⎩
KN1systemn

KN2systemn

KN3systemn

⎫⎬
⎭ , (54)

where Mi j are the mass tensors of the discretised equations and the components are defined as

M11 (l, i) : ηI0

1∫
0

Ul (γ )Ui (γ ) dγ, (55)
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M12 (l, i) : η2 I2

1∫
0

Ul (γ )W ′
i (γ ) dγ, (56)

M13 (l, i) : −ηI1

1∫
0

Ul (γ )�i (γ ) dγ, (57)

M21 : −η2 I2

1∫
0

Wl (γ )U ′
i (γ ) dγ, (58)

M22 (l, i) : ηI0

1∫
0

Wl (γ )Wi (γ ) dγ − η3 I4

1∫
0

Wl (γ )W ′′
i (γ ) dγ, (59)

M23 (l, i) : η2 I5

1∫
0

Wl (γ )�′
i (γ ) dγ, (60)

M31 : −ηI1

1∫
0

�l (γ )Ui (γ ) dγ, (61)

M32 (l, i) : −η2 I5

1∫
0

�l (γ )W ′
i (γ ) dγ, (62)

M33 (l, i) : ηI3

1∫
0

�l (γ )�i (γ ) dγ, (63)

and KLi j are the linear stiffness tensors, defined as

K L11 (l, i) : −8A11

1∫
0

Ul (γ )U ′′
i (γ ) dγ, (64)

K L12 (l, i) : −8ηB22

1∫
0

Ul (γ )W ′′′
i (γ ) dγ, (65)

K L13 (l, i) : 8B11

1∫
0

Ul (γ )�′′
i (γ ) dγ, (66)

K L21 (l, i) : −8ηB22

1∫
0

Wl (γ )U ′′′
i (γ ) dγ, (67)

K L22 (l, i) : −
1∫

0

Wl (γ )
d

dγ

[
2D44W

′
i (γ )

]
dγ − 8η2D22

1∫
0

Wl (γ )Wi
(4) (γ ) dγ

+KL

1∫
0

Wl (γ )Wi (γ ) dγ − KS

1∫
0

Wl (γ )W ′′
i (γ ) dγ, (68)
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K L23 (l, i) : 21
η
D44

1∫
0

Wl (γ )�′
i (γ ) dγ + 8ηD33

1∫
0

Wl (γ )�′′′
i (γ ) dγ, (69)

K L31 (l, i) : 8B11

1∫
0

�l (γ )U ′′
i (γ ) dγ, (70)

K L32 (l, i) : −2
1

η
D44

1∫
0

�l (γ )W ′
i (γ ) dγ + 8ηD33

1∫
0

�l (γ )W ′′′
i (γ ) dγ, (71)

K L33 (l, i) : −8D11

1∫
0

�l (γ )�′′
i (γ ) dγ + 2

1

η2
D44

1∫
0

�l (γ )�i (γ ) dγ. (72)

KN1, KN2 and KN3 are the nonlinear stiffness terms in the coupled equation where

KN1systemn = KN11r
2 (t) + KN12r (t) p (t) + KN13r (t) q (t)

+KN14 p
2 (t) + KN15 p (t) q (t) + KN16q

2 (t)

+KN17r (t) p2 (t) + KN18 p
3 (t) + KN19 p

2 (t) q (t)

+KN110 p
4 (t) , (73)

KN2systemn = KN21r
2 (t) + KN22r (t) p (t) + KN23r (t) q (t)

+KN24 p
2 (t) + KN25 p (t) q (t) + KN26q

2 (t)

+KN27r
2 (t) p (t) + KN28r (t) p2 (t)

+KN29r (t) p (t) q (t) + KN210 p
3 (t)

+KN211 p
2 (t) q (t) + KN212 p (t) q2 (t)

+KN213r (t) p3 (t) + KN214 p
4 (t) + KN215 p

3 (t) q (t) + KN216 p
5 (t) , (74)

KN3systemn = KN31r
2 (t) + KN32r (t) p (t) + KN33r (t) q (t) + KN34 p

2 (t)

+KN35 p (t) q (t) + KN36q
2 (t) + KN37r (t) p2 (t) + KN38 p

3 (t)

+KN39 p
2 (t) q (t) + KN310 p

4 (t) , (75)

and the coefficients of the nonlinear stiffnesses (KNi j ) are defined in “Appendix A” for the sake of brevity. By
employing a dynamic equilibrium technique, the time-dependent terms of the degrees of freedom are written
in a series expansion of exponential functions as

rm =
N∑

n=−N

Amne
inΩt , (76)

pm =
N∑

n=−N

Bmne
inΩt , (77)

qm =
N∑

n=−N

Cmne
inΩt , (78)

and the general dynamic complex equilibrium equations are written as

{−n2Ω2M3n×3n + inΩC3n×3n + K3n×3n
}
⎧⎨
⎩
rn
pn
qn

⎫⎬
⎭

3n×1

=
⎧⎨
⎩
0
0
Fexternal
n (Ω)

⎫⎬
⎭

3n×1

+
⎧⎨
⎩
KN1systemn (Amn, Bmn,Cmn,Ω)

KN2systemn (Amn, Bmn,Cmn, Ω)

KN3systemn (Amn, Bmn,Cmn,Ω)

⎫⎬
⎭

3n×1

. (79)
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By solving the discretised coupled 3N equations ofmotion presented in Eq. (79) using a continuation technique
[51–53], the nonlinear forced time-dependent mechanical response of the layered hyperelastic structure is
obtained.

4 Results and discussion for linear and nonlinear analyses

The coupled motion of shear deformable layered hyperelastic structures is formulated, discretised and solved
in the previous sections. In this section, the linear and nonlinear mechanics of the system are analysed and
discussed in two main subsections.

4.1 Linear analysis for different shear models

In this subsection, the natural frequencies of the layered hyperelastic structures are analysed and the influence
of layering, shear deformation theory and the foundation is discussed in detail.

4.1.1 Model verification

In the first step, in order to verify the current model for analysing layered beammodels, the natural frequencies
of a three-layered elastic beam structure are obtained for clamped–clamped and pinned–pinned boundaries.
Layering is achieved by having steel as the top layer, aluminium in the middle and silicon carbide at the bottom
(the elastic material properties of the layers can be found in Ref. [54]), with geometry properties at a length
of L = 2.4 m, total thickness of h = 0.03 m (0.01 m for each layer) and width of b = 0.12 m. The first
four transverse natural frequencies and the first axial and rotational natural frequencies are obtained using
the third-order shear deformable beam theory and compared with those obtained by ANSYS Workbench [55]
in Table 1, and the mode shapes are shown in Fig. 2; it can be seen that the current modelling shows great
accuracy in computing the natural frequency terms.

4.1.2 Layer sorting, slenderness ratio and shear model effect

Properly layering the structure can have a significant effect in changing the natural frequencies of a hyperelastic
beam.Tomake this possible, three different softmaterials are assumedwith knownMooney–Rivlin hyperelastic
coefficients, as shown in Table 2. For the first step, by assuming a single-layer homogeneous hyperelastic
beam with the length of 0.2 mm and nondimensional foundation of KL = 1 and KS = 1, the slenderness
ratio (r = L/h) is varied and the fundamental natural frequency is obtained for different shear deformation
theories in Table 3. It can be seen that for the single-layer model, the fundamental natural frequency of all the
five shear models is in good agreement, especially for the vulcanised rubber beam.

By increasing the number of layers to two and three, the fundamental natural frequencies are given in
Tables 4 and 5, respectively. It can be seen that by having more than a single layer, the homogeneity in the
thickness direction is lost, the coupling terms are considerable and, therefore, the difference between different
shear models is slightly more than for the homogeneous single-layer model. Furthermore, it can be seen that
for all the layered models and boundary conditions, by increasing the slenderness ratio (L/h), the shear effect
loses its importance and the results for different shear models become unique.

Table 1 Linear natural frequencies of a three-layered elastic beam with pinned–pinned and fixed–fixed boundary conditions in
hertz

Model BCs Transverse Axial Rotation

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 1

Present CC 41.0802 113.129 221.209 365.317 1479.540 2957.979
ANSYS CC 41.322 113.53 221.66 364.64 1482.3 2956.6
Present SS 18.2554 72.9090 163.911 290.543 1479.623 2957.468
ANSYS SS 18.994 72.492 163.67 288.55 1470.2 2955.4
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Table 2 Hyperelastic physical properties of soft materials from the literature [56,57]

Material Mooney Rivlin parameters
C1 (Pa) C2 (Pa) ρ (kg/m3)

Silicone 253216 4.709e5 1430
Thermoplastic 2.463e5 3.512e6 1152.5
Vulcanised rubber 0.28e6 0.15e6 950

Table 3 Fundamental natural frequencies of single-layer hyperelastic beams with different slenderness ratios and shear defor-
mation theories

r = L/h BC CBT Timoshenko Third-Order Exponential Trigonometric

Silicone
100 CC 28.1066315 28.1058381 28.0613949 28.0495963 28.0555882

SS 26.8844497 26.8844452 26.8790424 26.8776181 26.8783409
50 CC 20.0984905 20.0909931 19.9747145 19.9433354 19.9592964

SS 19.0364669 19.0364162 19.0211706 19.0171500 19.0191906
20 CC 13.5165344 13.4300982 13.0894529 12.9940148 13.0427443

SS 12.1552464 12.1540216 12.0947328 12.0790562 12.0870142
10 CC 11.0263991 10.6412455 9.97717584 9.78842630 9.88489544

SS 8.87847552 8.86563176 8.70696574 8.66466219 8.68615087
3D-printed thermoplastic
100 CC 31.8001428 31.7963715 31.5600876 31.4958815 31.5285720

SS 30.0096747 30.0096449 29.9784623 29.9702373 29.9744119
50 CC 23.5675273 23.5423896 23.0001642 22.8473804 22.9255139

SS 21.3821135 21.3817796 21.2942338 21.2710974 21.2828424
20 CC 18.2377203 18.0294260 16.6267951 16.2247058 16.4307878

SS 14.2187342 14.2109901 13.8816207 13.7934946 13.8382855
10 CC 18.5914253 17.4967291 14.9614247 14.21118716 14.5966669

SS 11.6305988 11.5580599 10.7552375 10.5334826 10.6465584
Vulcanised rubber
100 CC 34.4280536 34.4274664 34.3947866 34.3861353 34.3905276

SS 32.9775740 32.9775711 32.9736341 32.9725962 32.9731229
50 CC 24.5106362 24.5047782 24.4174210 24.3940465 24.4059248

SS 23.3366630 23.3366304 23.3255149 23.3225840 23.3240715
20 CC 16.1341804 16.0555223 15.7864449 15.7121078 15.7499904

SS 14.8386764 14.8378850 14.7944946 14.7830357 14.7888520
10 CC 12.5987291 12.2434931 11.7111708 11.5615479 11.6378881

SS 10.6887937 10.6803688 10.5628155 10.5316104 10.5474551

4.1.3 Foundation effect

To show the influence of a foundation support on the natural frequencies of layered hyperelastic beams, the
structure is assumed to be three-layered with equal thicknesses, (L/h = 20) and the foundation terms are
varied as KL = [0.0, 1.0, 1.0, 3.0, 4.0, 5.0] and KS = [0.1, 0.2, 0.4, 0.6, 0.8, 1.0]. The fundamental natural
frequencies are shown for both pinned–pinned and clamped–clamped boundary conditions in Tables 6, 7 and
8 for layering as [thermoplastic–silicone–vulcanised rubber], [thermoplastic– vulcanised rubber–silicone] and
[silicone–thermoplastic–vulcanised rubber], respectively, using the third-order shear deformable beammodel.
It can be seen that the layered hyperelastic beam models are more sensitive to variations of the shear term
(Ks) compared with the linear term (KL), and adding the foundation increases the fundamental frequency
parameter significantly.

4.2 Nonlinear analysis

The nonlinear dynamics of layered hyperelastic thick beam structures is investigated in this section for various
layer, shear and material position models.
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Table 4 Fundamental natural frequencies of two-layered hyperelastic beams with different slenderness ratios and shear defor-
mation theories

r = L/h BC CBT Timoshenko Third-Order Exponential Trigonometric

Sorting: Silicone–3D-printed thermoplastic
100 CC 29.7340907 29.7322132 29.6207112 29.5910476 29.6061242

SS 28.3089814 28.3089689 28.2956561 28.2922077 28.2939558
50 CC 21.5192529 21.5058667 21.2413942 21.1685749 21.2057350

SS 20.0807042 20.0805804 20.0432020 20.0335084 20.0384230
20 CC 15.1241626 15.0300170 14.3361165 14.1404376 14.2406520

SS 12.9733813 12.9710949 12.8278107 12.7904730 12.8094120
10 CC 13.3507029 12.9333003 11.5762041 11.1874505 11.3867605

SS 9.82337237 9.80184612 9.42775842 9.32851239 9.37894002
Sorting: 3D-printed thermoplastic–vulcanised rubber
100 CC 32.9025718 32.9007381 32.7954063 32.7675713 32.7817124

SS 31.3673283 31.3673136 31.3551669 31.3520513 31.3536296
50 CC 23.7164675 23.7035445 23.4548446 23.3868036 23.4215140

SS 22.2348245 22.2346909 22.2007027 22.1919742 22.1963967
20 CC 16.3475598 16.2654456 15.6174109 15.4361428 15.528951

SS 14.2969492 14.2950743 14.1652090 14.1317878 14.1487259
10 CC 13.9084386 13.5779696 12.2872118 11.9217392 12.1090495

SS 10.6682708 10.6525061 10.3088192 10.2191370 10.2646474
Sorting: Vulcanised rubber–silicone
100 CC 30.7828884 30.7822099 30.7442483 30.7341990 30.7393013

SS 29.4676038 29.4676004 29.4630306 29.4618281 29.4624383
50 CC 21.9580668 21.9515018 21.8512018 21.8242796 21.8379663

SS 20.8582540 20.8582149 20.8453158 20.8419207 20.8436436
20 CC 14.5905007 14.5104299 14.2102543 14.1267312 14.1693410

SS 13.2865750 13.2856309 13.2353502 13.2220888 13.2288196
10 CC 11.6111038 11.2593795 10.6693876 10.5025821 10.5877820

SS 9.62848313 9.61850920 9.48290029 9.44689586 9.46517866

Table 5 Fundamental natural frequencies of three-layered hyperelastic beams with different slenderness ratios and shear defor-
mation theories

r = L/h BCCBT TimoshenkoThird-OrderExponentialTrigonometric

Sorting: Silicone–3D-printed thermoplastic– vulcanised rubber
100 CC30.9681123 30.9677558 30.928069930.917347030.9228017

SS 29.6263359 29.6263339 29.621526829.620237829.6208931
50 CC22.1334388 22.1300004 22.025772521.997078022.0116995

SS 20.9763997 20.9763776 20.962807620.959166620.9610175
20 CC14.8485713 14.8065505 14.501929714.413492314.4587790

SS 13.3871531 13.3866154 13.333692913.319438813.3266873
10 CC12.0526019211.8570456 11.263377311.084178911.1761513

SS 9.76211837 9.75638969 9.613470659.574479489.59432579
Sorting: 3D-printed thermoplastic–silicone– vulcanised rubber
100 CC31.0792240 31.0771291 30.982227430.957249930.9699350

SS 29.6369342 29.6369169 29.626202829.623464529.6248515
50 CC22.3854567 22.3707232 22.146414722.085406222.1165090

SS 21.0057928 21.0056361 20.975699020.968037020.9719186
20 CC15.3767687 15.2849197 14.699298514.536812414.6199287

SS 13.4959180 13.4938098 13.379814213.350614413.3654096
10 CC12.9909881 12.6319641 11.454960411.128466611.2954731

SS 10.0454782 10.0282134 9.726137059.648189929.68770610
Sorting: 3D-printed thermoplastic–vulcanised rubber–silicone
100 CC31.1189765 31.1164982 31.005446530.976079130.9909968

SS 29.6422094 29.6421922 29.629228929.625888629.6275813
50 CC22.4882142 22.4706799 22.205782022.133457522.1703283

SS 21.0208307 21.0206653 20.984303620.974924020.9796777
20 CC15.6954145 15.5768274 14.870731114.673673314.7744629

SS 13.5560659 13.5532475 13.413931513.377907213.3961688
10 CC13.6707649 13.1694255 11.752981811.358212511.5600729

SS 10.2074657 10.1817722 9.815146439.719439329.76798865
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Table 6 Fundamental natural frequencies of three-layered hyperelastic beams [thermoplastic–silicone–vulcanised rubber] with
different slenderness ratios and shear deformation theories

KS = 0.1 KS = 0.2 KS = 0.4 KS = 0.6 KS = 0.8 KS = 1.0

Pinned–pinned
KL = 0.0 4.44576163 5.97334523 8.21583078 9.96541025 11.4504844 12.7637935
KL = 1.0 5.98912959 7.19623324 9.14356823 10.7431088 12.1333669 13.3798142
KL = 2.0 7.20933731 8.23958051 9.98547942 11.4681894 12.7798116 13.9686945
KL = 3.0 8.25102479 9.16491111 10.7617263 12.1500759 13.3950951 14.5337338
KL = 4.0 9.17519864 10.0050236 11.4856302 12.7956757 13.9833313 15.0776128
KL = 5.0 10.0144457 10.7798607 12.1665379 13.4102305 14.5478016 15.6025444
Fixed–fixed
KL = 0.0 6.06990371 7.46126469 9.61553921 11.3408049 12.8222314 14.1412529
KL = 1.0 7.27559657 8.47125334 10.4188043 12.0294404 13.4351646 14.6992985
KL = 2.0 8.30811966 9.37303420 11.1644234 12.6807332 14.0213286 15.2369188
KL = 3.0 9.22579923 10.1953607 11.8632707 13.3001703 14.5839514 15.7562049
KL = 4.0 10.0601124 10.9561383 12.5231789 13.8920136 15.1256604 16.2589136
KL = 5.0 10.8303428 11.6674130 13.1500116 14.4596519 15.6486275 16.7465377

Table 7 Fundamental natural frequencies of three-layered hyperelastic beams [thermoplastic–vulcanised rubber–silicone] with
different slenderness ratios and shear deformation theories

KS = 0.1 KS = 0.2 KS = 0.4 KS = 0.6 KS = 0.8 KS = 1.0

Pinned–pinned
KL = 0.0 4.56023487 6.05767609 8.27569748 10.0136505 11.4915612 12.7998710
KL = 1.0 6.07392035 7.26582713 9.19695668 10.7874954 12.1718053 13.4139315
KL = 2.0 7.27937245 8.29994197 10.0339844 11.5094268 12.8159938 14.0010860
KL = 3.0 8.31179923 9.21877531 10.8063715 12.1886727 13.4293164 14.5645889
KL = 4.0 9.22944950 10.0539837 11.5271191 12.8320134 14.0158257 15.1070870
KL = 5.0 10.0637695 10.8249409 12.2053789 13.4446043 14.5787582 15.6307676
Fixed–fixed
KL = 0.0 6.46909276 7.78987081 9.87438670 11.5620699 13.0187251 14.3196948
KL = 1.0 7.61113810 8.76148587 10.6577014 12.2378694 13.6224732 14.8707311
KL = 2.0 8.60288588 9.63561855 11.3872584 12.8782530 14.2005746 15.4020647
KL = 3.0 9.49156616 10.4367915 12.0728072 13.4882660 14.7560438 15.9156689
KL = 4.0 10.3038813 11.1807000 12.7214645 14.0718587 15.2913474 16.4132083
KL = 5.0 11.0566755 11.8781081 13.3386134 14.6321926 15.8085341 16.8961020

Table 8 Fundamental natural frequencies of three-layered hyperelastic beams [silicone–thermoplastic–vulcanised rubber] with
different slenderness ratios and shear deformation theories

KS = 0.1 KS = 0.2 KS = 0.4 KS = 0.6 KS = 0.8 KS = 1.0

Pinned–pinned
KL = 0.0 4.31840975 5.87720585 8.14415800 9.90520367 11.3973154 12.7155232
KL = 1.0 5.89504178 7.11648799 9.07910558 10.6871841 12.0831138 13.3336929
KL = 2.0 7.13122503 8.16989914 9.92637922 11.4157236 12.7320257 13.9244461
KL = 3.0 8.18273922 9.10220306 10.7068131 12.1004787 13.3494312 14.4911363
KL = 4.0 9.11372973 9.94750958 11.4341021 12.7485067 13.9395175 15.0364843
KL = 5.0 9.95805785 10.7264062 12.1178187 13.3651509 14.5056189 15.5627340
Fixed–fixed
KL = 0.0 5.76095561 7.19395301 9.38000579 11.1192680 12.6096991 13.9357624
KL = 1.0 7.02042195 8.23721111 10.2021634 11.8210913 13.2327187 14.5019297
KL = 2.0 8.08603946 9.16244126 10.9628357 12.4835201 13.8276959 15.0468088
KL = 3.0 9.02672360 10.0024501 11.6740478 13.1125264 14.3981075 15.5726343
KL = 4.0 9.87823054 10.7771835 12.3443516 13.7127101 14.9467664 16.0812756
KL = 5.0 10.6619479 11.4998415 12.9800861 14.2877041 15.4759861 16.5743147
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4.2.1 Comparison of different shear models

Five different shear deformable beam theories were used in previous sections for modelling and formulation
of the layered hyperelastic beam structure. In this section, the amplitude response of the sandwich structure
for different shear models is examined. Three layers are assumed, and the thickness of the layers is assumed
as h = [h/4, h/2, h/4] with L/h = 10, KL = KNL = 1, Ks = 0.1, with the material sorting as [silicone–
vulcanised rubber–thermoplastic]. In the first step, the influence of considering the shear effect as negligible
(CBT), linear (Timoshenko) or higher order (third order) is examined, and the axial, transverse and rotation
amplitudes are obtained, as shown in Figs. 3, 4 and 5 for clamped–clamped and Figs. 6, 7 and 8 for pinned–
pinned boundary conditions. It can be seen that for both boundary conditions, the Timoshenko beam model
gives the highestmaximumamplitude for the dominant axial, transverse and rotation deformation. Furthermore,
increasing the shear effect from the linearmodel to higher-ordermoves the resonance peak to lower frequencies.

The influence of using different types of higher-order shear deformable theories on the amplitude response
is investigated for the similar three-layered hyperelastic beams with the given properties. Figures 9, 10, 11,
12, 13 and 14 show the axial, transverse and rotation amplitudes of clamped–clamped and pinned–pinned
thick beam models, respectively. The results for the different higher-order shear models are fairly in good
agreement, especially for the pinned–pinned boundary condition. Comparing the amplitude response of the
dominant terms of axial, transverse and rotation motions, it can be seen that the highest amplitude is for the
third-order beam model and the lowest belongs to the exponential beam model.

(a) (b)

(c)

Fig. 3 Influence of considering shear effect on the axial amplitude response of the sandwich hyperelastic clamped–clamped beam
a A21, b A22 and c A23
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(a) (b)

(d)(c)

(e) (f)

Fig. 4 Influence of considering shear effect on the transverse amplitude response of the sandwich hyperelastic clamped–clamped
beam a C11, b C31, c C12, d C32, e C13, and f C33
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Influence of considering shear effect on the rotation amplitude response of the sandwich hyperelastic clamped–clamped
beam a B11, b B31, c B12, d B32, e B13, and f B33
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(a) (b)

(c)

Fig. 6 Influence of considering shear effect on the axial amplitude response of the sandwich hyperelastic pinned–pinned beam
a A21, b A22 and c A23

4.2.2 Influence of layering

Layering a hyperelastic structure for different purposes can change the dynamic behaviour of the structure
significantly. In Sect. 4.1.1., this influence on the linear vibration response is analysed, and in this section, the
nonlinear vibration response of the structure based on the number of layers is examined. To this end, for a
homogeneous single-layer structure, the dominant amplitude responses are shown in Fig. 15, for thermoplastic,
vulcanised rubber and silicone hyperelastic thick beams using the third-order shear deformable beam theory
model. It can be seen that thermoplastic and silicone show a stiffness hardening effect, while the vulcanised
rubber beam model shows a drop in the amplitude response of the axial motion while increasing the frequency
and continues to go up afterwards.

By increasing the layers to two by having h1 = h2 = h/2, the dominant longitudinal, transverse and
rotation amplitude responses of the structure are shown for different hyperelastic materials in Fig. 16 for a
combination of different hyperelastic materials which the combination is given asMat = ([mat1-mat2], [mat1-
mat3], [mat2- mat3]) with mat1 = thermoplastic, mat2 = silicone, mat3 = vulcanised rubber. It can be seen
that the highest transverse amplitude belongs to the material combination of [mat2-mat3], while the other two
models have almost the same behaviour.

Finally, by having three layers (h1 = h2 = h3 = h/3) and varying the layers as Mat = ([mat1-mat2-mat3],
[mat2-mat1-mat3], [mat1-mat3-mat2]), the dominant amplitude responses of the longitudinal, transverse and
rotation motions are shown in Fig. 17. It can be seen that the material distribution [mat2- mat1- mat3] has
the lowest maximum axial amplitude and the highest transverse and rotation amplitudes; this shows that for
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Influence of considering shear effect on the transverse amplitude response of the sandwich hyperelastic pinned–pinned
beam a C11, b C31, c C12, d C32, e C13 and f C33

the other two material models, the coupling between the axial and transverse motion is noticeably higher and
should be considered.

4.2.3 Influence of layer thickness

Changing the thickness of the layers can change the nonlinear vibration response of the structure significantly.
To show this influence, the material distribution is Mat = [mat1-mat2-mat3] and the thickness of layers are
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Influence of considering shear effect on the rotation amplitude response of the sandwich hyperelastic pinned–pinned beam
a B11, b B31, c B12, d B32, e B13 and f B33
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(a) (b)

(c)

Fig. 9 Influence of different higher-order shear effect models on the axial amplitude response of the sandwich hyperelastic
clamped–clamped beam a A21, b A22, and c A23

h = ([h/4, h/4, h/2], [h/2 h/4, h/4], [h/4, h/2, h/4]). The frequency–amplitude response of the structure
is plotted in Figs. 18, 19 and 20 for axial, transverse and rotation deformations, respectively. It can be seen
that changing the thickness of the layers has a significant effect in varying the nonlinear behaviour of the
system. Besides, the maximum amplitude of all the deformation coordinates moves to higher frequencies for
h = [h/2, h/4, h/4] and the other two models show similar behaviour in dominant amplitude coordinates.

4.2.4 Influence of material positioning

To show the importance of the position of the hyperelastic material in a layered structure, a three-layered beam
is assumed with the thickness of h = [h/4, h/2, h/4] which shows that the middle layer (the core) is thicker
than the outer layers. In this section, by varying the materials in the layers, the nonlinear forced vibration
response of the system is studied. To do this, the position of the material is varied and the dominant amplitude–
frequency responses in axial, transverse and rotation motions of the structure are shown in Figs. 21 and 22 for
pinned–pinned and clamped–clamped conditions, respectively. It can be seen that for both boundary conditions,
the maximum amplitudes sweep to lower frequencies when the material positioning is [mat1-mat2-mat3]; the
clamped–clamped and pinned-pinned beam models show that the dominant rotation coordinate reaches its
highest when the material positioning is [mat1-mat2-mat3].

4.2.5 Influence of layer positioning

Another important goal of this study is to show the influence of layering and positioning the layers in manu-
facturing sandwich hyperelastic structures. To demonstrate this effect, the position of the layers is varied with
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Influence of different higher-order shear effect models on the transverse amplitude response of the sandwich hyperelastic
clamped–clamped beam a C11, b C31, c C12, d C32, e C13, and f C33



Nonlinear continuum mechanics of thick hyperelastic 807

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Influence of different higher-order shear effect models on the rotation amplitude response of the sandwich hyperelastic
clamped–clamped beam a B11, b B31, c B12, d B32, e B13 and f B33
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(a) (b)

(c)

Fig. 12 Influence of different higher-order shear effect models on the axial amplitude response of the sandwich hyperelastic
pinned–pinned beam a A21, b A22 and c A23

the thickness of h = [h/4, h/2, h/4] and the amplitude–frequency responses of the structures are shown in
Figs. 23, 24 and 25 for clamped–clamped third-order shear deformable hyperelastic thick beams. It can be
seen that the layer positioning has a notable effect in changing the coupling motion of the structure, based on
the requirements of the design.

5 Summary and conclusions

In this study, a detailed layerwise analysis of the time-dependent mechanics of hyperelastic beams structures is
given using five different shear deformation theories. The hyperelasticity wasmodelled following theMooney–
Rivlin hyperelastic strain energy density model, and the beam was assumed to lie on a foundation including
linear, nonlinear and shear layers. Equations of motion were derived using Hamilton’s principle together
with different shear deformable beam theories. Solving the equations of motion using a dynamic equilibrium
technique, it was shown that:

• The classic beam theory predicts the fundamental frequency term of hyperelastic-layered beam models
higher than the studied shear deformable beam models.

• By increasing the length-to-thickness ratio, the influence of the type of boundary conditions decreases.
• Similar to elastic beams, the hyperelastic-layered beam model shows higher sensitivity to shear effects
when the length-to-thickness ratio is lower.

• The higher-order shear deformable beam models (namely third-order, exponential and trigonometric) give
very close results for natural frequency terms, while the nonlinear behaviours are slightly different.
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Influence of different higher-order shear effect models on the transverse amplitude response of the sandwich hyperelastic
pinned–pinned beam a C11, b)C31, c C12, d C32, e C13 and f C33

• For linear natural frequencies, it was shown that having a foundation can increase the fundamental natural
frequency of hyperelastic-layered beams significantly and this effect is higher for the shear layer compared
with the linear layer.

• For nonlinear forced time-dependent analysis of layered hyperelastic beams, the Timoshenko beam model
gives the highest maximum amplitude for the dominant longitudinal, transverse and rotation deformations,
compared with the other shear deformable models. Similarly, for higher-order shear models, the highest
amplitudes are for the third-order beam model and the lowest one belongs to the exponential beam model.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Influence of different higher-order shear effect models on the rotation amplitude response of the sandwich hyperelastic
pinned–pinned beam a B11, b B31, c B12, d B32, e B13 and f B33
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(a)

(b)

(c)

Fig. 15 The amplitude response of the single-layer hyperelastic clamped–clamped beam a A22, b C11, c B11
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(a) 

(b)

(c)

Fig. 16 The amplitude response of the two-layered hyperelastic clamped–clamped beam a A21, b C11, c B11
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(a)

(b)

(c)

Fig. 17 The amplitude response of the three-layered hyperelastic clamped–clamped beam a A21, b C11, c B11
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(a) (b)

(c)

Fig. 18 Influence of the thickness of each layer on the axial amplitude response of the sandwich hyperelastic clamped–clamped
beam a A21, b A22 and c A23
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(a) (b)

(d)(c)

(e) (f)

Fig. 19 Influence of the thickness of each layer on the transverse amplitude response of the sandwich hyperelastic clamped–
clamped beam a C11, b C31, c C12, d C32, e C13 and f C33



816 H. B. Khaniki et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 20 Influence of the thickness of each layer on the rotation amplitude response of the sandwich hyperelastic clamped–clamped
beam a B11, b B31, c B12, d B32, e B13, and f B33
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(a)

(b)

(c)

Fig. 21 Influence of the material positioning on the amplitude response of the sandwich hyperelastic pinned–pinned beam a A21,
b B11, c C11
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(a)

(b)

(c)

Fig. 22 Influence of the material positioning on the amplitude response of the sandwich hyperelastic clamped–clamped beam a
A21, b C11, c B11
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(a) (b)

(c)

Fig. 23 Influence of the layer positioning on the axial amplitude response of the sandwich hyperelastic clamped–clamped beam
a A21, b A22 and c A23
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(a) (b)

(c) (d)

(e) (f)

Fig. 24 Influence of the layer positioning on the transverse amplitude response of the sandwich hyperelastic clamped–clamped
beam a C11, b C31, c C12, d C32, e C13 and f C33
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(a) (b)

(c) (d)

(e) (f)

Fig. 25 Influence of the layer positioning on the rotation amplitude response of the sandwich hyperelastic clamped–clamped
beam a B11, b B31, c B12, d B32, e B13 and f B33
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• For the two-layered hyperelastic beammodel examined in this study, it is shown that the highest transverse
amplitude belongs to the material combination of silicone and vulcanised rubber. Similarly, for the three-
layeredmodel, thematerial distribution silicone–thermoplastic–vulcanised rubber has the lowestmaximum
axial amplitude and the highest transverse and rotation amplitudes.

• The influence of each layer’s thickness is examined showing that changing the thickness of the layers can
change the nonlinear vibration response of the structure significantly.

• Hyperelastic material sorting has been shown to be a promising designing parameter in changing the
dynamic behaviour of the structure for both linear and nonlinear analysis. For the studied model, both
boundary conditions, the maximum amplitudes sweep to lower frequencies when the material positioning
is [mat1- mat2- mat3].

Overall, since layered hyperelastic structures are replacing single-layer hyperelastic structures in many designs
and applications such as food packaging, bottles, tubes and pipes, it is important to comprehend and predict
the changes in their mechanical behaviour before employing them, especially their coupling motion behaviour.
The results of this study are a step forward in realising the changes in the mechanical response of laminated
hyperelastic beams when different materials and layers are used.
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Appendix A

The nonlinear coefficients are defined as

K N11 (l, i, j) : 12ηA11

1∫
0

Ul (γ )
d

dγ

[
U ′
i (γ )U ′

j (γ )
]
dγ, (A1)

K N12 (l, i, j) : 24η2B22

1∫
0

Ul (γ )
d

dγ

[
U ′
i (γ )W ′′

j (γ )
]
dγ, (A2)

K N13 (l, i, j) : −24ηB11

1∫
0

Ul (γ )
d

dγ

[
U ′
i (γ )�′

j (γ )
]
dγ, (A3)

K N14 (l, i, j) : −η (4A11 − D44)
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0

Ul (γ )
d
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i (γ )W ′
j (γ )

]
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+12η3D22
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Ul (γ )
d
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[
W ′′

i (γ )W ′′
j (γ )

]
dγ, (A4)
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K N15 (l, i, j) : −2D44

1∫
0
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d
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[
W ′

i (γ )� j (γ )
]
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Ul (γ )
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K N16 (l, i, j) : 1
η
D44

1∫
0
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K N17 (l, i, j, k) : 12η2A11
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0
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dγ

[
U ′
i (γ )W ′

j (γ )W ′
k (γ )

]
dγ, (A7)

K N18 (l, i, j, k) : 12η3B22
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K N19 (l, i, j, k) : −12η2B11
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